• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new semi-tensor product of matrices

    2019-01-24 06:12:38DaizhanCHENGZequnLIU
    Control Theory and Technology 2019年1期

    Daizhan CHENG ,Zequn LIU

    1.The Key Laboratory of Systems and Control,Academy of Mathematics and Systems Sciences,Chinese Academy of Sciences,Beijing 100190,China;

    2.University of Chinese Academy of Sciences,Beijing 100049,China

    Received 7 August 2018;revised 10 October 2018;accepted 12 October 2018

    Abstract A new matrix product,called the second semi-tensor product(STP-II)of matrices is proposed.It is similar to the classical semi-tensor product(STP-I).First,its fundamental properties are presented.Then,the equivalence relation caused by STP-II is obtained.Using this equivalence,a quotient space is also obtained.Finally,the vector space structure,the metric and the metric topology,the projection and subspaces,etc.of the quotient space are investigated in detail.

    Keywords:Second sime-tensor product(STP-II),equivalence class,quotient space,topology,metric

    1 Introduction

    As a generalization of conventional matrix product,the semi-tensor product(STP-I)is defined as follows:

    Definition 1 Let A ∈ Mm×n,B ∈ Mp×q,and t=n∨p be the least common multiple of n and p.Then the left semi-tensorproduct(STP-I)of A and B,denoted by AB,is defined as

    The rightSTP-Iof A and B,denoted by AB,isdefined as

    We use??for eitheror.Since has better properties than,STP-I is defaulted to be left STP-I next unless elsewhere stated.

    When n=p STP-I becomes the conventional matrix product.Hence it is a generalization of conventional matrix product.Though the conventional matrix product has been extended to STP-I,which is applicable to two arbitrary matrices,its all properties remain available.

    STP-I was firstly proposed in 2001[1].Since then it has received many applications,and becomes an important tool in stabilization and control design of dynamic systems,e.g.,power systems[2];analysis and control of logical systems[3];finite games[4,5];etc.

    In recent study on cross-dimensional linear systems[6],a projection Pr:Mm×m→ Mkm×kmis proposed as

    that is,Jkis a k×k matrix with 1/k as its all entries.This fact motivates us to define the STP-II as follows.

    Definition 2 Let A ∈ Mm×n,B ∈ Mp×q,and t=n∨p be the least common multiple of n and p.Then the second left(right)semi-tensor product(STP-II)of A and B,denoted by A °ιB(correspondingly,A °rB),is defined as

    We use°for both left and right STP-II.It is obvious that°is also a generalization of conventional matrix product.

    We may also call STP-I and STP-II by first matrixmatrix(MM-1)product and second matrix-matrix(MM-2)product,because both of them are matrix-matrix product.The purpose of this paper is to introduce the concept of STP-II,and then to investigate the properties of STP-II.Some related topics are also discussed,which include 1)equivalence and quotient space;2)lattice structure ofequivalence class;3)vectorspace structuresofmatricesand theirequivalence classes;4)matric space structure and its matric topology;and 5)projection and subspaces.Most of the results are presented without proofs,because they have their corresponding known results for first STP.Then the original proofs can easily be revised to provide proofs for corresponding results of STP-II.

    It seems to us that STP-II is also a very useful tool in investigating cross dimensional dynamic(control)systems[6].

    The rest of this paper is organized as follows:Section 2 provides some fundamental properties of STPII.Section 3 proposes an equivalence called the STP-II equivalence.Based on the STP-II equivalence,a quotient space is obtained in Section 4.Section 5 proposes a vector space structure on quotient space.Sections 6 and 7 consider the metrics on matrix space and its quotient space respectively.The metric topology is also presented.Section 8 investigates the subspaces of quotient space.Section 9 is a brief conclusion.

    2 Some fundamental properties

    Thissection considerssome basic propertiesofSTP-II.Most of them have their corresponding ones for STP-I.

    First,we consider Jk.Some of its properties,mentioned in the follows,are easily verifiable.Hence,the proofs are omitted.

    Proposition 1

    4)Jkhas only one non-zero eigenvalue,which is 1.

    5){Jk|k∈N}is a monoid with identity J1=1.

    Note that a set G with a binary operation*:G×G→G,denoted by(G,*),is a monoid,if it is a semigroup with identity[7].

    We list some properties of STP-II without proof.Because they are similar to the corresponding ones of STP,only by replacing Ikby Jk.Then their proofs are almost the same as for STP except some obvious modifications.

    Proposition 2 Next,° can be either°ιor°r.

    1)(Associativity)

    2)(Distributivity)

    Proposition 3 Let A ∈ Mm×nand B ∈ Mp×q.Then the left STP-II of A and B can be alternatively defined as

    where

    However,this is not true for°r.

    Remark 1 Denote the set of all matrices as

    It is easy to verify that(M,°)is a semi-group.However,unlike(M,??),(M,°)is not a monoid,because 1°A ≠ A.The scalar product and??are consistent,but the number product and°are not consistent.This is a big difference between(M,°)and(M,??).(Note that similar to °,??can be either or).

    3 STP-II equivalence

    Similarly to STP-I,one sees easily that STP-II is basically also a product of two equivalence classes{A,A°J1,A°J2,...}with{B,B°J1,B°J2,...}.Motivated by this,we give the following equivalence relation.

    Definition 3

    .A,B∈M are said to be left STP-II equivalent,denoted by A ≈ιB,if there exist Jαand Jβ,such that

    .A,B∈M are said to be right STP-II equivalent,denoted by A ≈rB,if there exist Jαand Jβ,such that

    .The left STP-II equivalent class is denoted by

    .The right STP-II equivalent class is denoted by

    Denote by

    which are the set of left,right STP-II equivalence classes respectively.

    It is ready to verify that the relations defined by(12)and(13)are equivalence relations,(i.e.,both of them are reflexive,symmetric,and transitive[8]).

    Let A be a square matrix.Then it is ready to check that

    Hence,we can define the trace on an equivalence class as follows.

    Definition 4 Consider an equivalence class of square matrixA,which is eitherAιorAr.A trace is defined by

    4 Lattice structure on equivalence class

    For statement and notational ease,hereafter°is understood as°ιand≈is understood as≈ι.Then we do not need to repeat similar statements twice.With obvious modification one sees easily that°could be understood as for both °ιand °r.

    Definition 5[9] Let L be a partial ordered set.If for any two elements a,b∈L there exist a lowest upper bound sup(a,b)∈L and a greatest lower bound inf(a,b)∈L,then L(with the order)is called a lattice.

    Definition 6 Assume A≈B and there exists Jk,k?1,such that A?Jk=B,then

    1)A is called a divisor of B and B is called a multiple of A;

    2)an order can be defined as A?B.This order makes M a partial order set.

    Proposition 4 Assume A≈B,and hence(12)holds.If in(12)α∧β=1.Define

    Then Θ =sup(A,B).That is, Θ is the least common multiple of A and B.

    Proposition 5 Assume A≈B.Then there exists a Λ,such that Assume a∧ b=1,then Λ =inf(A,B).That is,Λ is the greatest common divisor of A and B.

    Propositions 4 and 5 assure the following lattice structure.

    Corollary 1 LetA∈Ξ.Then(A,?)is a lattice.

    In previous Corollary 1A could be eitherAιorAr.Then Ξ is either Ξιor Ξr.Hence,we have two kinds of lattices:(Aι,?ι)and(Ar,?r).

    Remark 2 The following results about STP-I equivalence are well known[10].

    1)A,B∈M is said to be STP equivalent,denoted by A ~ B,if there exist Iαand Iβsuch that

    The equivalence class is denoted by

    2)A partial order?of M is defined as follows:A?B,if there exists Iksuch that A?Ik=B.

    3)Assume(18)holds and α ∧β =1,set

    Θ :=A ? Iα=B ? Iβ.

    Then Θ=sup(A,B).

    4)Assume A ~ B,then there exists a Λ ∈ M,such that

    If p∧q=1,then Λ is unique.Moreover,Λ =inf(A,B).

    We summarize that(〈A〉,?)is a lattice.

    All the above statements have been proved in[10].As the Ik’s being replaced by Jk’s,all the proofs remain available.Therefore,we skip the proofs for Propositions 4,5,and Corollary 1.

    Proposition 6 Let(〈A〉,?)and(B,?)be two lattices.Then(〈A〉,?)and(B,?)are isomorphic lattices.

    Proof Let A1∈〈A〉and B1∈B be the root elements of〈A〉andB respectively.Define φ:〈A〉→B as follows:

    It is ready to verify that φ is a lattice isomorphism.

    5 Vector space structure

    Define

    Then we have a partition as

    where Q+is the set of positive rational numbers.Correspondingly,we also set

    Then we also have a partition for the quotient space as

    Our purpose is to pose a proper vector space structure on each Mμand Ξμ.

    Definition 7[11] Let X be a set.Suppose there is a mapping(x,y)→ x+y of X × X into X,called addition,and a mapping(a,x)→ ax of R×X into X,called scalar multiplication,such that the following axioms are satisfied(x,y,z denoting arbitrary elements of L,and a,b arbitrary elements of R):

    1)(x+y)+z=z+(y+z),

    2)x+y=y+x,

    3)There exists a unique element 0∈X,such that x+0=x for all x∈X,

    4)For each x∈X,there exists unique z=-x∈X such that x+z=0,

    5)a(x+y)=ax+ay,

    6)(a+b)x=ax+bx,

    7)a(bx)=(ab)x,

    8)1x=x,

    then X is called a vector space.

    Definition 8 Assume X with addition“+”and scalar multiplication “·”satisfies all the requires for a vector space except that the zero is a set,hence for each x∈X the inverse-x may not unique.Then X is called a pseudo-vector space.

    Definition 9 Let A,B ∈Mμ.Precisely,A ∈Mm×n,B ∈ Mp×q,and m/n=p/q= μ.Set t=m∨p.Then,

    1)the left M-II matrix addition of A and B,denote by+ι,is defined as

    Correspondingly,the left M-II matrix subtraction is defined as

    2)the right M-II matrix addition of A and B,denote by+r,is defined as

    Correspondingly,the right M-II matrix subtraction is defined as

    Remark 3 If in the above definition all Jk’s are replaced by corresponding Ik’s,the M-II matrix addition/subtraction becomes M-I matrix addition/subtraction,which have been discussed in detail in[10].

    Remark 4 Let σ ∈ {+ι,-ι,+r,-r}be one of the four binary operators.Then it is easy to verify that

    1)if A,B∈Mμ,then AσB∈Mμ;

    2)if A and B are as in Definition 9,then AσB ∈

    3)set s=n∨q,then s/n=t/m and s/q=t/p.Therefore,σ can also be defined by using column numbers respectively,e.g.,

    etc.

    It is easy to verify the following conclusion.

    Proposition 7 Mμwith addition(+ιor+r)and conventionalscalarproductis a pseudo-vectorspace,where for each A,its inverse is defined as

    which is not unique.

    In fact,it is easy to verify that A+ιB=0,if and only if,A ≈ιB,(or A+rB=0,if and only if,A ≈rB).Then when the quotient space is considered,we have a vector space.

    Definition 10 LetA,B∈Ξ.Then,

    Correspondingly,

    It is easy to verify that(26)(or(27))and(28)(or(29))are properly defined.Thatis,they are independentofthe choice of representatives A∈A and B∈B.Moreover,the scalar product can be properly defined by

    Finally,we have the following result:

    Proposition 8 Ξμwith addition defined by(26)(or(27))and scalar product defined by(30)is a vector space.

    6 Metric and metric topology

    Let A=(ai,j),B=(bi,j)∈ Mm×n.It is well known that the Frobenius inner product of A and B is defined by

    The Frobenius norm is defined by

    Now inside each Mμwe assume μy,μx∈ N are coprime and μy/μx= μ.Then,

    Definition 11 Let A,B ∈ Mμ,where A ∈ Mαμand B ∈ Mβμ.Then,

    1)the left STP-II inner product of A,B is defined by

    where t= α ∨ β is the least common multiple of α and β;

    2)the left STP-II norm of A is defined by

    3)a left STP-II matric(distance)of A and B is defined by

    The corresponding right STP-II inner product,right STP-II norm,and right STP-II matric(distance)can be defined similarly.

    The following proposition is easily verifiable.

    Proposition 9 Mμwith distance defined by(35)is a pseudo-metric space.

    Remark 5 Mμwith distance defined by(35)is not a metric space.It is easy to verify that dι(A,B)=0,if and only if,A ≈ιB.

    Next,we consider the quotient space.We need the following lemma,which comes from a straightforward computation.

    Lemma 1 Let A,B ∈ Mm×n.Then

    Using Lemma 1 and Definition 11,we have the following property.

    Proposition 10 Let A,B∈Mμ,if A and B are orthogonal,i.e.,(A|B)F=0,then A? Jξand B? jξare also orthogonal.

    Now we are ready to define the inner product on Ξμ.

    The following proposition shows that(37)is well defined.

    Proposition 11 Definition 12 is well defined.That is,(37)is independent of the choice of representatives A and B.

    Proof Assume A1∈A and B1∈B are irreducible.Then it is enough to prove that

    Denote by ξ = α∨β,ξη = αs∨βt.Using(36),we have

    Definition 13[12] A real vector space X is an innerproductspace,ifthere is a mapping X×X→R,denoted by(x|y),satisfying

    By definition it is easy to verify the following result.

    Theorem 1 The vector space(Ξμ,+ι)with the inner product defined by(37)is an inner product space.

    The following is some standard results for inner product space.

    1)(Schwarz inequality)

    2)(Triangular inequality)

    3)(Parallelogram law)

    Note that the above properties show that Ξμis a normed space.

    Finally,we present the generalized Pythagorean theorem.

    Remark 6 All the results in this section have their corresponding results for right STP-II equivalence.Precisely speaking,we have

    .Let A,B ∈ Mm×n.Then their right STP-II inner product is defined as

    where t=α∨β.

    .LetAr,Br∈Ξμ.Their inner product is defined as

    .The vector space(Ξμ,+r)with the inner product defined by(44)is an inner product space,but not a Hilbert space.

    .The norm ofAr∈Ξμis defined as

    7 Metric and metric topology on Ξμ

    Using the norm defined in previous section one sees easily that Ξμis a metric space.

    Theorem 4 Ξμwith distance

    is a metric space.

    Using this metric,the metric topology is obtained,which is denoted by Td.

    Consider

    a natural topology can be constructed as follows:

    1)each Mkμis a clopen set;

    2)on each Mkμ,a naturalEuclidean topology of Rk2μyμxis posed.

    Now we consider a natural projection Pr:Mμ→Ξμdefined by

    Similarly to STP-I equivalence case,by using projection Pr,two topologies ofΞμcan be obtained,which are product topology TPand quotient topology TQ.Again a similar argument as for STP-I equivalence,we have the following result,which is exactly the same as for STP-I equivalence case.

    Theorem 5 Consider Ξμ.The metric topology determined by the distance dιis denoted by Td.Then,

    8 Subspaces of Ξμ

    Consider the k-upper bounded subspacewhich is defined as

    We have

    Proposition 13[13] Let E be an inner product space,{0}≠F?E be a Hilbert subspace.

    1)For each x∈E there exists a unique y:=PF(x)∈F,called the projection of x on F,such that

    is the subspace orthogonal to F.

    where⊕stands for orthogonal sum.

    Using above proposition,we consider the projection:PF:Ξμ→Ξ[·,α]μ.LetA∈Ξβμ.AssumeX∈Ξαμ,t=α∨β.Then the norm ofA-ιX is

    It is easy to verify the following result:

    Proposition 14 1)Assume PF(A)=C,where A=(Ai,j)is defined by(58)and C=(ci,j)is defined by(59).Then

    where tr(A)is the trace of A.

    2)The following orthogonality holds:

    9 Conclusions

    In this paper a new matrix product,called the second STP(STP-II,or it also called MM-II product)of matrices,is proposed.To build the theory of STP-II,its properties and various geometric structures have been investigated.First,some fundamental properties are presented.Second,the STP-II caused equivalence is proposed.Based on this equivalence,the corresponding quotient space is constructed.Then the vector space structure,inner product,and the metric are all obtained.Finally,as an inner product space,some subspaces of the quotient space with orthogonal projections are considered.In own word,the quotient space has been investigated in detail.

    We expect that the second STP may receive more and more applications as those of the first STP.

    日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 国产淫语在线视频| 亚洲经典国产精华液单| 国产麻豆69| 久久热在线av| a级毛色黄片| 日本欧美视频一区| 亚洲第一区二区三区不卡| 搡女人真爽免费视频火全软件| 亚洲av电影在线观看一区二区三区| 国产老妇伦熟女老妇高清| 国产亚洲精品第一综合不卡 | 九色成人免费人妻av| 性色avwww在线观看| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 在线观看三级黄色| 亚洲欧美中文字幕日韩二区| 国产爽快片一区二区三区| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产av蜜桃| 久久久久久人人人人人| 女性被躁到高潮视频| 国产精品99久久99久久久不卡 | 国产免费现黄频在线看| 亚洲精品美女久久久久99蜜臀 | 亚洲精品视频女| av播播在线观看一区| 国产麻豆69| 国产精品三级大全| 亚洲精品av麻豆狂野| 丝袜美足系列| 国产 精品1| 欧美成人精品欧美一级黄| 国产亚洲精品第一综合不卡 | 男女边吃奶边做爰视频| 视频中文字幕在线观看| 最近手机中文字幕大全| 一本久久精品| 国产精品久久久av美女十八| 国产成人精品无人区| 日韩成人av中文字幕在线观看| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 黄色一级大片看看| 99热网站在线观看| av卡一久久| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 国产成人精品无人区| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久 | 99久久精品国产国产毛片| 新久久久久国产一级毛片| 国产免费现黄频在线看| av免费在线看不卡| 亚洲精品日本国产第一区| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 校园人妻丝袜中文字幕| 乱人伦中国视频| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 久久人妻熟女aⅴ| 一本—道久久a久久精品蜜桃钙片| 人妻人人澡人人爽人人| 精品亚洲成a人片在线观看| 免费av不卡在线播放| 精品一区二区三区四区五区乱码 | 国产精品99久久99久久久不卡 | 最近的中文字幕免费完整| 青春草视频在线免费观看| 国产福利在线免费观看视频| 多毛熟女@视频| 国产精品99久久99久久久不卡 | 亚洲精品一区蜜桃| 亚洲国产精品一区二区三区在线| 国国产精品蜜臀av免费| 另类精品久久| 免费av不卡在线播放| 国产成人91sexporn| 午夜老司机福利剧场| 精品亚洲成a人片在线观看| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 国产成人aa在线观看| 久久毛片免费看一区二区三区| 亚洲av国产av综合av卡| 久久97久久精品| 成年av动漫网址| 人人妻人人澡人人爽人人夜夜| 精品一区二区三区四区五区乱码 | 赤兔流量卡办理| 久久免费观看电影| 久久99热这里只频精品6学生| 女的被弄到高潮叫床怎么办| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 热re99久久精品国产66热6| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 国产男女超爽视频在线观看| 有码 亚洲区| 99热全是精品| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 三级国产精品片| 亚洲久久久国产精品| 日韩精品有码人妻一区| 久久久久网色| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 精品久久久精品久久久| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 亚洲丝袜综合中文字幕| 制服诱惑二区| 日韩欧美精品免费久久| 亚洲欧美成人精品一区二区| 99热网站在线观看| 99热6这里只有精品| 亚洲久久久国产精品| 亚洲av成人精品一二三区| 人妻人人澡人人爽人人| 97超碰精品成人国产| av免费观看日本| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 最近最新中文字幕大全免费视频 | 亚洲精品一二三| 国产精品偷伦视频观看了| 午夜久久久在线观看| 欧美日韩视频高清一区二区三区二| 亚洲av免费高清在线观看| 国产一级毛片在线| 亚洲精华国产精华液的使用体验| 国产福利在线免费观看视频| 亚洲av.av天堂| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 精品国产一区二区三区四区第35| 看十八女毛片水多多多| 国产一区二区三区av在线| 美女主播在线视频| 国产精品欧美亚洲77777| 久久青草综合色| 亚洲精品第二区| 亚洲伊人色综图| 久久人人97超碰香蕉20202| 国产精品不卡视频一区二区| 国产1区2区3区精品| 中文字幕av电影在线播放| 免费看av在线观看网站| kizo精华| 制服诱惑二区| 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 90打野战视频偷拍视频| 只有这里有精品99| 国产精品一区二区在线不卡| 国内精品宾馆在线| 国产无遮挡羞羞视频在线观看| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 久久精品国产亚洲av天美| 黄色 视频免费看| av视频免费观看在线观看| 欧美日韩一区二区视频在线观看视频在线| 26uuu在线亚洲综合色| 久久久久久久久久久久大奶| 搡女人真爽免费视频火全软件| 国产视频首页在线观看| 夜夜骑夜夜射夜夜干| 午夜精品国产一区二区电影| 深夜精品福利| 天天操日日干夜夜撸| 我的女老师完整版在线观看| 大片免费播放器 马上看| 婷婷色av中文字幕| 尾随美女入室| 蜜臀久久99精品久久宅男| 精品一区在线观看国产| 亚洲五月色婷婷综合| 青春草视频在线免费观看| 免费av不卡在线播放| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 国产无遮挡羞羞视频在线观看| 午夜免费男女啪啪视频观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩成人在线一区二区| 欧美少妇被猛烈插入视频| 国产老妇伦熟女老妇高清| 国产高清三级在线| 国产有黄有色有爽视频| 精品久久久久久电影网| 男男h啪啪无遮挡| 女人被躁到高潮嗷嗷叫费观| 不卡视频在线观看欧美| 国产极品天堂在线| 伦理电影免费视频| 九色亚洲精品在线播放| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 内地一区二区视频在线| 黄片无遮挡物在线观看| 成年人午夜在线观看视频| 成年人免费黄色播放视频| 欧美精品国产亚洲| 97在线人人人人妻| 日韩中字成人| 韩国高清视频一区二区三区| 精品福利永久在线观看| 9191精品国产免费久久| 欧美激情国产日韩精品一区| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃 | 夜夜骑夜夜射夜夜干| 免费在线观看完整版高清| 99久久中文字幕三级久久日本| 三级国产精品片| av.在线天堂| 国产成人av激情在线播放| 国产在线一区二区三区精| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| 国产精品欧美亚洲77777| 亚洲成人一二三区av| 天堂中文最新版在线下载| 天堂8中文在线网| 天天影视国产精品| www.色视频.com| 麻豆乱淫一区二区| 国产福利在线免费观看视频| 美国免费a级毛片| 国产毛片在线视频| 激情五月婷婷亚洲| 欧美97在线视频| 中文字幕人妻熟女乱码| 日韩一区二区三区影片| 久久99一区二区三区| 日日摸夜夜添夜夜爱| 人妻 亚洲 视频| 少妇人妻久久综合中文| 黄色 视频免费看| 国产精品 国内视频| 亚洲高清免费不卡视频| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄| 欧美xxxx性猛交bbbb| 精品国产露脸久久av麻豆| 日本av手机在线免费观看| 青春草视频在线免费观看| 日韩不卡一区二区三区视频在线| 如何舔出高潮| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| 国产精品久久久久久久电影| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 最近最新中文字幕免费大全7| 老司机亚洲免费影院| 少妇的逼水好多| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 欧美变态另类bdsm刘玥| 亚洲成国产人片在线观看| 女的被弄到高潮叫床怎么办| 国产精品一国产av| 欧美xxxx性猛交bbbb| 日本免费在线观看一区| 成人无遮挡网站| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 极品少妇高潮喷水抽搐| x7x7x7水蜜桃| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 丝袜在线中文字幕| 国产精品 国内视频| 国产成+人综合+亚洲专区| 久久香蕉国产精品| 免费av中文字幕在线| 午夜两性在线视频| 好看av亚洲va欧美ⅴa在| 中文字幕高清在线视频| 嫩草影视91久久| 满18在线观看网站| 人人澡人人妻人| 欧美 日韩 精品 国产| 久久中文字幕人妻熟女| 婷婷丁香在线五月| 黑人猛操日本美女一级片| 国产国语露脸激情在线看| 欧美中文综合在线视频| 国产亚洲av高清不卡| 在线天堂中文资源库| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 一进一出好大好爽视频| 久久久国产成人免费| 亚洲午夜理论影院| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 在线观看免费日韩欧美大片| 久久久久国产一级毛片高清牌| 老司机亚洲免费影院| 亚洲久久久国产精品| 成人国语在线视频| 国产男靠女视频免费网站| 国产国语露脸激情在线看| 婷婷成人精品国产| 男人操女人黄网站| 国产亚洲一区二区精品| 国产精华一区二区三区| 黄网站色视频无遮挡免费观看| 69av精品久久久久久| 欧美乱色亚洲激情| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 久久香蕉国产精品| 看片在线看免费视频| 中文字幕人妻丝袜一区二区| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 成人影院久久| 欧美老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 欧美在线黄色| 亚洲精品乱久久久久久| 免费少妇av软件| 女人被狂操c到高潮| av天堂在线播放| 三级毛片av免费| 午夜精品国产一区二区电影| 18禁黄网站禁片午夜丰满| 欧美 日韩 精品 国产| 制服诱惑二区| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 嫩草影视91久久| 女警被强在线播放| 国产深夜福利视频在线观看| 免费不卡黄色视频| tube8黄色片| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 亚洲成国产人片在线观看| 午夜影院日韩av| 国产成人免费观看mmmm| 国产在线观看jvid| 久久久国产一区二区| 巨乳人妻的诱惑在线观看| 欧美丝袜亚洲另类 | 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区| 多毛熟女@视频| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 成人影院久久| 亚洲久久久国产精品| 精品一区二区三区av网在线观看| 捣出白浆h1v1| 99国产精品99久久久久| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| 咕卡用的链子| 狠狠狠狠99中文字幕| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 国产精品久久久久成人av| 午夜亚洲福利在线播放| 欧美日韩瑟瑟在线播放| 亚洲国产欧美一区二区综合| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 日韩制服丝袜自拍偷拍| 亚洲成国产人片在线观看| 国产精品影院久久| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 亚洲av成人av| 欧美成人免费av一区二区三区 | 国产xxxxx性猛交| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av | 国产人伦9x9x在线观看| 涩涩av久久男人的天堂| 午夜精品在线福利| 精品福利观看| 久久久久久久午夜电影 | 校园春色视频在线观看| 亚洲精品国产区一区二| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| 午夜免费成人在线视频| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 亚洲熟妇熟女久久| 久久ye,这里只有精品| 精品久久久久久,| 99香蕉大伊视频| 少妇 在线观看| 狠狠婷婷综合久久久久久88av| 人人妻人人添人人爽欧美一区卜| 午夜福利乱码中文字幕| 日本一区二区免费在线视频| 亚洲精品成人av观看孕妇| 狠狠婷婷综合久久久久久88av| 窝窝影院91人妻| av欧美777| e午夜精品久久久久久久| 中文字幕制服av| 99riav亚洲国产免费| 日本黄色视频三级网站网址 | 亚洲美女黄片视频| www.精华液| 欧美老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 老司机影院毛片| 高清欧美精品videossex| 99国产精品一区二区蜜桃av | 69精品国产乱码久久久| 日韩制服丝袜自拍偷拍| 99久久综合精品五月天人人| 国产一卡二卡三卡精品| 黄色毛片三级朝国网站| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 可以免费在线观看a视频的电影网站| 国产淫语在线视频| 淫妇啪啪啪对白视频| 久久久久久久午夜电影 | av天堂在线播放| 母亲3免费完整高清在线观看| a级毛片黄视频| 国产黄色免费在线视频| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 免费少妇av软件| 伦理电影免费视频| 美女高潮到喷水免费观看| 国产色视频综合| 纯流量卡能插随身wifi吗| 性少妇av在线| 午夜福利乱码中文字幕| 一级毛片女人18水好多| 亚洲九九香蕉| 久热爱精品视频在线9| 久久午夜亚洲精品久久| 免费看a级黄色片| 色综合欧美亚洲国产小说| 午夜免费观看网址| 成人精品一区二区免费| 国产成人精品久久二区二区91| 一边摸一边做爽爽视频免费| 视频区图区小说| 亚洲第一av免费看| 国产精品一区二区免费欧美| 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 午夜精品在线福利| videos熟女内射| 女人精品久久久久毛片| 日本五十路高清| 操美女的视频在线观看| 精品一品国产午夜福利视频| 国产片内射在线| 久热这里只有精品99| 黑人猛操日本美女一级片| 老汉色av国产亚洲站长工具| 成人永久免费在线观看视频| 免费看十八禁软件| 欧美+亚洲+日韩+国产| 色综合欧美亚洲国产小说| 在线免费观看的www视频| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| 黄色 视频免费看| 女人精品久久久久毛片| 国产不卡av网站在线观看| 91精品国产国语对白视频| 18禁美女被吸乳视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩福利视频一区二区| 丁香欧美五月| 精品一区二区三区av网在线观看| 久久人妻福利社区极品人妻图片| 国产视频一区二区在线看| 三级毛片av免费| av欧美777| 99精品在免费线老司机午夜| 亚洲精品中文字幕一二三四区| 日韩中文字幕欧美一区二区| 亚洲人成伊人成综合网2020| 久久久精品免费免费高清| 亚洲精品av麻豆狂野| 狠狠狠狠99中文字幕| 热re99久久精品国产66热6| 免费不卡黄色视频| 午夜免费观看网址| 亚洲欧美一区二区三区久久| 18在线观看网站| 亚洲伊人色综图| 夫妻午夜视频| 老汉色av国产亚洲站长工具| 人人妻人人添人人爽欧美一区卜| 久久久久精品人妻al黑| 国产1区2区3区精品| 90打野战视频偷拍视频| av电影中文网址| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 色综合婷婷激情| 国产一区二区激情短视频| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 国产1区2区3区精品| 国产免费现黄频在线看| netflix在线观看网站| 久久中文字幕一级| 99国产精品一区二区三区| 狠狠狠狠99中文字幕| 欧美不卡视频在线免费观看 | 国产又色又爽无遮挡免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产av在线观看| 欧美大码av| 亚洲成av片中文字幕在线观看| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 成人永久免费在线观看视频| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 99riav亚洲国产免费| 丰满饥渴人妻一区二区三| 一区在线观看完整版| 纯流量卡能插随身wifi吗| 久久久精品国产亚洲av高清涩受| 99久久人妻综合| 久久久久视频综合| 国产主播在线观看一区二区| 成人影院久久| 中文字幕人妻丝袜一区二区| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 好看av亚洲va欧美ⅴa在| 51午夜福利影视在线观看| 九色亚洲精品在线播放| 18禁裸乳无遮挡免费网站照片 | 国产精品98久久久久久宅男小说| 国产成人影院久久av| 美女视频免费永久观看网站| 在线观看免费午夜福利视频| 新久久久久国产一级毛片| 精品欧美一区二区三区在线| 国产精品久久久人人做人人爽| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| 日韩人妻精品一区2区三区| 国产99白浆流出| 精品一区二区三区四区五区乱码| 久久狼人影院| 91老司机精品| 露出奶头的视频| 免费日韩欧美在线观看| 俄罗斯特黄特色一大片| 美女国产高潮福利片在线看| 午夜老司机福利片| 黄片小视频在线播放| 老司机亚洲免费影院| 国产精品美女特级片免费视频播放器 | 国产成人av激情在线播放| 亚洲av熟女| 亚洲av成人不卡在线观看播放网| 久久国产精品人妻蜜桃| 午夜福利在线免费观看网站| 手机成人av网站| tocl精华| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看| 亚洲精品av麻豆狂野| 国产有黄有色有爽视频| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 日韩中文字幕欧美一区二区| 日本一区二区免费在线视频| 色在线成人网| 国产片内射在线| 五月开心婷婷网|