• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on the deformation of aluminum and alumina droplet during its impact on the wall①

    2019-01-18 10:58:22WUGuanjieRENQuanbinFUYuLIUYuanminHUChunbo
    固體火箭技術(shù) 2018年6期

    WU Guanjie, REN Quanbin,, FU Yu, LIU Yuanmin, HU Chunbo

    (1. Science and Technology on Combustion, Internal Flow and Thermal-structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China; 2. The Fourth Academy of CASC, Xi'an 710025, China)

    Abstract:The micrometer-size alumina droplets usually impact on the wall of solid rocket motor during combustion process. Considering the high melting point of alumina, the droplet-wall impingement experiments were carried out by the molten aluminum as a demonstration. The volume of fluid (VOF) and adaptive grid methods have been used to numerically simulate the aluminum droplet-wall impingement experiments, which have been used to validate the numerical models. The deformation process of micrometer-size alumina droplets that impacted on the wall have been calculated by the validated model under different droplet velocities and sizes. The results show that the numerical simulation process is basically in accordance with the experiment. With the increase of the initial impacting velocity, alumina droplet would rebound, stick, and breakup successively after impacting on the wall. With the increase of the diameter, the critical Weber number of alumina droplet between rebound and stick, stick and breakup decreases accordingly. The rebound-stick critical We number of 20 μm, 50 μm and 100 μm alumina droplet vertically impacting on the wall are 170, 84 and 50 respectively, and the stick-breakup critical We number of impacting alumina droplet in diameters of 50 μm and 100 μm are 141 and 129. The droplet breakup must have sufficient kinetic energy to overcome the energy consumed by viscous flow and surface tension.

    Key words:alumina droplet;directly numerical simulations;self-adaptive grid method;critical We number

    0 Introduction

    Alumina droplet impacting on the wall is a common phenomenon in the combustion chamber and nozzle convergence section of solid rocket motor[1]. Aluminum/alumina droplets will impact on the surface of insulation layer and lead to particle deposition and erosion, which is a unique phenomenon of combustion gas flow in aluminized rocket motor[2-3]. The process of droplets impacting on the wall has been a very important physical process to research.

    The previous researches of droplet impacting on the wall mainly focused on the water droplet impacting on the wall. Leidenfrost[4]performed the experiments of water droplets impacting on the hot iron spoon, and the water droplets kept suspending for few seconds over the iron spoon. Wathers[5]found whether the droplet rebound or stick after impacting the hot wall mainly depended on Weber number, and the criticalWevalue of bounce and stick was 40. Zhang[6]summarized that the glycerol droplet impacting on the wall was a viscous impact whenRewas less than 20, but an inertial impact when theRewas over 230.

    However, previous studies on droplets impacting on the wall were mainly on the low-melting-point droplets[7-9]. The alumina droplet has higher surface tension than the droplet at normal temperature. Therefore, in the study of droplet-wall impacting regulation, the low-melting-point droplet cannot be used to replace the alumina droplet, but the properties of molten aluminum droplet are much similar to that of the alumina droplet. In this paper, the experimental device for aluminum droplet impacting on the wall was set up, and the open-source program Gerris was used to directly simulate the experiments of aluminum droplet impacting on the wall. Meanwhile, a lot of numerical simulations about the alumina droplet impacting on the wall were carried out by Gerris. Furthermore, the influence of velocity and diameter on the droplet impacting on wall was researched.

    1 Approach

    1.1 Experimental apparatus

    In consideration of the high melting point of alumina, it is very difficult to conduct the experimental research on alumina directly. However, the aluminum has high surface tension, which is similar to alumina, and their physical parameters are very approximate. Therefore, the experiment of aluminum droplet impacting on the graphite wall was carried out in this paper, and the accuracy of numerical calculation was verified by the experimental results. The experimental system of molten aluminum droplet impacting on the wall is mainly made up of the heating system, cooling system, gas supply system, control system, acquisition system and the obturation device. The heating system is a high-frequency induction heater, which is mainly used for melting the metal aluminum; the gas supply system mainly adopts argon, which can be used as the driving gas for the generation of aluminum droplets and the environmental protection gas; the cooling system provides the temperature protection for some components by water cooling; the control system with the high-response control hardware and professional software, is mainly used to control the high-frequency solenoid valve, whose working time is in milliseconds, so that the single metal droplet can be generated; the acquisition system mainly includes pressure and temperature acquisition, and the high-speed photography; the obturation device contains a closed container used for argon environment, and a graphite crucible for molten aluminum. A transparent quartz window is inset into the closed container for observing the deformation process of aluminum droplet-wall impingement. The whole experimental system is shown as follows in Fig.1.

    The working principle of the experimental device is that a high-frequency induction heater is used for heating the graphite crucible, and the solid aluminum in the crucible is melted; then the molten aluminum is ejected from the nozzle at the end of the graphite crucible by controlling the mass flow rate of argon gas in the graphite crucible, and the molten aluminum droplet was generated by the precise working time of high-frequency solenoid valve. Subsequently, the aluminum droplet with a certain speed impacts on the smooth graphite wall, and the impacting process is shot by the high-speed photography. The deformation process of aluminum droplet impacting on the wall is obtained.

    1.2 Numerical method

    The phenomenon of droplet impacting on the wall is the typical two-phase flow. In this paper, Gerris[10], a computational fluid dynamics program based on the VOF interface tracking method, is used to perform the direct numerical calculations on the droplet impacting on the wall. In the method of VOF, the volume rate functionC(x,t) is used to describe the volume fraction of the fluid in a grid cell: the grid cell is completely occupied by a certain liquid whenC=1, and it doesn't have liquid whenC=0, while the liquid and gas occur simultaneously in one grid when 0

    ?tC+·(Cu)=0

    (1)

    The control equations used in this paper include non-stationary incompressible continuity equations and the Navier-Stokes equations. The time-interleaving method is used to perform the discrete on the equations of volume fraction, density and pressure, and the surface tension and gravity are added as source terms to the N-S equations. The equations are as follows:

    ρ(?tu+u·u)= -p+·(2μD)+

    σκδsn+ρg

    (2)

    ?tρ+·(ρu)=0

    (3)

    ?tC+·(Cu)=0

    (4)

    whereu(u,v,w) is the fluid velocity,ρis the fluid density,μis the dynamic viscosity,σis the surface tension,κis the droplet curvature,nis the normal vector of wall, andDis the deformation tensor;δsshows that the surface tension term only exists at the two-phase interface, andρgis the gravity term.

    The density and viscosity can be expressed by the VOF functions as follows:

    ρ(C)=ρ1(C)+ρ2(1-C)

    (5)

    μ(C)=μ1(C)+μ2(1-C)

    (6)

    whereρ1is the density of the liquid,ρ2is the density of the gas,μ1is the dynamic viscosity of the liquid, andμ2is the dynamic viscosity of the gas.

    1.3 Research proposal

    In the aluminum droplet-wall impingement experiment, the temperature of molten aluminum is controlled at 977 K, and the graphite wall will be heated to 933 K, while the argon environment temperature of the aluminum droplet impingement part is around 473 K. The whole impacting process is performed in an argon atmosphere to ensure that the aluminum droplet surface does not oxidize, and the whole deformation process of the droplet impacting on the wall surface is photographed by high-speed photography. Table 1 shows the experimental parameters of aluminum droplet impacting on the graphite wall vertically, and the contact angle between the aluminum droplet and the graphite wall is 161°.

    Table 1 Experimental parameters of aluminum dropletimpacting on the graphite wall

    The VOF method was used to directly simulate the experimental process of aluminum droplet impacting on the wall, so as to verify the reliability of the numerical model. According to the experimental parameters in Table 1, Gerris was used to perform the numerical calculations of aluminum impacting on the wall.

    Considering that the particle sizes of alumina droplets in the combustion chamber of solid rocket motors are mainly below 100 μm and the gas flow velocity is generally not higher than 60 m/s, the Weber number of alumina droplets is 10~450, and theRenumber is 38.85 ~ 253.25. In this paper, the influence of particle size and velocity of alumina droplet on the behavior pattern of droplet-wall impingement process is studied. Therefore, the diameter of the alumina droplet is set as 20~100 μm, and the impacting velocity is 6.7~69.78 m/s. The physical property parameters of alumina droplets and gas phase are as shown in Table 2.

    In the solid rocket motor, as surface of the heat-insulating material is greatly influenced by the operating mode, it is very complicated to judge the wettability between the droplet and the insulating surface, thus the solid wall contact angleθis set as 90°, namely the dividing angle of the wetting property.

    Table 2 Parameters of alumina droplet and gas phase

    2 Results and discussion

    2.1 Aluminum deformation process analysis

    The experiment and simulation result of 730 μm aluminum droplet impacting on the graphite wall at a velocity of 1.01 m/s are shown in Fig.2. It can be seen that both the results of numerical simulation and experiment on the aluminum droplet-wall impacting process are very similar. The aluminum droplet is symmetrically spread over the impacting point under the inertia force, and it reaches the maximum spreading length at 0.36 ms. Then, the aluminum droplet begins to shrink to the center part. The height of aluminum droplet bulge increases continuously during the retracting process, and the aluminum droplet gains an upward speed. Finally, the droplet is completely rebounded by resistance to the gravity under the effect of kinetic energy and surface tension.

    The evolution of the pressure and velocity is shown in Fig.3. Whent=0.1 ms, the colliding is in the spreading stage, the internal pressure of aluminum droplet is concentrated on the surface between the droplet and the wall, and it gradually decreases along the normal direction. Then the droplet is gradually spreading under the inertia force, and the pressure on both sides of the droplet increases gradually. Whent=0.38 ms, the kinetic energy of the droplet is completely converted to the surface energy, and the droplet begins to shrink under the surface tension. Whent=0.60 ms, the pressure at the bottom of the droplet is less than that oft=0.1 ms, which is mainly because the droplet is subjected to the upward inertial force. Subsequently, the kinetic energy counteracts the viscous dissipation energy, and the droplet bounces off the wall.

    (a)Experimental result (b)Simulation result

    (a)Spreading stage (b)Retraction stage

    In order to describe the changing process of different energies in the impact process of aluminum droplet, each energy is tracked and calculated, including the kinetic energy (KE), the surface energy (SE), the viscous dissipation energy (VDE) and the total energy (TE). The total kinetic energy of the droplet is calculated by the integration of the kinetic energy and the volume rate function. The droplet surface energy can be calculated by the product of the surface tension coefficient and the surface area of the droplet. The viscous dissipation energy is calculated by the time integral of the viscous dissipation rate (VDR), which belongs to the cumulative viscous dissipation energy. The total energy is the summation of kinetic energy, surface energy and viscous dissipation energy. The formulation ofVDRunder two-dimensional axisymmetric condition is shown as follows[13]:

    (7)

    In Fig.4, theKE,SE,VDEandTEat an instant are nondimensionalized by initialTE. It can be seen that the balance of the original droplet surface tension is broken when the aluminum droplet contacts the wall surface, and the liquid interface is deformed and the bottom is compressed. TheKEkeeps decreasing, andSEandVDEkeep increasing during 0 ms to 0.4 ms, which is the aluminum droplet spreading stage, and the kinetic energy of the droplet is transformed into surface energy and viscous dissipation energy.

    Fig.4 Relationship between differentenergy and contact time

    At this time, the deformation of droplet is sharp, which lead to the high viscous dissipation rate; from 0.4 ms to 0.7 ms, theSEdecreases continuously, andKEandVDEincrease slowly, and the surface energy of the droplet transforms into kinetic energy and viscous dissipation energy. At this time, the viscous dissipation rate of droplets is lower than that of the spreading stage. In addition, it can be seen that the kinetic energy of the droplet is higher than the viscous dissipation energy during the deformation process, and the droplet leaves the wall under the action of the residual kinetic energy.

    2.2 The effect of the initial velocity

    As the initial velocity of alumina droplet impacting on the wall changes, the appearance of droplets impacting on the wall changes correspondingly. In Fig.5, it shows the deformation and rebound process of 20 μm alumina droplets impacting on the wall at the impacting parameter Weber number is 10, 100 and 170 respectively, and the initial velocity is 10.70, 33.85, 44.13 and 69.78 m/s.

    Fig.5 20 μm alumina droplet impacting on the wallwith different Weber number

    The calculation results of 20 μm alumina droplet vertically impacting on the wall in the Fig.5 shows that, the droplet rebounds in the low velocity, and it will stick on the wall when the velocity is high. When the Weber number is 10 and 100, the alumina droplets spread and retract after impacting on the wall, and it rebound off the wall at the end. When the Weber number is 170 and 425, the movement process can be divided into four periods: rapid spreading, retraction, oscillation and stabilization. After stabilization, the droplets stably adhere on the wall. However, no breakup or spattering occurred in the calculation range of 20 μm alumina droplet vertically impacting on the wall in this paper.

    Fig.6 shows theWe-Redistribution diagram of rebound and stick of 20 μm alumina droplet vertically impacting on the horizontal wall. The critical Weber number of rebound and stick is 170. This is mainly due to the high viscosity and surface tension, and it is different from the water droplet, which has low viscosity and surface tension.

    2.3 The effect of the initial diameter

    During the working process of the rocket motor, the size of the alumina droplets ranges from submicron to several hundred microns. Because of the unevenness of the size distribution, the influence of droplet size on the impingement results needs to be investigated[14].

    The numerical calculation results of 50 μm alumina droplet impact on the wall is shown in Fig.7. When the Weber number is 83, 84, 140 and 141 respectively, the initial velocity is 19.50, 19.62, 25.33 and 25.42 m/s. It can be seen that 50 μm alumina droplet-wall impingement results have three types: rebound, stick and breakup. When the Weber number is lower than 83, the alumina droplet will rebound after impacting on the wall; when it ranges from 84 to 140, the droplet will stick; when it is more than 500, the droplet will breakup. This is different from the types of impingement results of 20 μm alumina droplet, which is due to the larger diameter.

    Fig.6 20 μm alumina droplet impacting on the wallwith different Weber number

    Fig.7 50 μm alumina droplet impactingon the wall with different We

    The results of 100 μm alumina droplet impacting on the wall are similar to that of 50 μm droplet, but the critical Weber numbers between rebound and stick is 50, and that of stick and breakup is 129. The morphological changes of alumina droplet with the same impingement results at different impacting velocities are approximately similar. The regional distribution diagram of 20~100 μm alumina-wall impingement result is shown in Fig.8. It can be seen that with the diameter of the alumina droplet increases, the conversion critical Weber number between rebound and stick, stick and breakup decrease correspondingly. This is because the Weber number actually is the ratio of inertial force and surface tension, and with the increase of diameter, the increasing rate of inertial force is higher than that of surface tension, it is easier to breakup for bigger droplet in lower Weber number.

    Fig.8 We-D distribution diagram of the results inthe alumina droplet impacting on the wall

    2.4 The evolution of the energy

    The energy evolution in alumina droplet impacting on the wall during the 50 μm alumina droplet deformation is shown in Fig.9, and the value ofSEandKEat an instant are the ratio of initialSEandKE, respectively.

    The temporal evolution ofKEandSEfor different impingement results is shown in Fig.9.

    Fig.9 Energy evolution of 50 μm aluminadroplet impact on the wall

    The maximum surface energy of droplets increases with the increase of dropletWenumber, and the final surface energy of the droplet is basically consistent with the initial surface energy in the rebound and stick results. While, the final surface energy of the droplet increases 12% in the breakup result. This is because that the small droplets separated increase the surface area of the droplets. However, the droplet still has a certain kinetic energy in the rebound result, and the kinetic energy of droplets gradually approaches zero in stick and breakup results. In conclusion, the viscous movements of droplets dissipate most of the energy in the impacting process. Therefore, the breakup of droplet must have sufficient kinetic energy to overcome the energy consumed by viscous flow and surface tension.

    3 Conclusions

    In view of the phenomenon of alumina droplet impacting on the wall, the direct numerical simulation of micrometer alumina droplet-wall impingement process is carried out by the VOF interface tracing method and the adaptive mesh discrete program. With the increase of the initial velocity, the alumina droplet has the phenomena of rebound, stick and breakup after the vertically impacting on the wall.

    The morphology changes of the droplets impacting on the wall with different diameters are basically similar. It is easier for alumina droplets with large diameter to have the phenomenon of breakup than the small droplets. The droplet breakup must have sufficient kinetic energy to overcome the energy consumed by viscous flow and surface tension. With the droplet diameter increases, the critical Weber number of rebound-stick and stick-breakup decreases accordingly.

    精品一区二区三区视频在线 | 九九热线精品视视频播放| 网址你懂的国产日韩在线| 一级毛片高清免费大全| 久久午夜综合久久蜜桃| 亚洲av电影不卡..在线观看| 两人在一起打扑克的视频| 97超级碰碰碰精品色视频在线观看| 久久久色成人| 亚洲黑人精品在线| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| or卡值多少钱| www.999成人在线观看| 97超视频在线观看视频| 亚洲激情在线av| 国产主播在线观看一区二区| 一级a爱片免费观看的视频| 国产亚洲av高清不卡| 国产精品99久久99久久久不卡| 日韩精品中文字幕看吧| 熟妇人妻久久中文字幕3abv| 国产亚洲精品一区二区www| 国产在线精品亚洲第一网站| 日本在线视频免费播放| 国内久久婷婷六月综合欲色啪| 亚洲av电影不卡..在线观看| 亚洲精品456在线播放app | 久久久国产成人免费| 国产成人精品久久二区二区91| 男女视频在线观看网站免费| 午夜精品在线福利| 欧美日韩一级在线毛片| 在线观看免费午夜福利视频| aaaaa片日本免费| 色视频www国产| 国产欧美日韩精品亚洲av| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 亚洲色图 男人天堂 中文字幕| 性欧美人与动物交配| 久久久国产成人免费| 国产精品亚洲av一区麻豆| 亚洲精品456在线播放app | 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av香蕉五月| 人妻夜夜爽99麻豆av| 精品不卡国产一区二区三区| av福利片在线观看| 成年版毛片免费区| 日本免费一区二区三区高清不卡| 国内精品美女久久久久久| 欧美日韩精品网址| 亚洲熟女毛片儿| 两个人的视频大全免费| 人妻夜夜爽99麻豆av| ponron亚洲| 欧美日本亚洲视频在线播放| 97碰自拍视频| 国产高潮美女av| 午夜免费成人在线视频| 日本五十路高清| 91av网一区二区| 97碰自拍视频| 国产三级中文精品| 国产精品久久久av美女十八| 日韩成人在线观看一区二区三区| 男女下面进入的视频免费午夜| 国产一区二区在线观看日韩 | 国产成人精品久久二区二区免费| 久久精品国产综合久久久| 动漫黄色视频在线观看| 国产伦精品一区二区三区四那| 窝窝影院91人妻| 国产亚洲精品综合一区在线观看| 久久久久久久久免费视频了| 色尼玛亚洲综合影院| 免费看日本二区| 美女扒开内裤让男人捅视频| www.熟女人妻精品国产| 日韩大尺度精品在线看网址| 在线播放国产精品三级| 啦啦啦观看免费观看视频高清| 99久久精品一区二区三区| 一本综合久久免费| 99视频精品全部免费 在线 | 久久久国产精品麻豆| 国产精品女同一区二区软件 | 国产成人福利小说| 俄罗斯特黄特色一大片| 午夜福利在线观看吧| 少妇裸体淫交视频免费看高清| 免费观看人在逋| 国产精品日韩av在线免费观看| 51午夜福利影视在线观看| 久久天躁狠狠躁夜夜2o2o| 男人和女人高潮做爰伦理| 性色avwww在线观看| 久久久久性生活片| 成人亚洲精品av一区二区| 美女扒开内裤让男人捅视频| 成人一区二区视频在线观看| 欧美乱色亚洲激情| 欧美日韩瑟瑟在线播放| 午夜福利在线观看免费完整高清在 | 亚洲精品美女久久久久99蜜臀| 美女高潮喷水抽搐中文字幕| 中文字幕熟女人妻在线| 亚洲国产精品成人综合色| 一边摸一边抽搐一进一小说| 男人和女人高潮做爰伦理| e午夜精品久久久久久久| 日本在线视频免费播放| 可以在线观看毛片的网站| 一区二区三区国产精品乱码| 婷婷亚洲欧美| 我的老师免费观看完整版| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 中文字幕人妻丝袜一区二区| 久久中文字幕一级| 欧美zozozo另类| 真人一进一出gif抽搐免费| 成人鲁丝片一二三区免费| 天堂影院成人在线观看| 国内精品久久久久精免费| 人人妻人人看人人澡| 激情在线观看视频在线高清| 亚洲成人免费电影在线观看| 18禁观看日本| 日韩成人在线观看一区二区三区| 他把我摸到了高潮在线观看| 成年女人永久免费观看视频| 国产黄色小视频在线观看| 给我免费播放毛片高清在线观看| 无人区码免费观看不卡| 欧美黄色淫秽网站| 国产精品永久免费网站| 成人18禁在线播放| 韩国av一区二区三区四区| 又黄又粗又硬又大视频| 国产精品一区二区精品视频观看| 国产精品99久久99久久久不卡| av在线蜜桃| 国产男靠女视频免费网站| 亚洲av成人av| 香蕉丝袜av| 欧美成人性av电影在线观看| cao死你这个sao货| 国产精华一区二区三区| 一进一出抽搐动态| 老司机福利观看| 成人18禁在线播放| 一区二区三区国产精品乱码| 白带黄色成豆腐渣| 国产亚洲精品久久久久久毛片| 久久久久久九九精品二区国产| 亚洲国产精品999在线| 在线视频色国产色| 午夜免费观看网址| 听说在线观看完整版免费高清| 综合色av麻豆| 亚洲精品美女久久久久99蜜臀| 午夜亚洲福利在线播放| 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 欧美国产日韩亚洲一区| 看片在线看免费视频| 国产午夜福利久久久久久| 国产亚洲精品一区二区www| 激情在线观看视频在线高清| 麻豆久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| 亚洲美女视频黄频| 波多野结衣高清作品| 天堂√8在线中文| 这个男人来自地球电影免费观看| 啪啪无遮挡十八禁网站| www国产在线视频色| 色综合婷婷激情| 国产99白浆流出| 丰满的人妻完整版| 免费电影在线观看免费观看| 欧美黑人欧美精品刺激| 精品国产乱码久久久久久男人| 老鸭窝网址在线观看| 99久久国产精品久久久| 成人三级做爰电影| 九色国产91popny在线| 国产熟女xx| 欧美三级亚洲精品| 999精品在线视频| 欧美在线黄色| 国产精品免费一区二区三区在线| 18禁黄网站禁片免费观看直播| 色综合亚洲欧美另类图片| 久久中文字幕人妻熟女| 中亚洲国语对白在线视频| 国产成人av教育| 午夜激情欧美在线| 亚洲第一电影网av| 亚洲欧美日韩东京热| 欧美日韩黄片免| 男女下面进入的视频免费午夜| 亚洲精品粉嫩美女一区| 午夜亚洲福利在线播放| 给我免费播放毛片高清在线观看| 国产综合懂色| 精品久久久久久久久久久久久| 免费一级毛片在线播放高清视频| 久久久久国产精品人妻aⅴ院| 成人av一区二区三区在线看| 久久久水蜜桃国产精品网| 天天躁日日操中文字幕| 亚洲第一欧美日韩一区二区三区| 香蕉久久夜色| 亚洲专区中文字幕在线| 一二三四社区在线视频社区8| 嫩草影院入口| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩东京热| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 亚洲人成电影免费在线| 久久午夜综合久久蜜桃| 国产精品98久久久久久宅男小说| avwww免费| 欧美黑人巨大hd| 日韩欧美在线二视频| 天天一区二区日本电影三级| 久久人人精品亚洲av| 日韩欧美三级三区| 最近最新中文字幕大全免费视频| 在线观看免费午夜福利视频| 久久久久久久久免费视频了| 国产视频一区二区在线看| 久久国产乱子伦精品免费另类| 欧美一区二区国产精品久久精品| 99riav亚洲国产免费| 亚洲人成电影免费在线| 中文在线观看免费www的网站| 亚洲最大成人中文| 2021天堂中文幕一二区在线观| 国产成人福利小说| 这个男人来自地球电影免费观看| 精品久久蜜臀av无| 国产激情欧美一区二区| 欧美日韩精品网址| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| aaaaa片日本免费| 窝窝影院91人妻| 亚洲精品一卡2卡三卡4卡5卡| 亚洲乱码一区二区免费版| 人人妻,人人澡人人爽秒播| 天堂√8在线中文| 午夜免费激情av| 精品99又大又爽又粗少妇毛片 | 精品日产1卡2卡| 亚洲av片天天在线观看| 精品一区二区三区视频在线观看免费| 美女免费视频网站| 99在线人妻在线中文字幕| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 日本黄大片高清| 亚洲激情在线av| 国产精品美女特级片免费视频播放器 | 1000部很黄的大片| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 久久久精品欧美日韩精品| 在线观看66精品国产| 黄色片一级片一级黄色片| 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 中亚洲国语对白在线视频| 亚洲成av人片在线播放无| tocl精华| 亚洲av免费在线观看| 国产午夜精品论理片| 欧美另类亚洲清纯唯美| 一级作爱视频免费观看| 国内久久婷婷六月综合欲色啪| 神马国产精品三级电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国内毛片毛片毛片毛片毛片| 一进一出抽搐动态| 亚洲国产精品久久男人天堂| 悠悠久久av| 欧美在线黄色| 香蕉丝袜av| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| www日本黄色视频网| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽| 亚洲激情在线av| 欧美zozozo另类| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 别揉我奶头~嗯~啊~动态视频| 波多野结衣巨乳人妻| 91av网一区二区| 免费人成视频x8x8入口观看| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 国产真人三级小视频在线观看| 亚洲国产欧美一区二区综合| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9 | 国产一区二区在线观看日韩 | 亚洲欧美日韩卡通动漫| 久久人妻av系列| 国产高潮美女av| 床上黄色一级片| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 日韩人妻高清精品专区| 1024香蕉在线观看| 色在线成人网| 日韩欧美一区二区三区在线观看| 亚洲av成人av| 国产高清有码在线观看视频| 午夜精品在线福利| 久久久国产成人精品二区| 国产人伦9x9x在线观看| 精品国内亚洲2022精品成人| 久久精品国产综合久久久| 亚洲专区国产一区二区| 国产高清视频在线播放一区| 神马国产精品三级电影在线观看| 午夜福利欧美成人| 久久精品aⅴ一区二区三区四区| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 波多野结衣高清作品| 亚洲av电影在线进入| 美女cb高潮喷水在线观看 | 国产乱人伦免费视频| 国产精品一区二区精品视频观看| 午夜日韩欧美国产| 可以在线观看毛片的网站| 国产精品一区二区精品视频观看| 男人舔女人的私密视频| 九九久久精品国产亚洲av麻豆 | 亚洲av熟女| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 夜夜躁狠狠躁天天躁| 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 久久人人精品亚洲av| 国产蜜桃级精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 男女视频在线观看网站免费| 97超级碰碰碰精品色视频在线观看| 日韩欧美国产在线观看| 日日摸夜夜添夜夜添小说| 中文资源天堂在线| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 深夜精品福利| 观看美女的网站| 精品一区二区三区视频在线 | 久久久国产成人免费| 欧美另类亚洲清纯唯美| 亚洲国产欧美网| 国产精品一及| 91久久精品国产一区二区成人 | 少妇人妻一区二区三区视频| 天堂动漫精品| 国产成人影院久久av| 蜜桃久久精品国产亚洲av| 曰老女人黄片| 国产私拍福利视频在线观看| cao死你这个sao货| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三| 亚洲五月天丁香| 成人三级做爰电影| 日韩国内少妇激情av| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 欧美色欧美亚洲另类二区| 亚洲自偷自拍图片 自拍| 九九在线视频观看精品| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 午夜视频精品福利| 久久久久久久午夜电影| 一本一本综合久久| 欧美大码av| 999久久久精品免费观看国产| 婷婷六月久久综合丁香| 久久中文字幕人妻熟女| 最近在线观看免费完整版| 国产av一区在线观看免费| 搞女人的毛片| h日本视频在线播放| 国产黄片美女视频| 麻豆久久精品国产亚洲av| 精华霜和精华液先用哪个| 国产一区二区三区在线臀色熟女| 99热6这里只有精品| 国产精品野战在线观看| 国产男靠女视频免费网站| av在线天堂中文字幕| e午夜精品久久久久久久| 中文字幕av在线有码专区| 91av网一区二区| 亚洲七黄色美女视频| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 少妇人妻一区二区三区视频| 日本a在线网址| 99热这里只有精品一区 | 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| 午夜福利在线观看吧| 国产亚洲欧美98| 欧美日本视频| 九九在线视频观看精品| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全免费视频| 又爽又黄无遮挡网站| 亚洲专区字幕在线| 亚洲欧美日韩无卡精品| 在线免费观看的www视频| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 久久香蕉精品热| 身体一侧抽搐| 91av网站免费观看| av黄色大香蕉| 一进一出抽搐gif免费好疼| 黄色视频,在线免费观看| 欧美黄色淫秽网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久精品电影| 操出白浆在线播放| 国产毛片a区久久久久| 丰满人妻一区二区三区视频av | 亚洲美女视频黄频| 国产精品 国内视频| 麻豆一二三区av精品| 美女午夜性视频免费| 真人一进一出gif抽搐免费| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 免费看日本二区| 精品一区二区三区视频在线观看免费| or卡值多少钱| 级片在线观看| 国产乱人视频| 精品久久久久久久末码| 国产av麻豆久久久久久久| 国产又色又爽无遮挡免费看| 日本一二三区视频观看| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 香蕉av资源在线| 色视频www国产| 夜夜看夜夜爽夜夜摸| 久久中文字幕人妻熟女| 午夜久久久久精精品| 国产成人系列免费观看| 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 日韩三级视频一区二区三区| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 俺也久久电影网| 中文资源天堂在线| 亚洲精品美女久久久久99蜜臀| 婷婷丁香在线五月| 国产爱豆传媒在线观看| 午夜免费激情av| 免费在线观看视频国产中文字幕亚洲| 深夜精品福利| 伦理电影免费视频| 亚洲成人精品中文字幕电影| 十八禁人妻一区二区| 国产精品1区2区在线观看.| or卡值多少钱| 男女那种视频在线观看| 欧美在线黄色| 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 日本a在线网址| 免费一级毛片在线播放高清视频| 国产91精品成人一区二区三区| 精品久久蜜臀av无| 精品一区二区三区视频在线观看免费| 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 少妇熟女aⅴ在线视频| 国产精品一及| 亚洲男人的天堂狠狠| 国产三级在线视频| 日本一二三区视频观看| 免费av不卡在线播放| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 18禁国产床啪视频网站| 国产亚洲欧美98| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费 | 欧美午夜高清在线| 美女高潮的动态| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 国产精品一区二区三区四区免费观看 | 岛国在线免费视频观看| 亚洲在线观看片| 国产精品av视频在线免费观看| 久久草成人影院| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 国产精品一区二区精品视频观看| 18美女黄网站色大片免费观看| av天堂中文字幕网| 俺也久久电影网| 麻豆久久精品国产亚洲av| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 中文亚洲av片在线观看爽| 最近最新免费中文字幕在线| 岛国在线观看网站| 黄频高清免费视频| 少妇的逼水好多| 精品国产美女av久久久久小说| 欧美3d第一页| 日本免费一区二区三区高清不卡| a级毛片在线看网站| 岛国在线观看网站| 男女之事视频高清在线观看| 国产亚洲精品综合一区在线观看| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 岛国视频午夜一区免费看| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区视频9 | 嫩草影院精品99| 天堂av国产一区二区熟女人妻| 波多野结衣高清作品| 制服人妻中文乱码| 五月伊人婷婷丁香| 两性夫妻黄色片| 亚洲熟女毛片儿| 这个男人来自地球电影免费观看| 国产精品亚洲一级av第二区| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| av视频在线观看入口| 亚洲最大成人中文| 精品久久久久久久毛片微露脸| 精品久久久久久久人妻蜜臀av| 久久久水蜜桃国产精品网| 免费在线观看日本一区| 亚洲av成人av| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9 | 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 99久久无色码亚洲精品果冻| 曰老女人黄片| 久久亚洲真实| 悠悠久久av| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 国产成人av教育| 美女大奶头视频| 日韩有码中文字幕| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看 | 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 国产成人福利小说| 国产伦一二天堂av在线观看| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩卡通动漫| 国产毛片a区久久久久| 91久久精品国产一区二区成人 | 国产精品久久电影中文字幕| 少妇丰满av| 丰满人妻熟妇乱又伦精品不卡| 午夜福利欧美成人| 午夜成年电影在线免费观看| 搡老岳熟女国产| 校园春色视频在线观看| avwww免费|