林悅香,尚書旗※,王東偉,宋來其,張敬國(guó)
?
矮砧密植蘋果樹連續(xù)開溝定距栽植機(jī)研制
林悅香1,尚書旗1※,王東偉1,宋來其2,張敬國(guó)3
(1. 青島農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,青島 266109;2. 山東農(nóng)業(yè)大學(xué)機(jī)械電子工程學(xué)院,泰安 271018; 3. 濰坊市高密中等專業(yè)學(xué)校,高密 261501)
針對(duì)現(xiàn)有果樹栽植勞動(dòng)強(qiáng)度大、株距控制精度低的現(xiàn)狀,該文開展了基于標(biāo)準(zhǔn)化栽培模式的農(nóng)機(jī)農(nóng)藝融合技術(shù)研究,設(shè)計(jì)了矮砧密植蘋果栽植機(jī),解決了果樹幼苗栽植作業(yè)中存在的機(jī)械化關(guān)鍵技術(shù)難題:連續(xù)寬深開溝、果苗直立栽植、株距精確控制。采用V型雙圓盤開溝器實(shí)現(xiàn)連續(xù)寬深開溝;通過人工輔助喂苗、柵桿定位裝置輔助定位、夾持輸送裝置扶苗、刮板式覆土器回土及橡膠鎮(zhèn)壓輪壓實(shí)土壤等系列環(huán)節(jié),完成果苗直立栽植;定距栽植控制裝置通過光電傳感器感應(yīng)前一棵樹苗位置后啟動(dòng)下一棵樹苗夾持運(yùn)行并完成栽植,實(shí)現(xiàn)了株距的精確控制。該機(jī)開溝深度為0~40 cm可調(diào),開溝寬度為30~37 cm,作業(yè)速度為0.8~1.5 km/h。田間試驗(yàn)結(jié)果表明:該機(jī)工作穩(wěn)定,栽植效果良好,平均栽植合格率為93.79%,平均栽植深度合格率為91.43%,平均株距變異系數(shù)為5.03%,栽植效率720株/h, 是人工栽植效率的36倍,滿足現(xiàn)代標(biāo)準(zhǔn)果園機(jī)械化生產(chǎn)要求。種植環(huán)節(jié)機(jī)械化的實(shí)現(xiàn),可為后續(xù)管理環(huán)節(jié)及收獲環(huán)節(jié)的機(jī)械化提供可行性保障。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);蘋果;定距栽植;連續(xù)開溝;柵桿輔助定位
中國(guó)是世界最大蘋果生產(chǎn)國(guó)和消費(fèi)國(guó),蘋果種植面積、產(chǎn)量和消費(fèi)量均占世界總量的40%左右[1]。蘋果苗栽植過程是蘋果生產(chǎn)的關(guān)鍵環(huán)節(jié),對(duì)后續(xù)果園施肥、耕作、噴藥、采收等環(huán)節(jié)有著顯著影響。近30多年來,世界蘋果栽培制度發(fā)生了深刻的變化[2-3]。寬行距的矮砧密植栽培模式對(duì)蘋果生產(chǎn)全程機(jī)械化提供了有效途徑,是世界蘋果優(yōu)質(zhì)高效栽培的成功經(jīng)驗(yàn)[4]。適應(yīng)國(guó)情的矮砧密植蘋果栽培模式將在中國(guó)逐漸普及[5]。
中國(guó)從20世紀(jì)50年代開始進(jìn)行果樹育苗移栽機(jī)械的相關(guān)研究,其研究和應(yīng)用都處于初級(jí)階段,機(jī)具大多是國(guó)外產(chǎn)品的仿制品[6-10]。目前,蘋果果苗栽植主要靠人工或挖坑機(jī)等機(jī)具輔助栽植方式進(jìn)行,效率低,功能單一,株距難以保證;另有平地起壟栽植機(jī),栽植前需全面深耕土壤[11],否則影響根系生長(zhǎng)。隨著人工費(fèi)用上漲,雇工難問題逐漸凸顯,急需解決目前高成本、低收益、不便于全程機(jī)械化作業(yè)的栽植方式問題[12-14]。
結(jié)合目前推行的蘋果建園模式,對(duì)蘋果樹苗栽植環(huán)節(jié)進(jìn)行分析,開展農(nóng)機(jī)農(nóng)藝融合技術(shù)研究,設(shè)計(jì)出矮砧密植蘋果栽植機(jī),實(shí)現(xiàn)連續(xù)開溝、定距栽植、回填與鎮(zhèn)壓一體化作業(yè),滿足現(xiàn)代標(biāo)準(zhǔn)果園機(jī)械化栽植的要求。
矮砧密植蘋果栽植機(jī)選用58 kW以上拖拉機(jī)為動(dòng)力,采用后三點(diǎn)懸掛的作業(yè)方式,主要由連續(xù)開溝裝置、夾持輸送裝置、定距栽植裝置、覆土鎮(zhèn)壓裝置和其他輔助部分組成。整機(jī)結(jié)構(gòu)如圖1所示。
1. 懸掛吊耳 2. 機(jī)架 3.傳動(dòng)箱 4. 開溝器 5. 擋土板 6. 覆土擋板 7. 鎮(zhèn)壓輪 8. 定距栽植裝置 9. 夾持輸送裝置 10. 柵桿輔助定位裝置 11. 護(hù)欄
機(jī)組工作時(shí),拖拉機(jī)動(dòng)力輸出軸驅(qū)動(dòng)開溝器連續(xù)開溝,人工輔助喂苗,樹苗放置于擋土板底板,并通過柵桿定位裝置輔助定位。當(dāng)機(jī)具前行時(shí),安裝在車架尾部的定距栽植裝置傳感器檢測(cè)到已栽植樹苗位置信息后,則通過控制開關(guān)啟動(dòng)夾持輸送裝置的氣缸動(dòng)作,定位柵桿轉(zhuǎn)開,樹苗進(jìn)入夾持狀態(tài),夾持后在皮帶的帶動(dòng)下向后輸送。因夾持皮帶動(dòng)力由地輪等比傳送,所以皮帶輸送速度與機(jī)組前進(jìn)速度相同,樹苗與地面保持相對(duì)速度為零的靜止?fàn)顟B(tài)置于栽植溝內(nèi),再由刮板式覆土器回土和鎮(zhèn)壓輪壓實(shí)完成直立栽植。定距傳感器再檢測(cè)到剛栽植的樹苗,則過程重復(fù),保證了相鄰兩樹苗間距相等,實(shí)現(xiàn)一次性開溝、栽苗、回土、壓實(shí)。
開溝深度調(diào)整可由拖拉機(jī)液壓懸掛裝置調(diào)整;不同株距由傳感器安裝支架調(diào)整,調(diào)整感光點(diǎn)距離即可,操作簡(jiǎn)單;鎮(zhèn)壓輪可進(jìn)行高度和鎮(zhèn)壓力的調(diào)整。
整機(jī)主要參數(shù)如表1所示。
表1 矮砧密植蘋果栽植機(jī)主要技術(shù)參數(shù)
1.4.1 栽植密度
蘋果栽植密度應(yīng)與當(dāng)?shù)刈匀粭l件、管理水平相適應(yīng),并滿足蘋果品種和砧木品種的生長(zhǎng)需要[15]。矮化蘋果單株產(chǎn)量小于喬化蘋果樹,可通過增加栽植密度、提升機(jī)械作業(yè)效率等方式,獲得更高的投入產(chǎn)出比[16-17]。矮砧密植株行距一般在(0.8~1.5 m)′(3.5~4.0 m)之間,具體因不同土壤特點(diǎn)及品種而異。
1.4.2 栽植深度
矮砧蘋果的栽植深度不可過深,否則將接橞部分埋入土中,引起樹勢(shì)轉(zhuǎn)旺,失去矮化作用,一般要求接橞與砧木的嫁接口在地表之上5~10 cm處,嫁接口一般位于根部之上35~40 cm處,栽植后淺培土以保護(hù)砧段部分[18],使苗木根部位于地下部分30 cm左右。
開溝裝置是矮砧密植蘋果栽植機(jī)的關(guān)鍵部件,其結(jié)構(gòu)參數(shù)是否合理直接影響機(jī)具的工作阻力和作業(yè)性 能[19-21]。開溝作業(yè)中要求機(jī)具容易入土,開溝深度穩(wěn)定,開出的溝型寬度、深度尺寸能夠適應(yīng)苗木根系結(jié)構(gòu)特性[22]。本機(jī)開溝裝置采用V型雙圓盤開溝器,主要由開溝傳動(dòng)箱、傳動(dòng)箱輸入軸座、開溝刀盤、開溝刀、擋土板等組成,如圖2所示。
1. 懸掛吊耳 2. 傳動(dòng)箱輸入軸座 3. 機(jī)架 4.傳動(dòng)箱 5. 擋土板 6.開溝刀盤 7. 開溝刀柄 8. 開溝刀片
1.Lifting lugs 2.Gearbox input shaft seat 3. Frame 4. Gearbox 5. Retaining plate 6. Ditching cutter 7.Ditching handle 8.Ditching blade
圖2 開溝裝置機(jī)構(gòu)簡(jiǎn)圖
Fig.2 Structure diagram of ditching device
開溝深度可由拖拉機(jī)液壓懸掛裝置調(diào)節(jié),最大開溝深度可達(dá)40 cm,所開溝型為梯形栽植溝,該溝型結(jié)構(gòu)穩(wěn)定,開溝拋土效果較好。開溝刀盤與縱垂面的夾角為10°,開溝刀的橫向安裝距離為280 mm。見圖3。
注:L為梯形溝的側(cè)邊長(zhǎng),cm;B為梯形溝上部溝寬,cm;H為溝深, cm;θ為開溝傾角,(°)
開溝作業(yè)時(shí),刀軸旋轉(zhuǎn)方向與拖拉機(jī)驅(qū)動(dòng)輪的轉(zhuǎn)向相反,開溝刀由溝底開始向前向上切土拋土,所遇阻力較小,消耗功率也較小。開溝刀安裝在開溝刀盤上,采用斜置軸承支撐方式,可達(dá)到較大的開溝深度。開溝刀沿開溝直徑方向等間距布置,切削力分布均勻,可減少?zèng)_擊力和振動(dòng),開溝刀通過螺栓連接固定在開溝刀盤上,操作簡(jiǎn)單,更換方便。由于開溝刀工作過程中易磨損,開溝刀片材料選用65 Mn鋼,具有耐磨損與剛性好的優(yōu)點(diǎn)[23]。
開溝刀回轉(zhuǎn)直徑主要取決于開溝斷面的尺寸。由開溝深度與開溝偏角的函數(shù)關(guān)系,確定梯形溝側(cè)邊長(zhǎng)最大406 mm(=/cos=400/cos10°)。開溝刀回轉(zhuǎn)直徑應(yīng)大于梯形溝的側(cè)邊長(zhǎng),取開溝刀回轉(zhuǎn)直徑= 600 mm。為使土壤能夠順利拋出,開溝刀的最大線速度通常在5~12 m/s[24]。開溝刀線速度越大,拋土距離越遠(yuǎn)越均勻,但能量消耗增加較多。由于采用V型雙圓盤開溝器,對(duì)于拋土距離要求較小,土壤外拋容易,所以選擇較小的開溝刀線速度。在拖拉機(jī)動(dòng)力輸出轉(zhuǎn)速為 760 r/min時(shí),開溝器轉(zhuǎn)速為242 r/min(開溝減速比3.14),則本機(jī)開溝器開溝刀線速度為7.6 m/s(=p×=3.1415×0.6×242=456.1 m/min=7.6 m/s)。
擋土板安裝在開溝器的后部,與開溝器配合作業(yè),有3個(gè)作用:1)擋土前板將開溝器未完全拋出的土壤前推,推送給旋轉(zhuǎn)的開溝刀將土壤拋出,有利于保證溝型尺寸;2)擋土側(cè)板進(jìn)一步壓實(shí)土壤,有效防止拋出土壤回落,保證開溝深度;3)擋土底板放置初始投放的樹苗,與柵桿相互配合起到輔助定位作用(具體尺寸見2. 3)。
夾持輸送裝置對(duì)保障樹苗直立栽植與定距栽植有重要作用。圖4為夾持輸送裝置示意圖。
1. 驅(qū)動(dòng)鏈條 2. 驅(qū)動(dòng)鏈輪 3. 夾持帶輪 4. 機(jī)架縱梁 5. 夾持支撐梁 6. 氣壓缸 7. 圓柱銷 8. 夾持張緊支架 9. 夾持V型帶 10.光電傳感器
1. Drive chain 2. Driving chain wheel 3. Clamping pulley 4. Frame rails 5. Clamping support rails 6. Pneumatic cylinder 7. Cylindrical pin 8. Clamping tension bracket 9. Clamping V belt 10. Photoelectric sensors
注:為蘋果栽植的理論株距,cm;為機(jī)具前進(jìn)速度,m.s-1;為夾持輸送帶相對(duì)于機(jī)架的速度, m.s-1。
Note:is the theoretical plant spacing of apples, cm;is the speed of the machine, m.s-1;is the speed of the conveyor belt relative to the rack, m.s-1.
圖4 夾持輸送裝置結(jié)構(gòu)圖
Fig.4 Structure diagram of clamping and conveying device
直立栽植的實(shí)現(xiàn):人工輔助放入樹苗初始位置-擋土底板上,向后傾斜一定角度,并由柵桿輔助定位。蘋果樹苗在夾持輸送過程中始終處于向后傾斜的狀態(tài),皮帶向后輸送的過程中樹苗根部由擋土底板自動(dòng)下落到栽植溝內(nèi),由擋土板式回土裝置自動(dòng)回土覆蓋埋苗,樹苗離開夾持輸送裝置,鎮(zhèn)壓輪隨機(jī)組前進(jìn)并壓實(shí)樹苗兩側(cè)土壤,樹苗在鎮(zhèn)壓輪作用下由向后傾斜狀態(tài)向前轉(zhuǎn)動(dòng)一定角度處于直立狀態(tài),實(shí)現(xiàn)直立栽植。
樹苗在夾持輸送時(shí)與地面之間的傾斜角度,一般在40°~45°之間,與土壤類別及濕度有關(guān),不同土壤在栽植過程中傾角有所不同,需要田間測(cè)試以確定最佳傾角。
由于要保證皮帶的線速度與機(jī)組前進(jìn)速度的一致,因此采用鎮(zhèn)壓輪驅(qū)動(dòng)夾持輸送裝置的方案。動(dòng)力由鎮(zhèn)壓輪經(jīng)夾持傳動(dòng)箱鏈傳動(dòng)傳遞到夾持換向箱,由錐齒輪實(shí)現(xiàn)換向,將動(dòng)力輸出到主動(dòng)鏈輪經(jīng)鏈傳動(dòng)帶動(dòng)從動(dòng)鏈輪,最后從動(dòng)鏈輪帶動(dòng)同軸的皮帶輪轉(zhuǎn)動(dòng),實(shí)現(xiàn)皮帶的運(yùn)動(dòng),完成夾持輸送的過程。
柵桿輔助定位裝置可提高果樹栽植的精度,提高栽植質(zhì)量,免去了人工輔助扶苗的麻煩。柵桿輔助定位裝置由柵桿、圓柱銷、夾持罩板等組成,如圖5所示。
1. 機(jī)架縱梁 2. 圓柱銷 3. 固定螺栓 4. 柵桿 5. 夾持罩板
柵桿工作時(shí),夾持張緊支架上的圓柱銷帶動(dòng)?xùn)艞U繞夾持罩板擺動(dòng),張開狀態(tài)時(shí)柵桿橫放,樹苗斜放在柵桿上完成輔助定位;夾持狀態(tài)時(shí)柵桿轉(zhuǎn)動(dòng)一定角度(約90°),樹苗被皮帶向后輸送,完成夾持放苗的過程。柵桿輔助定位指樹苗根部放置于擋土板底板,樹干傾斜放置于橫臥在輸送通道上的柵桿上定位。柵桿的高度相對(duì)于機(jī)架固定,可通過調(diào)整擋土底板的高度(0~20 cm范圍)調(diào)節(jié)樹苗傾斜放置的角度和栽植深度,以達(dá)到適應(yīng)不同品種、不同栽植深度樹苗的要求。
合理密植能夠充分利用水肥資源、土地資源和光照條件,適宜的株距更有利于后續(xù)的機(jī)械化修剪等果園管理,也有利于機(jī)械輔助收獲。定距精度是衡量栽植機(jī)的重要質(zhì)量指標(biāo)。本機(jī)定距栽植裝置采用傳感器自動(dòng)控制技術(shù),控制夾持輸送裝置的夾持與張開,株距控制精度顯著提高,同時(shí)可有效避免漏栽與重栽的現(xiàn)象。
定距栽植裝置主要由2部分組成,分別是夾持輸送帶與氣動(dòng)控制部分,見圖4。該機(jī)構(gòu)利用氣動(dòng)傳動(dòng)原理,2個(gè)氣缸同步推動(dòng)夾持輸送帶運(yùn)動(dòng),從而帶動(dòng)加持輸送機(jī)構(gòu)閉合夾持樹苗,將樹苗輸送到栽植位置。通過光電傳感器測(cè)定樹苗株距,后一顆樹苗以前一顆樹苗為參考定位,株距可根據(jù)農(nóng)藝要求在0.8~2.5 m范圍內(nèi)可調(diào)。
自動(dòng)控制部分主要由光電傳感器、時(shí)間繼電器、電磁繼電器、電源等元件構(gòu)成,其主要工作過程如圖6所示:當(dāng)已栽植的蘋果樹苗經(jīng)過光電傳感器瞬間或按下首株栽植按鈕后,光電傳感器發(fā)出信號(hào)使電磁閥得電,氣缸伸出,夾持機(jī)構(gòu)張緊將樹苗向后輸送,同時(shí)時(shí)間繼電器開始計(jì)時(shí),當(dāng)設(shè)定延時(shí)時(shí)間到達(dá)時(shí),電磁閥斷電回位,氣缸回縮,夾持機(jī)構(gòu)張開,完成定距栽植過程。自動(dòng)控制電路對(duì)氣壓回路的控制有2方面:一是控制夾持機(jī)構(gòu)的迅速夾持輸送;二是控制夾持機(jī)構(gòu)的夾緊時(shí)間,使樹苗輸送到夾持支撐梁上并依靠彈簧自動(dòng)夾緊時(shí)回復(fù)張開狀態(tài)。
圖6 定距栽植裝置控制流程圖
2.5.1 覆土器的設(shè)計(jì)
覆土是蘋果栽植的關(guān)鍵環(huán)節(jié),覆土作業(yè)應(yīng)達(dá)到覆土量適宜和覆土均勻的效果[25-26]。本機(jī)采用刮板式覆土器,主要作用是將開溝器拋出的土壤回填到栽植溝內(nèi),完成覆土過程。其布置方式為左右對(duì)稱焊接在機(jī)架上,經(jīng)過分析矮砧密植模式栽植行距、苗幅寬和覆土量,覆土板長(zhǎng)度設(shè)置為150 cm,板寬為24 cm;考慮到覆土能力,由于2板間夾角小覆土能力差,夾角大覆土能力強(qiáng)但易堵塞,選擇2個(gè)覆土板之間的夾角為60°,覆土板與地面的夾角為60°;根據(jù)開溝寬度、工作速度和整地條件確定覆土裝置后開口寬度為26 cm。圖7為刮板式覆土裝置結(jié)構(gòu)示意圖。
1. 回填擋板 2. 機(jī)架 3. 懸掛吊耳 4. 回填擋板支架
2.5.2 鎮(zhèn)壓器的選擇
鎮(zhèn)壓裝置主要完成苗木栽植后土壤的壓實(shí),以保證栽植苗木具有良好的拔苗力,其作業(yè)質(zhì)量對(duì)于苗木的成活率影響甚大[27]。本機(jī)采用橡膠鎮(zhèn)壓輪,根據(jù)蘋果樹苗不同品種、不同生長(zhǎng)年份的根系結(jié)構(gòu)差異,設(shè)置可調(diào)節(jié)土壤壓實(shí)力的彈簧預(yù)緊力調(diào)整機(jī)構(gòu),以滿足不同品種的園藝要求,提高栽植機(jī)的適應(yīng)性。調(diào)整范圍根據(jù)不同土壤試驗(yàn)確定。圖8為鎮(zhèn)壓器實(shí)物圖。
1. 夾持裝置 2. 傳動(dòng)鏈 3. 鎮(zhèn)壓輪
鎮(zhèn)壓輪寬度的確定根據(jù)溝型的寬度、栽植樹苗的直徑綜合考慮,并留出足夠的間距保證鎮(zhèn)壓輪的通過。在相同輪重的情況下,土壤壓實(shí)面積隨著鎮(zhèn)壓輪與土壤接觸面積的變化而變化,鎮(zhèn)壓輪寬度越小,土壤的壓實(shí)面積越小,但壓實(shí)度隨著壓實(shí)面積的減小而增大[28]。根據(jù)溝寬350 mm,兩側(cè)鎮(zhèn)壓輪間距30 mm,綜合以上并考慮農(nóng)藝要求確定鎮(zhèn)壓輪的寬度是160 mm。
在相同輪重的情況下,輪徑越小,壓實(shí)效果越差;輪徑越大,壓實(shí)度越大,同時(shí)可減少作業(yè)過程中的滑移現(xiàn)象,壓實(shí)效果良好[29-30]。結(jié)合實(shí)際經(jīng)驗(yàn),鎮(zhèn)壓輪的直徑一般取300~600 mm[31-32]。同時(shí),鎮(zhèn)壓輪作為夾持輸送部分的輸入動(dòng)力,必須保證鎮(zhèn)壓輪轉(zhuǎn)動(dòng)靈活和不滑移,應(yīng)滿足式(1)。
式中0為鎮(zhèn)壓輪直徑,mm;為土壤對(duì)鎮(zhèn)壓輪的摩擦系數(shù);為鎮(zhèn)壓輪所受重力及附加載荷,N;W為軸套中的摩擦力矩,N×m;W為帶動(dòng)夾持輸送部件所消耗的傳動(dòng)力矩,N×m。
由式(1)和鎮(zhèn)壓輪實(shí)際作業(yè)情況確定鎮(zhèn)壓輪的直徑450 mm。
為了驗(yàn)證栽植機(jī)的工作性能和栽植效果,2018年5月20日,在高密市蛟河明珠生態(tài)園對(duì)蘋果栽植機(jī)進(jìn)行了田間試驗(yàn),如圖9所示。
試驗(yàn)用地經(jīng)過旋耕碎土,地表平整,無大石塊、秸稈、雜草等,輕黏土,土壤含水率不大于20% ,土壤堅(jiān)實(shí)度800~1000 kPa,符合栽植要求。試驗(yàn)地塊長(zhǎng)160 m,寬50 m。所選取的蘋果樹苗高度均為220 cm以上健壯樹苗,樹干直立,中間砧紅富士蘋果苗。
試驗(yàn)樣機(jī)為青島農(nóng)業(yè)大學(xué)與高密益豐機(jī)械有限公司聯(lián)合研制的2PZ-1型矮砧密植蘋果栽植機(jī),配套動(dòng)力為雷沃歐豹TD1000型拖拉機(jī)。拖拉機(jī)行進(jìn)速度為1.2 km/h,株距調(diào)整為1 m,作業(yè)行數(shù)為1行,開溝深度為30 cm。
圖9 田間試驗(yàn)
試驗(yàn)方法:共準(zhǔn)備500棵矮化砧木,平均分3次栽植。車上2人輪流投放果蘋果苗。啟動(dòng)車輛后,按下栽植按鈕,開始栽植第1株,之后定距控制傳感器感應(yīng)第1棵樹苗,夾持機(jī)構(gòu)輸送第2棵樹苗并栽植。共栽植3個(gè)行程(3行),編為1、2、3號(hào),每個(gè)行程栽植160棵。栽植完成后對(duì)每行分別進(jìn)行測(cè)定,除去兩端各10株后,每行選取140株作為試驗(yàn)樣本。通過人工統(tǒng)計(jì)漏栽、倒伏、傷苗的總量,計(jì)算栽植合格率;人工持秒表跟隨測(cè)量每行栽植時(shí)間,計(jì)算栽植頻率;人工測(cè)量株距、栽植深度,計(jì)算株距變異系數(shù)、栽植深度合格率。在相鄰地塊,同樣由4名人員(與栽植機(jī)人數(shù)配置相同)進(jìn)行人工挖坑栽植作為對(duì)照,人工栽植參數(shù)同栽植機(jī),取平均值。
因目前沒有專門針對(duì)蘋果栽植機(jī)的標(biāo)準(zhǔn),故項(xiàng)目鑒定專家推薦參照農(nóng)業(yè)機(jī)械推廣鑒定大綱DG37/T 010-2016 《旱地栽植機(jī)械》(該大綱適用于懸掛式及自走式旱地栽植機(jī)械的推廣鑒定,試驗(yàn)方法、土壤條件皆與蘋果種植相近),另外參照LY/T 1517-1999 《植樹機(jī)試驗(yàn)方法》、LY/T 1518-2012《林業(yè)機(jī)械開溝式植樹機(jī)》規(guī)定的試驗(yàn)方法和指標(biāo),選取栽植頻率、栽植質(zhì)量、栽植精度對(duì)蘋果栽植機(jī)田間作業(yè)性能進(jìn)行評(píng)價(jià)。
栽植頻率是單位時(shí)間內(nèi),栽植機(jī)栽植到地里的樹苗的株數(shù),栽植效率按式(2)計(jì)算。
式中F為栽植效率,株/min;為栽植株數(shù),為栽植時(shí)間,s。
栽植質(zhì)量的評(píng)價(jià)內(nèi)容包括栽植合格率,影響栽植質(zhì)量的主要因素有漏栽、重栽、倒伏、傷苗、直立度等。鑒定大綱DG37/T 010-2016要求栽植合格率在90%以上。
栽植精度的主要評(píng)價(jià)內(nèi)容為株距變異系數(shù)、株距合格率和栽植深度合格率[33]。參考LY/T1518—2012《林業(yè)機(jī)械開溝式植樹機(jī)》,試驗(yàn)規(guī)定的合格株距為不大于設(shè)定株距的10%。其計(jì)算為分別測(cè)定每行栽植合格樹苗的株距和栽植深度,精度指標(biāo)按式(3)~式(5)計(jì)算。
式中為栽植深度合格率,%;N為栽植深度合格的總株數(shù),株;實(shí)測(cè)株數(shù),株。本文栽植深度30 cm±5 cm為合格。
利用上述測(cè)定和計(jì)算方法,對(duì)栽植機(jī)栽植效率、栽植質(zhì)量與栽植精度指標(biāo)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如表2、表3所示。
表2表明,拖拉機(jī)行進(jìn)速度為1.2 km/h時(shí),按1 m株距栽植,平均栽植效率約12株/min,即720株/h,是對(duì)照組人工栽植效率的36倍(4人合計(jì)平均每小時(shí)栽植20株)。
表3表明,栽植質(zhì)量指標(biāo)中的栽植合格率為93.79%,高于標(biāo)準(zhǔn)要求值90%。株距變異系數(shù)平均為5.03%,栽植深度合格率平均值為91.43%,高于標(biāo)準(zhǔn)要求值75%。整機(jī)作業(yè)性能良好,符合矮砧密植蘋果栽植農(nóng)藝要求。
表2 栽植效率試驗(yàn)結(jié)果
表3 栽植精度試驗(yàn)結(jié)果
1)對(duì)蘋果栽植的各作業(yè)環(huán)節(jié)進(jìn)行分析,采用雙圓盤開溝器實(shí)現(xiàn)連續(xù)寬深開溝,溝型整齊。采用柵桿輔助定位裝置與夾持輸送裝置實(shí)現(xiàn)果樹的直立栽植,通過定距栽植裝置保證果樹栽植株距穩(wěn)定。在機(jī)架上設(shè)置刮板式覆土器,實(shí)現(xiàn)土壤自動(dòng)回填,并在機(jī)架后方設(shè)置輪式鎮(zhèn)壓器,完成土壤壓實(shí)。
2)田間試驗(yàn)結(jié)果表明:蘋果栽植機(jī)性能穩(wěn)定,栽植效果良好,平均栽植合格率達(dá)到93.79%,平均栽植深度合格率達(dá)到91.43%,平均株距變異系數(shù)為5.03%,株距均勻性較好,優(yōu)勢(shì)明顯。同時(shí),機(jī)械栽植效率是人工栽植效率的36倍。
[1] 陶源,史建民. 全國(guó)蘋果種植收益波動(dòng)特征及其影響因素分析——基于1991~2014年蘋果種植收益數(shù)據(jù)的實(shí)證分析[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃,2017,38(9):167-173. Tao Yuan, Shi Jianmin. Characteristics and influencing factors of the benefit of apple planting in China-An empirical analysis based on the apple planting benefit data from 1991 to 2014[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 167-173. (in Chinese with English abstract)
[2] 韓明玉. 蘋果矮砧集約高效栽培模式[J]. 果農(nóng)之友,2009(9):12.
[3] 李丙智. 矮砧蘋果園建立與栽培[J]. 新農(nóng)業(yè),2010(2):22-23.
[4] 王忠和. 蘋果矮砧密植栽培中存在的關(guān)鍵問題及其對(duì)策[J]. 科學(xué)種養(yǎng),2014(10):21-22,23.
[5] 王田利. 我國(guó)蘋果產(chǎn)業(yè)發(fā)展形勢(shì)與去產(chǎn)能的必然性[J]. 北方果樹,2018(1):42-43.
[6] 劉洋,李亞雄,趙華偉,等. 吊籃式移栽機(jī)喂苗機(jī)構(gòu)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2010,32(9):73-75. Liu Yang, Li Yaxiong, Zhao Huawei, et al. The design of picking seedling machanism of the bastkate-type transplanter[J]. Journal of Agricultural Mechanization Research, 2010, 32(9): 73-75. (in Chinese with English abstract)
[7] 李民朝,燕亞民. 2YZS自走式煙草移栽機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2012,32(7):154-155. Li Minchao, Yan Yamin. Design to 2YZS-self-propelled tobacco transplanting machine[J]. Journal of Agricultural Mechanization Research, 2012, 32(7): 154-155. (in Chinese with English abstract)
[8] 胡軍,封俊,曾愛軍. 大蔥移栽機(jī)的設(shè)計(jì)與試驗(yàn)研究[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2007,18(2):42-45. Hu Jun, Feng Jun, Zeng Aijun, Design and experimental research of scallion transplanter[J]. Journal of Heilongjiang Bayi Agricultural University, 2007, 18(2): 42-45. (in Chinese with English abstract)
[9] 張振國(guó),張學(xué)軍,曹衛(wèi)彬,等. 番茄穴盤苗移栽機(jī)自動(dòng)取苗機(jī)構(gòu)的研制[J]. 農(nóng)機(jī)化研究,2014 ,36(9):177-181,185. Zhang Zhenguo, Zhang Xunjun, Cao Weibin, et al. The research and manufacturing of plug transplanter’s tomato seeding picking machanism[J]. Journal of Agricultural Mechanization Research, 2014,36(9): 177-181,185. (in Chinese with English abstract)
[10] 馬淑英,陳立東,馮利臻,等. 2BMFS-3型穴灌半精量玉米播種機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2008,30(1):116-117. Ma Shuying, Chen Lidong, Feng Lizhen, et al. Design of 2BMFS type half-precision maize planter with water disperser[J]. Journal of Agricultural Mechanization Research, 2008, 30(1): 116-117. (in Chinese with English abstract)
[11] 張冕,姬江濤,杜新武. 國(guó)內(nèi)外移栽機(jī)研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)工程,2012,2(2):21-23. Zhang Mian, Ji Jiangtao, Du Xinwu. Status and prospect of transplanter at home and abroad[J]. Agricultural Engineering, 2012,2(2): 21-23. (in Chinese with English abstract)
[12] 王鈺瑩,許存興. 基于多元回歸的陜西蘋果種植成本分析[J].陜西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(4):114-118. Wang Yuying,Xu Cunxin. An analysis of apple-planting cost in Shaanxi province based on the multiple regression[J]. Journal of Shaanxi Normal University:Natural Science Edition, 2016, 44(4): 114-118. (in Chinese with English abstract)
[13] 楊易,陳瑞劍. 中國(guó)蘋果生產(chǎn)成本收益現(xiàn)狀與趨勢(shì)[J]. 農(nóng)業(yè)展望,2012,8(12):29-31,36.
[14] 宋帥帥,楊欣,殷夢(mèng)杰, 等. 果樹苗木移栽機(jī)單體功能結(jié)構(gòu)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2018,40(3):100-103. Song Shuaishuai, Yang Xin, Yin Mengjie, et al. Design of single function structure of fruit tree seedling transplanting machine[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 100-103. (in Chinese with English abstract)
[15] 蘇金花,何鳳萍. 蘋果矮化密植栽培技術(shù)[J]. 河南農(nóng)業(yè),2018(5):22,24.
[16] 蘇述紅. 蘋果矮化密植栽培技術(shù)探討[J]. 農(nóng)業(yè)與技術(shù),2017,37(22):146,148.
[17] 邵礫群,侯建昀,劉軍弟,等. 蘋果栽培模式技術(shù)經(jīng)濟(jì)評(píng)價(jià)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,2014,14(5):78-83. Shao Liqun, Hou Jianyun, Liu Jundi, et al. Technical evaluation of apple cultivation mode[J]. Journal of Northwest A&F University: Social Science Edition, 2014, 14(5): 78-83.
[18] 馬寶焜,徐繼忠,孫建設(shè). 關(guān)于我國(guó)蘋果矮砧密植栽培的思考[J]. 果樹學(xué)報(bào),2010,27(1):105-109. Ma Baokun, Xu Jizhong, Sun Jianshe. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science, 2010, 27(1): 105-109. (in Chinese with English abstract)
[19] 劉向暉,劉俊峰,李建平,等.圓盤式果園開溝機(jī)刀盤作業(yè)模態(tài)分析[J]. 農(nóng)機(jī)化研究,2016,38(6):102-105,115. Liu Xianghui, Liu Junfeng, Li Jianping, et al. The modal analysis of fruit tree ditcher knife plate of disc type [J]. Journal of Agricultural Mechanization Research, 2016, 38(6): 102-105, 115. (in Chinese with English abstract)
[20] 馬晨,蒙賀偉,坎雜,等. 果園有機(jī)肥深施圓盤開溝機(jī)研究現(xiàn)狀及發(fā)展對(duì)策[J]. 農(nóng)機(jī)化研究,2017,39(10):12-17,28.
Ma Chen, Meng Hewei, Kan Za, et al.The research current situation and development countermeasure of the orchard organic fertilizer deep application of disc ditching machine[J]. Journal of Agricultural Mechanization Research, 2017, 39(10): 12-17, 28. (in Chinese with English abstract)
[21] 胡佳佳,劉俊峰,李建平,等. 果園施肥開溝機(jī)開溝刀的優(yōu)化設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2010,32(12):41-44. Hu Jiajia, Liu Junfeng, Li Jianping, et al. Optimization design of orchard fertilization trencher’s shovel[J]. Journal of Agricultural Mechanization Research, 2010, 32(12): 41-44. (in Chinese with English abstract)
[22] 宋帥帥,楊欣,殷夢(mèng)杰,等. 果樹苗木移栽機(jī)開溝裝置模型建立與參數(shù)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2018,40(5):36-40,45. Song Shuaishuai, Yang Xin, Yin Mengjie, et al. Design and finite element analysis of spray boom[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 36-40,45. (in Chinese with English abstract)
[23] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè):上冊(cè)[K]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[24] 朱繼平,袁棟,丁艷,等. 超大圓盤開溝機(jī)拋土特性的研究及參數(shù)選擇[J]. 農(nóng)機(jī)化研究,2012,34(4):46-50,57. Zhu Jiping, Yuan Dong, Ding Yan, et al. Research on the characteristics of throwing soil of super large disc trencher and its parameter selection [J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 46-50,57.
[25] 賈洪雷,陳忠亮,馬成林,等. 北方旱作農(nóng)業(yè)區(qū)耕作體系關(guān)鍵技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(11):59-63. Jia Honglei, Chen Zhongliang, Ma Chenglin, et al. Key technologies for the tillage system in area of dry farming of northern China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 59-63. (in Chinese with English abstract)
[26] 李寶筏. 農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2003.
[27] 李亞萍,蒙賀偉,坎雜,等. 滾動(dòng)夾苗植樹機(jī)的設(shè)計(jì)研究[J]. 農(nóng)機(jī)化研究,2014,36(10):142-144,149. Li Yaping, Meng Hewei, Kan Za, et al. Design of rolling clamp seedlings planting machine[J]. Journal of Agricultural Mechanization Research, 2014, 36(10): 142-144, 149. (in Chinese with English abstract)
[28] 宋帥帥,殷夢(mèng)杰,楊欣,等. 果樹苗木栽植機(jī)覆土鎮(zhèn)壓輪系單體功能結(jié)構(gòu)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2018,40(8):58-62,69. Song Shuaishuai, Yin Mengjie, Yang Xin, et al. Functional structure design of tailor crushing system for fruit trees[J]. Journal of Agricultural Mechanization Research, 2018, 40(8): 58-62, 69. (in Chinese with English abstract)
[29] 吳俊,湯慶,袁文勝,等. 油菜毯狀苗移栽機(jī)開溝鎮(zhèn)壓部件設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21): 46-53. Wu Jun, Tang Qing, Yuan Wensheng, et al. Design and parameter optimization of ditching and compacting parts of rapeseed carpet seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 46-53. (in Chinese with English abstract)
[30] 賈洪雷,郭慧,郭明卓,等. 行間耕播機(jī)彈性可覆土鎮(zhèn)壓輪性能有限元仿真分析及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):9-16. Jia Honglei, Guo Hui, Guo Mingzhuo, et al. Finite element analysis of performance on elastic press wheel of row sowing plow machine for covering with soil and its experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 9-16. (in Chinese with English abstract)
[31] 羅紅旗,高煥文. 免耕播種機(jī)組合鎮(zhèn)壓器設(shè)計(jì)研究[J]. 北京工商大學(xué)學(xué)報(bào):自然科學(xué)版,2008,26(3):21-24. Luo Hongqi, Gao Huanwen. Study on combined press for permanent raised beds planter[J]. Journal of Beijing Technology and Business University: Natural Science Edition, 2008, 26(3): 21-24. (in Chinese with English abstract)
[32] 郭慧,陳志,賈洪雷,等. 錐形輪體結(jié)構(gòu)的覆土鎮(zhèn)壓器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):56-65. Guo Hui, Chen Zhi, Jia Honglei, et al. Design and experiment of soil-covering and soil-compacting device with cone-shaped structure of wheel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 56-65. (in Chinese with English abstract)
[33] 李華,曹衛(wèi)彬,李樹峰,等. 2ZXM-2型全自動(dòng)蔬菜穴盤苗鋪膜移栽機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):23-33. Li Hua, Cao Weibin, Li Shufeng, et al. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 23-33. (in Chinese with English abstract)
Design of continuous ditching and fixed distance apple planting machine for high density dwarfing orchard
Lin Yuexiang1, Shang Shuqi1※, Wang Dongwei1, Song Laiqi2, Zhang Jingguo3
(1.266109,; 2.271018,3261501,)
Aiming at the present situation of high labor intensity and low precision of plant spacing control in fruit tree planting, the agricultural machinery agronomic integration technology based on standardized cultivation mode was studied in this paper, and an apple planting machine for high density dwarfing orchard was designed, the key technical problems in mechanized planting of fruit seedlings, such as continuous wide and deep furrow opening, vertical planting of fruit seedlings and precise control of plant spacing, were solved. The apple planting machine for high density dwarfing orchard was powered by a tractor above 58 kW and used a rear three-point suspension operation mode. The structure mainly composed of continuous ditching device, clamping and conveying device, fixed-distance planting device, overburden pressing device and other auxiliary devices. The ditching device was powered by power-output shaft to drive opener ditching continuously. V-type double-disc opener was used, ditching blade was installed on ditch cutter supported by inclined bearings. Soil retaining plate was installed at the rear of the opener, front and side plates were used with the opener to ensure the grooving structure was stable. Bottom plate was used together with grid bar to assist positioning. By manually placing the seedlings and placing the rotes on the bottom plate, the tree trunk was placed obliquely on the grid bar lying on the conveying channel for initial positioning. After the sensor of the fixed-distance planting device installed at the rear of the frame detected the position information of the planted seedlings, the cylinder action of the clamping conveyor was started by controlling the switch. the positioning bar was opened, and the seedlings entered the clamping state, and then the seedlings were transmitted backward by the carrying belt. The carrying belt was powered by the ground wheel with the same rate, therefore, the speed of the carrying belt was the same as the machine working speed, and the seedlings were placed in the planting ditch statically with a zero speed relative to the ground, then the scraper-type cover pushed back the soil and the compaction wheel pressed the soil compactly, at the same time it pushed forward the seedlings to complete the upright planting. The fixed-distance sensor detected the seedlings just planted, the process was repeated, ensuring the distance between the adjacent 2 seedlings was equal, continuous ditching, vertical planting, backfilling and repressing were realized in one-time. By adjusting the height of the bottom plate (from 0 to 20 cm), the angle and depth for initial inclined positioning could be changed, so that the machine could work in different soils and for different varieties. The ditching depth of the machine was adjustable from 0 to 40 cm, the ditching width was 30~37 cm, and the working speed was 0.8-1.5 km/h. The results of field experiment showed that the average qualification rate for planting depth was 91.43%, the average planting qualification rate was 93.79%, and the variation coefficient of plant spacing was about 5.03%, average planting efficiency was about 720 plants per hour, which was 36 times more efficient than manual planting, the machine worked stably and the planting effect met the mechanized production requirements of modern standard orchard.
agricultural machinery; design; apple; fixed distance planting; continuous ditching; bar-assisted positioning
2018-07-18
2018-11-13
山東省農(nóng)機(jī)裝備研發(fā)創(chuàng)新計(jì)劃項(xiàng)目“蘋果生產(chǎn)全程機(jī)械化技術(shù)與裝備研發(fā)(2017YF006)”
林悅香,副教授,主要從事現(xiàn)代農(nóng)業(yè)機(jī)械裝備。 Email:1257149607@qq.com
尚書旗,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化工程研究。Email:sqingnong@126.com
10.11975/j.issn.1002-6819.2019.01.003
S233.2
A
1002-6819(2019)-01-0023-08
林悅香,尚書旗,王東偉,宋來其,張敬國(guó). 矮砧密植蘋果樹連續(xù)開溝定距栽植機(jī)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):23-30. doi:10.11975/j.issn.1002-6819.2019.01.003 http://www.tcsae.org
Lin Yuexiang, Shang Shuqi, Wang Dongwei, Song Laiqi, Zhang Jingguo. Design of continuous ditching and fixed distance apple planting machine for high density dwarfing orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 23-30. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.003 http://www.tcsae.org