• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Various Deformation on the First Fission Barrier in Even-A N=152 Isotones?

    2019-01-10 06:58:16QingZhenChai柴清禎WeiJuanZhao趙維娟andHuaLeiWang王華磊
    Communications in Theoretical Physics 2019年1期

    Qing-Zhen Chai(柴清禎),Wei-Juan Zhao(趙維娟),and Hua-Lei Wang(王華磊)

    School of Physics and Engineering,Zhengzhou University,Zhengzhou 450001,China

    Abstract The first(namely,inner)fission barriers for even-A N=152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES)calculations in the threedimensional(β2,γ,β4)deformation space.Their collective properties,such as ground-state deformations,are compared with previous calculations and available observations,showing a consistent trend.In addition,it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N=152 deformed shell nuclei.The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β4.Furthermore,the calculated Woods-Saxon(WS)single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.

    Key words:fission barriers,potential energy surface calculations,ground-state deformations,shell correction energy,single particle levels

    1 Introduction

    The region of superheavy elements(SHE),characterized by the extreme values of proton number Z,is one of the nuclear landscape and an arena of active experimental and theoretical studies.[1?2]Contrary to other regions of the nuclear chart,the SHE are stabilized only by quantum shell effects.In general,the stability of SHE is defined crudely by the fission barrier,such as its shape and size.The height of the first fission barrier,Bf,which is usually defined as the difference between the energies of the corresponding saddle in the potential energy surface(PES)and the ground state,is one of most important quantities.It dominates the survival probability of SHE synthesized in heavy-ion reactions and has a marked impact on the spontaneous fission half-lives.[3]

    Indeed,it has been a long standing problem to accurately describe the fission phenomenon since it was interpreted,for the first time,by the barrier penetration about 80 years ago.[4]Fission is a process whereby a complex quantum system(nucleus)goes from an equilibrated shape to a highly deformed shape that it finally splits into two lighter fragments.[5]Up to date,considerable effort has been made to understand the fission problem in both theory and experiment.Experimentally,the empirical values Bfcorresponding to the lowest state have been estimated from modelling analyses of the available experimental data for the neutron-induced fission cross sections.[5]All known empirical values in even-even heavy nuclei are only extended to the actinide nuclei,e.g.,the known heaviest even-even nucleus is252Cf.Certainly,the theoretical investigation of fission barriers used widely should reproduce these empirical values firstly.References[1,6]have been reviewed these theoretical frameworks,including the macroscopic-microscopic(MM)models,[7?11]the nonrelativistic energy density functionals based zero-range Skyrme and finite-range Gogny interactions,[12?14]the extended Thomas-Fermi plus Strutinsky methods[15?16]and the covariant density functional theory(CDFT).[17?19]Among these,the MM approaches usually have very high descriptive power as well as simplicity of calculation.Accordingly,in the present work,the multidimensional PES calculation will be based on the framework of MM model.

    Furthermore,as is well known,the transuranium nuclei,which are produced artificially in heavy-ion induced nuclear fusion reactions,are the gateway to the so-called SHE.In addition,the deformed shell at N=152 is experimentally known for a long time.The analysis of singleparticle spectra of heavy nuclei in multidimensional deformation space has reproduced the appearance of the strong,experimentally-known shell at N=152 and explained that it is mainly due to the quadrupole deformation β2,though importantly enhanced by the high-order deformation.[20?22]The even-even N=152 isotones consist of 7 nuclei experimentally,ranging from246Pu to258Sg.The half-life of these isotones are 10.84 d(246Pu),3.48×105y(248Cm),13.08 y(250Cf),25.39 h(252Fm),51 s(254No),6.4 ms(256Rf)and 2.9 ms(258Sg),respectively.

    Motivated by the previous PES studies in superheavy nuclei,[23?24]and transuranium nuclei,[25]we wonder the influence of different deformation parameters on the first fission barrier in these N=152 nuclei,where the second fission barrier,even the third one,is beyond the scope of the present work for the deformation space(β2,γ,β4).Furthermore,we have extended the calculation to the very neutron-rich heavy nucleus244U and neutron-de ficient nucleus260Hs in order to assess the current status of theoretical model and provide some useful informations for future experimental confirmation.Thus,we will investigate systematically the even-A N=152 isotones with 92≤Z≤108 in present work,focusing on the specific effects of non-axial quadrupole deformation γ and hexadecapole deformation β4on the ground-state and saddle points(which determine the first fission barrier)in the PES.

    The article is organized as follows.In Sec.2 we present a brief description of the theoretical formalism used to obtain the main ingredient of the present study,i.e.,the PES calculations.Section 3 is devoted to the numerical calculated results and discussions on these N=152 isotones.Finally a brief summary is given in Sec.4.

    2 Model and Method

    The pairing-deformation self-consistent PES calculation,[26?27]which is an approximation of the Hartree-Fock mothod,is based on the MM models presented in this work.It has been used extensively in the description of the overall systematics of nuclear properties,such as nuclear ground-state masses,shapes,and fission barriers.The basic idea in the MM approach is that the total potential energy of a deformed nucleus can be decomposed in two parts,

    where Emacis the macroscopic bulk-energy term,being a smooth function of Z,N and deformation,and Emicis the microscopic quantum correction calculated from a phenomenological(non-self-consistent)single-particle potential well.In the following,we will briefly outline the unified procedure and simultaneously provide the necessary references.

    First,the macroscopic energy is obtained from the standard liquid-drop(LD)model.[28]Since our primary attention is just on the PES and the difference between the points(e.g.,the minimum and saddle point)on it,the nuclear potential energy relative to the energy of a spherical LD is adopted,which can be written as[29]

    where the relative surface and Coulomb energies Bsand Bcare only functions of nuclear shape.The spherical surface energy E(0)sand the fissility parameter χ are Z-and N-dependent.The surface energy tends to hold the nucleus together,and the Coulomb energy tends to pull it apart.

    Then the microscopic correction part,which arises because of the nonuniform distribution of single-particle levels,mainly contains a shell correction and a pairing correction.The shell correction energy is calculated by Strutinsky method,[30]δEshell=Esp?and the pairing correction energy is obtained by Lipkin-Nogami(LN)method,[31]δEpair=ELN?Esp.The strutinsky smoothingis performed with a sixth-order Laguerre polynomial and a smoothing range γ =1.20~ω0,where~ω0=41/A1/3MeV.The single-particle energies Espare calculated from a phenomenological Woods-Saxon(WS)potential with the set of universal parameters.[32]During the diagonalization process of the WS Hamiltonian,deformed harmonic oscillator states with the principal quantum number N≤12 and 14 have been used as a basis for protons and neutrons,respectively.The pairing corrections originate from the short-range interaction of correlated pairs of nucleons moving in time-reversed orbits.The approximately particle-number-conserving LN method using here avoids the spurious pairing phase transition for large spacings between the single-particle levels at the Fermi surface encountered in the traditional Bardeen-Cooper-Schrieffer(BCS)calculation.In the paring windows,dozens of single-particle levels,the respective states(e.g.half of the particle number Z or N)just below and above the Fermi energy,are included empirically for both protons and neutrons.

    Consequently,the PES of a given nuclear system is obtained in the multi-dimensional deformation space(β2,γ,β4)and the nuclear equilibrium deformation is determined by minimizing the PES.Note that nuclear shape is defined by the standard parametrization in which it is expanded in spherical harmonics Yλμ(θ,?).[32]There is a fundamental limitation in λ,because the range of the individual“bumps” on the nuclear surface decreases with increasing λ and obviously should not be smaller than a nucleon diameter.A limiting value of λ

    3 Results and Discussions

    Table 1 shows the values R4/2,[34]P-factor,[35]and the calculated ground-state properties in these N=152 isotones,which are confronted with experiments and/or other accepted theories.The well deformed axially symmetric rotor are indicated roughly by the values of R4/2and the P-factor(P=NpNn/(Np+Nn)≥4),demonstrating the strong collectivity among these nuclei.It also suggested that ifis about(40–50)keV in heavy mass region,the state cannot be of any other nature than rotational.[36?37]As expected,the calculated deformations β2are the main contributions in the nuclear shape parametrization.They are all located in the range of 0.2~0.3,which is the typical range of the well deformed nuclei.Our results are in agreement with several other results are based on the fold-Yukawa(FY)single-particle potential and the finite-range droplet model(FRDM),[38]the Hartree-Fock-BCS(HFBCS),[39]and the extended Thomas-Fermi plus Strutinsky integral(ETFSI)methods,[40]although they are a little underestimation with experimental values[41]in248Cm and250Cf.This is further analysed by Dudek et al.[42]where a corrected formula is suggested to modify the shape inconsistency.The nature of shape inconsistencies may arise from that the charge distributions are more deformed than the mass distributions in the Woods-Saxon calculations.

    Table 1 The values of R4/2,[34]P-factor,[35]the excitation energies of the first 2+state E( ),and the calculated results for ground-state equilibrium deformation parameters β2,β4for even-A N=152 isotones,together with the FY+FRDM(FF),[38]HFBCS,[39]and ETFSI[40]calculations and existing experimental values(Exp.)[41]for comparison.

    Table 1 The values of R4/2,[34]P-factor,[35]the excitation energies of the first 2+state E( ),and the calculated results for ground-state equilibrium deformation parameters β2,β4for even-A N=152 isotones,together with the FY+FRDM(FF),[38]HFBCS,[39]and ETFSI[40]calculations and existing experimental values(Exp.)[41]for comparison.

    aE )and adopted β2-values for these nuclei are taken from Ref.[41].The uncertainties are less than 1.0 keV and 0.015 for E( and ,respectively.bThe calculated ground-state|γ|values of these isotones are always less than 2?.

    Nuclei R4/2 P E(2+1)a/keV β2 β4 TRSb FF HFBCS ETFSI Exp. TRS FF HFBCS ETFSI 244U–7.22 – 0.2300.2500.250.25–0.0410.038 0 0.05 246Pu3.3088.21 46.7 0.2330.2500.250.26–0.0400.038 0 0.04 248Cm 3.313 9.10 43.4 0.236 0.250 0.28 0.26 0.286 0.036 0.039 ?0.02 0.04 250Cf 3.321 9.90 42.7 0.240 0.250 0.28 0.26 0.298 0.030 0.027 ?0.02 0.04 252Fm – 9.10 46.6 0.2410.2500.29 0.26 – 0.0210.027?0.02 0.02 254No 3.290 8.21 44.2 0.240 0.251 0.26 0.26 – 0.013 0.015 ?0.01 0.02 256Rf 3.360 7.22 44.0 0.239 0.252 0.27 0.27 – 0.004 0.002 ?0.02 0 258Sg – 6.12 – 0.240 0.252 0.27 0.25 – ?0.008 ?0.036 ?0.03 ?0.02 260Hs – 4.88 – 0.239 0.253 0.24 0.25 – ?0.015 ?0.023 ?0.03 ?0.02

    Fig.1 (Color online)(a)Comparison of calcualted potential energy curves of the total energy(black),the microscopic shell correction(red),and the macroscopic liquid drop energy(blue)for even-even N=152 isotones as a function of quadruple deformation β2.The γ and β4deformation are set to zero in order to address the effect of β2parameter alone.(b)The calculated total barrier and its macroscopic and microscopic contributions at saddle point of total energy curves in(a).

    As mentioned above,it is the quantum shell effects that make the SHE stabilize.As shown in Fig.1,there is no doubt that the microscopic shell correction energy plays an important role with the addition of proton numbers,i.e.,extending to the region of SHE region.For convenience of description,the potential energy curves have been calculated just with the main component deformation β2.The presence of ground-state minimum is mainly ascribed to the microscopic shell correction energy,not the macroscopic liquid drop energy.In general,the height of fission barrier becomes lower close to the drip-line nuclei than long-lived nuclei such as256Rf and258Sg.However,according to the β-stability line given by the empirical formula Z=A/(1.98+0.0155A2/3),[43]the most β-stable nucleus is248Cm.It is interesting to identify the competition of the β decay and spontaneous fission in these nuclei.Note that the macroscopic liquid drop energy in260Hs decreases gently with increasing quadrupole deformation β2.Thus,it can be concluded that it survives completely due to microscopic shell

    Further,while there is no evidence for pure hexadecupole excitation in spectra yet,the known important role for the ground-state shape of heavy nulcei of hexadecupole deformation has been presented over several decades.[33]Figure 2 shows the calculated potential energy curves against the quadrupole deformation β2with and without the inclusion of hexadecupole deformation β4.In the lighter N=152 isotones,the inclusion of β4could drive the minima of potential energy curves down a little.Besides,it also generates a markedly reduction on the saddle point in heavier ones.Especially in260Hs,the reduction of the fission barrier height is more than 1 MeV.Since a 1-MeV difference in the fission barrier could result in several orders of magnitude difference in the fission half-life,the influence of β4degree of freedom on fission barrier should not be neglectful in these nuclei.

    Fig.2 Comparison of calcualted potential energy curves with(magenta)and without(black)hexadecapole deformation β4for even-even N=152 isotones as a function of quadruple deformation β2.Both potential energy curves have been obtained with γ =0?.

    Moreover,to investigate the effect of non-axial quadrupole deformation γ on fission barrier in these N=152 isotones,we systematically displayed the calculated potential energy curves as the function of β2as well.Up to date,the non-axial quadrupole deformation γ has been manifested itself by the wobbling motion,signature inversion and chiral doublets in many nuclei.[44?46]For example,it is suggested that the triaxial minima are about 0.5 MeV shallower than axial minima in N=76 isotones.[47]In the present work,it can be found that the inclusion of the triaxial deformation would pull the fission barrier down signi ficantly as well,exhibiting in Fig.3. Indeed,this is consistent with the other MM model calculations that the inner fission barrier is usually lowered when the triaxial deformation is allowed in the actinide region.[48]For example,the fission barrier in256Rf obtained with triaxial PES calculations is about 6 MeV whereas the value given by axial PES calculations has been predicted close to 9 MeV.

    Fig.3 (Color online)Comparison of calcualted potential energy curves with(green)and without(black)nonaxialquadrupole deformation γ for even-even N=152 isotones as a function of quadruple deformation β2.Both potential energy curves have been obtained with β4=0.

    Fig.4 (Color online)(a)Calculated potential energy curves against γ at saddle point of β2in246Pu,248Cm,and250Cf.(b)Calculated potential energy curves against β2in248Cm.Each calculated deformation space is with the inclusion of(β2)(black),(β2,β4)(magenta),(β2,γ)(green),(β2,γ,β4)(blue)degrees of freedom,respectively.For the clearness,all the curves have subtracted to the minimum energy of PES.The experimental fission barrier denotes by sphere scatter

    To exemplify the effects of β4and γ on fission barrier,taking the248Cm nucleus as an example,we have depicted the calculated potential energy curves for this nucleus in Fig.4.Based on the energy curves in Fig.4(a),one can see the potential energy is relatively flat near the minima with respect to the triaxial deformation γ.But for a crude evaluation,the influence of γ may be more significant in a lower β2saddle point to some extent.Furthermore,it is worth noticing that the hexadecapole deformation β4pulls down the minimum of PES while the triaxial deformation γ pushes up the saddle point of PES remarkably in Fig.4(b).The in fl uence of γ is the larger of the two,and they are all important to the reproduction of experimental fission barrier.In addition,it has been pointed out that if only a few shape degrees of freedom are constrained,the spurious saddle points may be obtained inevitably.[10]In the present deformation space(β2,γ,β4),it seems more suitable than other selected deformation spaces,considering it is sufficient to describe the experiment value in248Cm.

    Fig.5 (Color online)The calculated Woods-Saxon single-particle levels near the Fermi surface of248Cm for protons(a)and for neutrons(b).The positive(negative)parity levels are denoted by the solid(dashed)lines.

    Fig.6 (Color online)Similar to Fig.5,but as a function of β4.The blue dotted line denotes the equilibrium deformation β4=0.036.

    As mentioned earlier,the microscopic part of total energy arises due to fluctuations in the actual distribution of single-particle levels in the nucleus relative to a smooth distribution of levels.[29]Therefore,in order to further analyze their different effects on fission barrier,we represent the calculated Woods-Saxon single particle levels near the Fermi surface of248Cm in Fig.5.For convenience,it is intelligible to use origin deformation parameters with β4=0 and γ =0.Apparently,the deformed shell gaps can be clearly seen near the Fermi surface,together with the asymptotic quantum numbers ?[Nnzml].The present single-particle structures are consistent with calculated single-particle spectra for doubly magic nuclei270Hs and298Fl by Sobiczewski et al.[37]Since the total single-particle correction are determined by the shell correction,which would be enhanced at the low level density near the Fermi surface,[29]one can expect the shell correction is larger at the ground state than at the saddle point.Furthermore,the similar mechanism implying by single-particle structure would be emerging in the β4and γ degrees of freedom.The β4and γ deformation degrees of freedom will simultaneously affect the energies at both ground state and saddle point though they may have somewhat different impacts on them.As illustrated in Figs.6 and 7,the single-particle level density near the Fermi surface is lower at the inclusion of β4(with γ,i.e.,triaxial saddle)than without β4(without γ,i.e.,axial saddle).For the effect of γ deformation on inner fission barrier in248Cm,a low level density in TS could result in larger shell correction energy(negative value)than the ones in AS.Then the total energy of TS will be lower than the total energy of AS.On the other hand,as shown in Fig.3,the equilibrium deformation γ equals zero,i.e.,the γ deformation do not influence the total energy of the first minimum in248Cm.Obviously,according to the Bf=Esaddle?Eminimum,the height of fission barrier of TS would be lower than that of AS.On the contrary,the effect of β4on the inner fission barrier may not impact on the saddle point but on the minimum of248Cm as depicted in Fig.2.Then the total energy of the ground state with the inclusion of β4deformation should be lower than the ones without β4.Thus,the effect of β4deformation on the inner fission barrier has strengthened a little the height of fission barrier.However,as shown in Fig.2,the inclusion of β4deformation may reduce the inner fission barriers in the heavier N=152 isotones as well,where such an oscillating e ff ect of β4deformation on the inner fission barrier in N=152 isotones is an interesting foundation.

    Fig.7 (Color online)Calculated proton(a)and neutron(b)single-particle levels near the Fermi surface for 248Cm at three typical deformation grid points,i.e.,GS(ground state),AS(axial saddle)and TS(triaxial saddle)points.The red lines indicate the Fermi energy levels.

    4 Summary

    In conclusion,systematic investigation of the first fission barrier in even-A N=152 isotones with 92≤Z≤108 has been preformed using multidimensional PES calculations in the deformation space(β2,γ,β4).The calculated ground-state deformations are basically in agreement with previous study and existing experimental data.And the collective properties revealing with the value of R4/2,P-factor andare also consisted with present work.Furthermore,the spectacular reproduction of the fission barrier by our PES calculations toward interesting physics.The effect of hexadecupole deformation β4and non-axial quadrupole deformation γ on the first fission barrier is inequable but both unnegligible.In addition,it is found that the microscopic shell correction energy due to the nonuiform distribution of calculated WS single-particle levels should be responsible for the evolution of fission barrier.Low level density would result in the large shell correction energy,which corresponds to the reduction of the total potential energy.Therefore,the effects of various deformation can be understood by Bf=Esaddle?Eminimum.

    操出白浆在线播放| 国产一区二区在线av高清观看| 国产亚洲精品久久久久5区| 视频区图区小说| 精品久久久久久成人av| 久久精品亚洲熟妇少妇任你| 99久久人妻综合| 搡老岳熟女国产| 极品教师在线免费播放| 在线av久久热| 久久精品亚洲熟妇少妇任你| 精品一品国产午夜福利视频| av超薄肉色丝袜交足视频| 可以免费在线观看a视频的电影网站| 免费在线观看日本一区| 身体一侧抽搐| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 久9热在线精品视频| 久久国产精品人妻蜜桃| 欧美日韩黄片免| 一进一出好大好爽视频| 老鸭窝网址在线观看| 成人三级做爰电影| 国产精品免费视频内射| 国产高清激情床上av| 大陆偷拍与自拍| 无人区码免费观看不卡| 91在线观看av| 亚洲精品一区av在线观看| 久久久久久久午夜电影 | 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女 | 大型av网站在线播放| 桃色一区二区三区在线观看| 色播在线永久视频| 嫩草影视91久久| 女生性感内裤真人,穿戴方法视频| 制服诱惑二区| 成人精品一区二区免费| 国产亚洲精品第一综合不卡| 狠狠狠狠99中文字幕| 国产亚洲欧美98| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 国产免费现黄频在线看| 十分钟在线观看高清视频www| 国产亚洲精品综合一区在线观看 | 精品日产1卡2卡| 国产精品久久久久成人av| 韩国精品一区二区三区| 国产亚洲精品久久久久5区| 国产成人欧美在线观看| 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看| tocl精华| 99精品在免费线老司机午夜| 亚洲精品在线观看二区| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 在线永久观看黄色视频| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 精品一区二区三区视频在线观看免费 | 亚洲精品久久成人aⅴ小说| 日日干狠狠操夜夜爽| 可以免费在线观看a视频的电影网站| 国产精品久久久久成人av| 丁香欧美五月| 国产成人精品无人区| 欧美成人免费av一区二区三区| 欧美性长视频在线观看| 99re在线观看精品视频| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 国产精品国产av在线观看| 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 在线观看66精品国产| 久热这里只有精品99| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 一级黄色大片毛片| 亚洲男人天堂网一区| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区| 超碰97精品在线观看| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 窝窝影院91人妻| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 91麻豆av在线| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 午夜精品在线福利| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 免费av中文字幕在线| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产 | 日韩欧美国产一区二区入口| 欧美成人性av电影在线观看| 久久影院123| 国产一区二区三区视频了| 天堂√8在线中文| 国产欧美日韩综合在线一区二区| 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 久久人妻熟女aⅴ| 一级片'在线观看视频| 国产伦一二天堂av在线观看| 在线观看免费视频网站a站| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 午夜两性在线视频| 亚洲人成77777在线视频| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 宅男免费午夜| 操美女的视频在线观看| 在线观看66精品国产| 亚洲久久久国产精品| 99精品久久久久人妻精品| 热re99久久国产66热| 久久久国产欧美日韩av| 99riav亚洲国产免费| 夜夜躁狠狠躁天天躁| 18禁观看日本| 亚洲一码二码三码区别大吗| 亚洲情色 制服丝袜| 999久久久国产精品视频| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 三上悠亚av全集在线观看| 天天添夜夜摸| 天堂影院成人在线观看| 韩国精品一区二区三区| 午夜福利在线观看吧| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 久久久久九九精品影院| 韩国av一区二区三区四区| 国产xxxxx性猛交| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看 | 麻豆成人av在线观看| 99在线人妻在线中文字幕| av片东京热男人的天堂| 欧美成人午夜精品| 久久中文字幕一级| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 久久久久国内视频| 成人精品一区二区免费| 国产欧美日韩一区二区三| 久9热在线精品视频| 日韩免费高清中文字幕av| 日本 av在线| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 国产伦一二天堂av在线观看| 亚洲精品美女久久久久99蜜臀| 日本撒尿小便嘘嘘汇集6| 亚洲午夜精品一区,二区,三区| 岛国视频午夜一区免费看| 99热国产这里只有精品6| 国产亚洲精品一区二区www| 亚洲国产看品久久| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 国产精品爽爽va在线观看网站 | 国产精品 国内视频| 国产精品电影一区二区三区| 国产不卡一卡二| 大香蕉久久成人网| 亚洲一区二区三区不卡视频| 免费高清视频大片| www.精华液| 日韩免费av在线播放| 亚洲av熟女| 欧美久久黑人一区二区| 欧美在线黄色| 99久久国产精品久久久| 又紧又爽又黄一区二区| 91av网站免费观看| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 天天添夜夜摸| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 欧美日韩视频精品一区| 亚洲色图av天堂| 国产一区二区激情短视频| x7x7x7水蜜桃| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 亚洲国产精品合色在线| 黄色视频,在线免费观看| www.精华液| 自线自在国产av| 电影成人av| 一区二区三区国产精品乱码| 丰满的人妻完整版| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 色在线成人网| 国产精品av久久久久免费| 日韩三级视频一区二区三区| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡免费网站照片 | 亚洲 欧美一区二区三区| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲| 久久久国产精品麻豆| 国产熟女午夜一区二区三区| 天堂影院成人在线观看| 国产精品免费视频内射| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 亚洲一区二区三区不卡视频| av天堂在线播放| av有码第一页| 成年人黄色毛片网站| 亚洲 欧美一区二区三区| ponron亚洲| 国产一区二区激情短视频| 男人操女人黄网站| 日日夜夜操网爽| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 日本wwww免费看| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 男女之事视频高清在线观看| 99久久综合精品五月天人人| 国产无遮挡羞羞视频在线观看| 亚洲男人天堂网一区| 男人操女人黄网站| 美女午夜性视频免费| 最好的美女福利视频网| 国产一区二区在线av高清观看| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 亚洲全国av大片| 19禁男女啪啪无遮挡网站| 久99久视频精品免费| 久久人妻av系列| 一二三四在线观看免费中文在| 国产午夜精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 三上悠亚av全集在线观看| 亚洲专区中文字幕在线| 国产精品爽爽va在线观看网站 | 亚洲九九香蕉| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 99久久久亚洲精品蜜臀av| 国产午夜精品久久久久久| 国产区一区二久久| 欧美日韩精品网址| 国产精品一区二区三区四区久久 | 亚洲午夜精品一区,二区,三区| 欧美激情 高清一区二区三区| 三级毛片av免费| 国产精品免费视频内射| 国产免费现黄频在线看| 99热国产这里只有精品6| 女性被躁到高潮视频| www.999成人在线观看| 久久这里只有精品19| 国产乱人伦免费视频| 日本 av在线| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜 | 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲av高清不卡| 宅男免费午夜| 一进一出抽搐动态| 久久 成人 亚洲| 亚洲精品一区av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 日本黄色视频三级网站网址| 女性生殖器流出的白浆| 午夜精品在线福利| 午夜91福利影院| 午夜视频精品福利| 亚洲七黄色美女视频| 久久久国产一区二区| 国产一区二区三区视频了| 午夜a级毛片| 91字幕亚洲| 99国产精品免费福利视频| 午夜福利在线观看吧| 高清在线国产一区| 国产精品亚洲一级av第二区| 天堂动漫精品| 精品无人区乱码1区二区| 麻豆一二三区av精品| 久久人人精品亚洲av| 日韩av在线大香蕉| 国产日韩一区二区三区精品不卡| 嫩草影视91久久| 亚洲五月天丁香| √禁漫天堂资源中文www| 亚洲 欧美 日韩 在线 免费| 亚洲成av片中文字幕在线观看| 日韩有码中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看 | 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 精品国产亚洲在线| 久久天堂一区二区三区四区| 91国产中文字幕| 成人精品一区二区免费| 啦啦啦免费观看视频1| a级毛片在线看网站| 精品国内亚洲2022精品成人| 色哟哟哟哟哟哟| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 中文字幕av电影在线播放| 波多野结衣高清无吗| 亚洲av熟女| 看免费av毛片| 国产xxxxx性猛交| 欧美日韩一级在线毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲熟妇中文字幕五十中出 | 麻豆久久精品国产亚洲av | 久久久久九九精品影院| 亚洲一区二区三区欧美精品| www国产在线视频色| 午夜福利影视在线免费观看| 99国产极品粉嫩在线观看| 午夜福利,免费看| 热99re8久久精品国产| 亚洲中文日韩欧美视频| 国产xxxxx性猛交| tocl精华| 真人做人爱边吃奶动态| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费激情av| 日日爽夜夜爽网站| 国产成人系列免费观看| 久久性视频一级片| 精品久久久精品久久久| 国产高清激情床上av| 99久久国产精品久久久| 岛国在线观看网站| 91精品三级在线观看| 久久久久久亚洲精品国产蜜桃av| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影| 日韩精品中文字幕看吧| av超薄肉色丝袜交足视频| 欧美精品亚洲一区二区| 亚洲人成电影观看| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 黄色 视频免费看| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 99香蕉大伊视频| 日韩精品中文字幕看吧| 成人免费观看视频高清| 国产区一区二久久| 亚洲三区欧美一区| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 成人手机av| 久久精品亚洲精品国产色婷小说| 长腿黑丝高跟| 后天国语完整版免费观看| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| tocl精华| 夜夜夜夜夜久久久久| aaaaa片日本免费| 在线观看66精品国产| 人人妻人人爽人人添夜夜欢视频| 久久九九热精品免费| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 国产精品日韩av在线免费观看 | 少妇裸体淫交视频免费看高清 | 9191精品国产免费久久| 日本精品一区二区三区蜜桃| 久久伊人香网站| 成人三级黄色视频| 色婷婷av一区二区三区视频| 国产高清视频在线播放一区| 久久久久九九精品影院| 欧美精品亚洲一区二区| 91av网站免费观看| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 夫妻午夜视频| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 一夜夜www| 看片在线看免费视频| 日本黄色日本黄色录像| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产 | 日本 av在线| 国产成人啪精品午夜网站| 国产野战对白在线观看| 国产精品成人在线| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 两个人看的免费小视频| 一级a爱片免费观看的视频| 免费不卡黄色视频| 国产精品1区2区在线观看.| 欧美成人性av电影在线观看| 国产成+人综合+亚洲专区| 色尼玛亚洲综合影院| 黄色成人免费大全| 亚洲av第一区精品v没综合| www.精华液| 乱人伦中国视频| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 欧美精品一区二区免费开放| 日韩中文字幕欧美一区二区| 1024视频免费在线观看| av免费在线观看网站| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| 亚洲九九香蕉| 精品国产国语对白av| 五月开心婷婷网| 高清在线国产一区| 欧美av亚洲av综合av国产av| 极品人妻少妇av视频| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 国产精品国产高清国产av| 亚洲人成77777在线视频| 国产精品电影一区二区三区| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| 纯流量卡能插随身wifi吗| 在线看a的网站| 亚洲午夜理论影院| 午夜福利免费观看在线| 美女福利国产在线| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 国产精品久久久av美女十八| 日本vs欧美在线观看视频| 国产精品国产高清国产av| 免费观看人在逋| 9191精品国产免费久久| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 乱人伦中国视频| 精品熟女少妇八av免费久了| 亚洲一区中文字幕在线| 在线观看www视频免费| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 老鸭窝网址在线观看| 9热在线视频观看99| 久久亚洲真实| 美女国产高潮福利片在线看| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 免费高清视频大片| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 免费在线观看亚洲国产| 色老头精品视频在线观看| а√天堂www在线а√下载| 亚洲va日本ⅴa欧美va伊人久久| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| 亚洲av日韩精品久久久久久密| 男男h啪啪无遮挡| 久久久国产精品麻豆| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 韩国av一区二区三区四区| 国产有黄有色有爽视频| 亚洲专区字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 日日干狠狠操夜夜爽| 不卡av一区二区三区| 18禁美女被吸乳视频| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| 久久性视频一级片| 成人av一区二区三区在线看| 操美女的视频在线观看| 精品一区二区三卡| 91麻豆av在线| 国产xxxxx性猛交| 怎么达到女性高潮| 午夜亚洲福利在线播放| 激情视频va一区二区三区| 精品一区二区三区四区五区乱码| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品sss在线观看 | 不卡一级毛片| 少妇的丰满在线观看| 午夜视频精品福利| 极品人妻少妇av视频| 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 99香蕉大伊视频| 免费日韩欧美在线观看| 国产成人精品久久二区二区91| 国产伦一二天堂av在线观看| 亚洲av成人av| 淫妇啪啪啪对白视频| 黄色视频不卡| 国产1区2区3区精品| 成人亚洲精品一区在线观看| 精品高清国产在线一区| 亚洲性夜色夜夜综合| 中文字幕精品免费在线观看视频| 高清黄色对白视频在线免费看| 国产精品1区2区在线观看.| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av | 日韩国内少妇激情av| 亚洲国产欧美一区二区综合| 黄网站色视频无遮挡免费观看| 麻豆国产av国片精品| 波多野结衣高清无吗| 中文字幕色久视频| 在线观看免费视频网站a站| 两个人看的免费小视频| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产清高在天天线| 免费观看精品视频网站| 岛国视频午夜一区免费看| 窝窝影院91人妻| 大陆偷拍与自拍| 757午夜福利合集在线观看| 亚洲国产欧美一区二区综合| 亚洲成人免费电影在线观看| 欧美人与性动交α欧美精品济南到| 亚洲少妇的诱惑av| 国产精品久久电影中文字幕| 亚洲av美国av| 亚洲午夜理论影院| 满18在线观看网站| 中文亚洲av片在线观看爽| tocl精华| 波多野结衣高清无吗| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 国产片内射在线| 日韩欧美三级三区| 国产精品电影一区二区三区| 一个人免费在线观看的高清视频| 香蕉久久夜色| 久久久久久久精品吃奶| 黄色成人免费大全| a级毛片在线看网站| 亚洲精品中文字幕在线视频| 操美女的视频在线观看| 男人舔女人下体高潮全视频| 久久午夜综合久久蜜桃| 成年人免费黄色播放视频| 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 女人高潮潮喷娇喘18禁视频| 久久久国产一区二区| 岛国视频午夜一区免费看| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 亚洲 欧美 日韩 在线 免费|