• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Analysis of the Proton Structure Function and the Gluon Distributions at Small x

    2019-01-10 06:58:06LuxmiMachahariandChoudhury
    Communications in Theoretical Physics 2019年1期

    Luxmi Machahari and D.K.Choudhury

    1Department of Physics,Gauhati University,Guwahati-781 014,India

    2Physics Academy of North-East,Guwahati-781 014,India

    Abstract Recently,we reported an analysis of Proton structure function at small x based on Taylor approximated DGLAP equations assuming a plausible relationship between the singlet and the gluon distributions.In this paper,we report a generalised version of the previous work.A corresponding study of the suggested gluon distribution is also made.The present generalised version of the model for the structure function results in a wider x range of phenomenological validity than the earlier one.A comparison of both the models of the proton structure function and the gluon distribution is made with exact result as well as with the Froissart saturated models of Block,Durand and Mckay.

    Key words:small x,DGLAP equations,proton structure function,gluon distribution

    1 Introduction

    Study of the structure functions of proton and gluon distributions at small x is an active field of research since last several years.The standard tool to study small x physics is the DGLAP equations[1?4]to be followed by BFKL equations.[5?7]However in order to take into account the resummation of leading logarithmic terms and saturation effects thoroughly,more involved non-linear evolution equations like GLR,[8]Muller Qiu,[9]BK,[10?12]and JIMWLK[13?14]have emersed along with the notion of color glass condensate[15?16]since early 1980s with varying degrees of phenomenological success.[17?20]

    Inspite of such advanced tools to study small x,DGLAP equations still survive at phenomenological level for its inherent simplicity.Approximate analytical forms of the proton structure function and the gluon distributions with plausible assumptions are too possible in such approach.

    In this spirit,recently we reported an analysis[21]of the proton structure function(x,t)at small x based on Taylor approximated DGLAP equations assuming a plausible analytical relation[22]between the gluon G(x,t)and the singlet structure function(x,t)in conformity with observation of Lopez and Yndurain.[23]As Taylor approximated DGLAP equations are the first order differential equation in x and t,we solve them by the Lagrange’s Auxiliary method.[24]But the solution contains one undetermined parameter β.[25?26]For simplicity,the analysis of Ref.[21]has been reported setting it to be zero.The present work reports a generalised analysis without this assumption.In this paper,we will show that the positivity of the ratio of the parton distribution functions rules out a positive β while negative β has no such restrictions.Based on this observation,we will make a reanalysis of Ref.[21]and study if the phenomenological range of validity in x and Q2space reported earlier changes.The leading order structure function and gluon distribution is then compared with the exact results and also the corresponding models of the proton structure function and the gluon distribution suggested by Block,Durand and McKay.[27?28]

    In Sec.2,we give a short outline of the formalism.Section 3 contains our result and the conclusions are highlighted in Sec.4.

    2 Formalism

    The standard coupled DGLAP equations for the singlet structure function and gluon distribution function at LO[29]are given respectively as

    Here,αsis the strong coupling constant at LO given by αs(Q2)=12π/[(33? 2Nf)ln(Q2/Λ2)]and Λ is QCD scale parameter.Nfis the number of quark flavours,The other constants are TR=1/2,CA=3,CF=4/3.The singlet quark distribution is defined as

    where qiandare quarks and antiquarks offl avour i.So singlet structure function is(x,t)=xΣ(x,t)and gluon distribution is G(x,t)=xg(x,t).

    Equation(1)then becomes:[22]

    Similarly we obtain the Taylor approximated form of gluon DGLAP equation(2)as:

    where Af=4/3β0and β0=(33 ? 2Nf)/3.

    Generally,the exact relation between the gluon distribution G(x,Q2)and the quark distribution

    is not derivable in QCD even in leading order.However,if one assumes that at small x in a certain Q2range,such analytical form of the gluon and the quark distribution are possible,the most general form can be written as,

    which takes into account the flavor independency of gluon.If the coefficients Kiand Ci(x,t)are also flavor independent then the expression can be written as

    Here,KC(x,t)represent the ratio of the quark and gluon distribution and in general not factorizable in x and t.In Ref.[32],it was assumed that Q2dependence of both the distributions are identical while in Ref.[31],the following simple relation was assumed.

    where k is a parameter to be determined from experiments.

    A more rigorous analysis was done by Lopez and Yndurain[23]where they investigated the behaviour of the singlet structure function F2(x,Q2)and the gluon distribution G(x,Q2)at small x in leading order and obtained

    where the functions BSand BGare Q2dependent.d+(1+λS)is the largest eigen value of the anomalous dimension matrix(Eq.(1.3b)of Ref.[23])and λSis strictly positive.From Eqs.(10)and(11)one infers that the ration between the gluon and the singlet structure function is only Q2dependent.That is,

    The Q2dependence of KC(Q2)is not given by the current methods under study but is based on plausible physical reasons.The important characteristics of perturbative Quantum Chromo dynamics is the logQ2dependence as can be seen from the definition of the running coupling constant,as well as any Q2evolution of structure functions.A simple plausible theoretical form of KC(Q2)compatible with perturbative QCD expectation is[22]

    where K and σ are two parameters to be fitted from experiments.Using Eq.(13),the above two Eqs.(5)and(6)become

    The above two equations can be solved using the Lagrange’s Auxiliary method[24]and can be put in the following forms,

    where,Q1(x,t),P1(x,t),R1(x,t),Q2(x,t),P2(x,t),R2(x,t)are explicit functions of K,t,σ as given in Appendix A.The solutions of Eqs.(16)and(17)are obtained by solving the following auxiliary system of ordinary differential equations,

    Now if um(x,t)=Cmand vm(x,t,(x,t))=Dmare two independent solutions of the above Eqs.(16)and(17),then their general solutions can be written as[24]

    where,fmare arbitrary functions of umand vm.

    Solving the auxiliary equation(18),we get

    where

    To satisfy the general solution(19)the simplest possibility of finding a unique expression for(x,t)is the linear combination of umand vmin(x,t)such as,

    where, α and β are two unknown quantities.Considering m=1,2 and putting the expressions for um(x,t)and vm(x,t,(x,t))in the above equation(28)we get the corresponding solution of Eq.(14)as

    and solution of Eq.(15)as

    where the analytical expressions of X1(x,t),Y1(x,t),X2(x,t)and Y2(x,t)obtained in Ref.[21]are as given below:

    From the analytical structures of X1(x,t),Y1(x,t),X2(x,t),and Y2(x,t)we observe that X1(x,t)?=X2(x,t)and Y1(x,t)?=Y2(x,t)and hence,the two evolutions defined in Eqs.(29)and(30)are not identical.We therefore de fine them asandrespectively.

    However at certain t=t0,we use the boundary condition

    It will result in two alternative inequivalent forms of t evolution for singlet distribution as

    With ratio

    which is not unity in general.

    From Eqs.(31),(32),(33),and (34)weobserve that the ratio X1(x,t)/X1(x,t0),Y1(x,t0)/Y1(x,t),X2(x,t)/X2(x,t0),and Y2(x,t0)/Y2(x,t)as occured in Eq.(38)are invariably positive.Therefore for a negative β,R(x,t)will be positive de finite.However for a certain positive value of β(>0),positivity of the ratio R(x,t)defined in Eq.(38)is not assured in a certain speci fic range of x and t where,

    Numerical analysis with positive and negative β will be reported in the following section.

    3 Results

    3.1 Analysis of the Parton Distribution Functions with Non-Zero β

    (i)Analysis with positive β

    Fig.1 for β positive.

    Fig.2 for β positive.

    (ii)Analysis with negative β

    When β is negative both the structure functionsandwill be positive(>0)for the representative values of x and Q2(2×10?7,4 GeV2),(2×10?2,4 GeV2),(3×10?6,400 GeV2)and(3×10?2,400 GeV2)respectively as shown in Figs.3 and 4.

    Fig.3 or β negative.

    Fig.4 for β negative.

    Using the same values of K and σ as in Ref.[21],we fit both Eqs.(36)and(37)with available globally obtained PDFs like NNPDF3.0[33]data in Mathematica and obtain the best fitted values of β for both the equations respectively.

    We have used the HERAPDF1.0[34]input for evolution of our solutions with Q2=1.9 GeV2.For(x,t)of the 1stevolution Eq.(36),we obtain the best fitted value of β to be ?2.69 at x=2 × 10?3and fixed range of Q:1.4 GeV≤Q≤100 GeV.

    Fig.5 with fitted β = ?2.69,K=2.7225 and σ =0.7112 and with fitted β = ?0.364,K=2.7225,and σ=0.7112,and comparison with the data.[33,35]

    Fig.6 with fitted β = ?1.016,K=1.856 and σ =0.227 and with fitted β = ?13.126,K=0.89 and σ=1.594,and comparison with the data.[33,35]

    Let us also discuss our another choice of negative β where,positive K and σ are made to vary without prior inputs on K and σ.We obtain the best fitted value of β,K and σ forto be-1.016,1.856 and 0.227 respectively(third row of Table 1)and forto be-13.126(putting the constraint of β<0 during the fit in Mathematica),0.89 and 1.594 respectively(third row of Table 1)and forto be ?13.126(putting the constraint of β <0 during the fit in Mathematica),0.89 and 1.594 respectively(third row of Table 2).

    Table 1 Phen omenological paramters and the range of validity in x offor fixed Q range:2 GeV≤Q≤100 GeV.

    Table 1 Phen omenological paramters and the range of validity in x offor fixed Q range:2 GeV≤Q≤100 GeV.

    FS(I)2 (x,t)βK σ x range 0 2.7225 0.7112 2.10?6≤ x≤ 5.10?4–2.69 2.7225 0.7112 5.10?4≤ x ≤ 2.10?3–1.016 1.856 0.227 2.10?6≤ x ≤ 1.10?3

    Table 2 Pheno menological parameters and the range of validity in x offor fixed Q range:2 GeV≤Q≤100 GeV.

    Table 2 Pheno menological parameters and the range of validity in x offor fixed Q range:2 GeV≤Q≤100 GeV.

    FS(II)2 (x,t)β K σx range 0 2.7225 0.7112 2.10?3≤ x≤ 5.10?3–0.364 2.7225 0.7112 1.10?3≤ x ≤ 2.10?3–13.126 0.89 1.594 0.01

    We thus obtain their corresponding singlet structure functionsusing their proper choices of negative β,positive K and σ values.In Fig.5 we plot the two model structure functions evolving with Q for a few representative values of x and then compare with the recent available PDF data sets.[33,35]

    Observations from Figs.5 and 6 of the phenomenological range of validity in x for Q range 2 GeV≤Q≤100 GeV forandare recorded in Tables 1 and 2 respectively.

    In our previous work,[21]we obtainedmore favoured thanwith its phenomenological x range of validity forto be within 2×10?6≤ x≤5×10?4and 2 GeV ≤ Q≤ 100 GeV.In this present work too the preference ofis seen overon a proper choice of negative β and positive K and σ.From Tables 1 and 2,it is observed thatwith β = ?1.016,K=1.856,and σ =0.227 is the most favoured among all the three sets of choices with its increasing phenomenological x range 2×10?6≤ x ≤ 1×10?3with same Q range.So generalisation of our previous model[21]to β ?=0 gives a wider range of small x for a proper choice of β,K,and σ.

    (iii)Comparison with the phenomenological model of Block Durand et al

    The Froissart saturated phenomenolgical model of structure function and the gluon distributions proposed by Refs.[27–28]have attracted considerable amount of interest in recent literature.We therefore compare the present model ofwith this model where the exact analytical struction ofis as given below:

    where,

    Fig.7 Comparison of (x,t)using β = ?1.016,K=1.856,σ =0.227 with the model of Block et al.[27]

    a0,a1,a2,b0,b1,b2are as given in Appendix B.In Fig.7 we plot the most favouredusing β = ?1.016,K=1.856,σ =0.227 within our range of validity at three representative values of x(x=8×10?5,5×10?4,1×10?3)and then compare it with the phenomenologically model of Block,Durand and Mckay.[27]

    Graphically it shows that the prediction of the present model invariably exceeds that of the model.[27]

    3.2 Analysis of the Gluon Distribution

    Using Eqs.(8)and(13)in the most favoured modelof Eq.(36)with β = ?1.016,K=1.856,and σ=0.227,we obtain the gluon distribution GI(x,t)and compare with NNPDF3.0 and CT14lo data[33,35]as shown in Fig.8.

    In the same figure we also compare with the corresponding the gluon distribution proposed in Ref.[28]as given in Eq.(44)

    Fig.8 Comparison of GI(x,t)using β = ?1.016,K=1.856,σ =0.227 with NNPDF3.0 and CT14lo data[33,35]and the gluon distribution model of Block et al.[28]

    As mentioned above,in Fig.8 we make a graphical representation of GI(x,t)with varying Q for a few representative values of x(8×10?5,1×10?4,3.2×10?4,5×10?4,8× 10?4,1× 10?3which are within our phenomenological range)and then compare with the exact result of NNPDF3.0 and CT14lo data.[33,35]In the same figure we also compare it with the model of gluon distribution.[28]The figure indicates that the gluon distribution GI(x,t)is compatible with NNPDF3.0 and CT14lo data[33,35]in the x range of x=5×10?4to 1×10?3but it is much below the model.[28]

    4 Conclusion

    In this paper,we have made an analysis of a generalised version of the models of proton structure function and the gluon distributions at small x,reported by us recently.[21]The basis of the Taylor approximation of the DGLAP equations at small x is outlined and demonstrated that in general two inequivalent forms of singlet structure function immersed.We have then shown how the positivity of the ratio of the structure functions restricts the parameter β as occured in this generalised version.Such generalisation has also effect in the phenomenological ranges of the models.We also compare the present models with the corresponding Froissart saturated models of Refs.[27–28].

    Finally,let us conclude the paper with a few comments regarding Eqs.(12)and(13)relating singlet and gluon distribution analytically and discuss their physical justif ication.The standard DGLAP equation[1?4]are first order differential equation in t and as such can be integrated numerically.In general,analytical relationship between the two distributions gluon and singlet is not possible.Recently Boroun[36]reported a dynamical study of such relation and showed that specific forms[31,49]relating the two distributions are not possible in both leading order and next-to-leading order from the coupled DGLAP equations even if the following plausible additional assumptions are used. (i)Evolution of gluon ?G(x,t)/?lnQ2and singlet structure function ?FS2(x,t)/?lnQ2are purely gluon driven.(ii)Gluon distribution is factorizable in x and t assuming hard pomeron behaviour.[37?39]

    Even then,the topic has attracted considerable interest in literature since 1990’s as suumarised in Ref.[40].Specifically,Q2slope of the structure functionx,t)/? lnQ2directly arising from the scaling violation of the structure function can be related to the gluon distribution G(x,t)at small x.There are several relations available in the literature both in leading order[41?43]and NLO[44?46]relating the two.The most familiar relation is that of Prytz[44]which reads,

    where N(x,Q2)is given in Ref.[44].

    In parallel developement in 1990’s Ball and Forte[47]noted that at double asymptotic limits(ultra small x and ultra high Q2)gluon distribution G(x,Q2)and singlet distributionare directly related linearly with an undetermined multiplicative function of γ and ρ,f(ρ/γ).

    where,

    In an approximation f(γ/ρ)~ 1[48]Eq.(47)is identical to Eq.(8)of the present work with

    Hence,such linear relations between the two distributions thus exist atleast in asymptotic scaling limit.However similar relationship if applied at finite Q2range[22,31,49]should be considered only as plausible assumption to be tested with data and exact results.The present work too conforms to this notion.

    Appendix A

    The expressions for P1(x,t),R1(x,t),and P2(x,t),R2(x,t)are as follows:

    Appendix B

    The coefficients a0,a1,a2,b0,b1,b2as occurred in Eq.(42)of the text are:

    Acknowledgme nts

    We thank Dr.P.K.Sahariah for his fruitful discussions.One of the authors(L.M)acknowledges the Rajiv Gandhi National Fellowship,New Delhi for financial support.

    秋霞在线观看毛片| 99视频精品全部免费 在线| 老师上课跳d突然被开到最大视频| 国产伦精品一区二区三区四那| av在线观看视频网站免费| 六月丁香七月| 熟女电影av网| 国产综合懂色| 亚州av有码| 嘟嘟电影网在线观看| 亚洲综合色惰| 亚洲,欧美,日韩| 色播亚洲综合网| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| av福利片在线观看| 又爽又黄无遮挡网站| 人妻一区二区av| 99久久精品热视频| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| a级毛色黄片| 国产av码专区亚洲av| 精品久久国产蜜桃| 观看免费一级毛片| 亚洲av成人精品一二三区| 国产麻豆成人av免费视频| 永久网站在线| 久久久久精品久久久久真实原创| 春色校园在线视频观看| 国产毛片a区久久久久| 亚洲av电影在线观看一区二区三区 | 亚洲欧美一区二区三区国产| 亚洲人成网站高清观看| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频 | 91av网一区二区| 亚洲综合精品二区| 中文资源天堂在线| 久久久精品94久久精品| 在线 av 中文字幕| 日日摸夜夜添夜夜添av毛片| 久久精品综合一区二区三区| 建设人人有责人人尽责人人享有的 | 久久精品人妻少妇| videossex国产| 青春草视频在线免费观看| 五月玫瑰六月丁香| 黄色欧美视频在线观看| 久久精品久久久久久噜噜老黄| 能在线免费观看的黄片| 亚洲人与动物交配视频| 在线天堂最新版资源| 国内精品美女久久久久久| 国产永久视频网站| 性色avwww在线观看| 国产毛片a区久久久久| 欧美日韩视频高清一区二区三区二| 国产三级在线视频| 寂寞人妻少妇视频99o| 在线a可以看的网站| 91狼人影院| 欧美一级a爱片免费观看看| 欧美成人精品欧美一级黄| 国产老妇伦熟女老妇高清| 两个人视频免费观看高清| 男女下面进入的视频免费午夜| 成年女人看的毛片在线观看| 免费av不卡在线播放| 成年版毛片免费区| 精品酒店卫生间| 人妻一区二区av| 午夜免费观看性视频| a级一级毛片免费在线观看| 午夜精品一区二区三区免费看| 亚洲av中文字字幕乱码综合| 欧美人与善性xxx| 欧美不卡视频在线免费观看| 伊人久久精品亚洲午夜| 国产 一区 欧美 日韩| 亚洲不卡免费看| 少妇人妻精品综合一区二区| 精品久久久久久久末码| 一区二区三区四区激情视频| 99久久中文字幕三级久久日本| 欧美日韩精品成人综合77777| 亚洲成人精品中文字幕电影| 肉色欧美久久久久久久蜜桃 | 欧美zozozo另类| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利高清视频| 免费在线观看成人毛片| 亚洲精品自拍成人| 99热这里只有精品一区| 亚洲精品久久久久久婷婷小说| 国产成人精品一,二区| 国产淫片久久久久久久久| 女人被狂操c到高潮| 久久99热这里只频精品6学生| 亚洲av免费在线观看| 久久久成人免费电影| 亚洲激情五月婷婷啪啪| 国产免费一级a男人的天堂| 国产高清不卡午夜福利| 少妇高潮的动态图| 国产成人一区二区在线| 久久久精品免费免费高清| 美女高潮的动态| 一区二区三区免费毛片| 国产av不卡久久| 色吧在线观看| 久久久成人免费电影| 国产女主播在线喷水免费视频网站 | 午夜精品国产一区二区电影 | 免费无遮挡裸体视频| 国产探花在线观看一区二区| 真实男女啪啪啪动态图| 中文字幕亚洲精品专区| 精品久久久精品久久久| 亚洲欧洲日产国产| 麻豆国产97在线/欧美| 色综合亚洲欧美另类图片| av免费在线看不卡| 日韩制服骚丝袜av| 久久99热这里只有精品18| 草草在线视频免费看| 天堂中文最新版在线下载 | 国产精品一及| 亚州av有码| 一级a做视频免费观看| 亚洲av男天堂| www.色视频.com| 精品久久久久久电影网| 高清日韩中文字幕在线| 日韩大片免费观看网站| 久久99热这里只有精品18| 亚洲精品色激情综合| 午夜激情久久久久久久| 又粗又硬又长又爽又黄的视频| 99久久精品热视频| 亚洲国产av新网站| 我的女老师完整版在线观看| 久久精品夜夜夜夜夜久久蜜豆| 在线观看一区二区三区| 一级毛片 在线播放| 精品人妻视频免费看| 亚洲av日韩在线播放| 久久久午夜欧美精品| 亚洲av中文av极速乱| 高清午夜精品一区二区三区| 看免费成人av毛片| 日本熟妇午夜| 欧美激情久久久久久爽电影| 女人久久www免费人成看片| 国产精品.久久久| 岛国毛片在线播放| 日韩人妻高清精品专区| av免费观看日本| 亚洲熟妇中文字幕五十中出| 一级二级三级毛片免费看| 一本久久精品| 尾随美女入室| 99热6这里只有精品| 麻豆乱淫一区二区| 国产精品一二三区在线看| 18禁在线无遮挡免费观看视频| 欧美一区二区亚洲| 超碰av人人做人人爽久久| 亚洲欧美日韩卡通动漫| 水蜜桃什么品种好| 高清毛片免费看| 波多野结衣巨乳人妻| 国产男女超爽视频在线观看| 国产黄频视频在线观看| 床上黄色一级片| 少妇猛男粗大的猛烈进出视频 | 国产高清有码在线观看视频| 午夜免费激情av| 啦啦啦啦在线视频资源| 一级爰片在线观看| 九草在线视频观看| 麻豆久久精品国产亚洲av| ponron亚洲| 日韩制服骚丝袜av| 日本av手机在线免费观看| 国产亚洲av嫩草精品影院| 精品一区二区三卡| 亚洲av在线观看美女高潮| 亚洲国产日韩欧美精品在线观看| 日本黄大片高清| 97超视频在线观看视频| 一二三四中文在线观看免费高清| 少妇人妻精品综合一区二区| 男女那种视频在线观看| 久久这里有精品视频免费| 国产有黄有色有爽视频| 国产午夜福利久久久久久| 成人鲁丝片一二三区免费| 免费黄色在线免费观看| 在线免费观看的www视频| 校园人妻丝袜中文字幕| 男女边吃奶边做爰视频| 亚洲精品乱久久久久久| 男女边吃奶边做爰视频| 国产成人91sexporn| 免费播放大片免费观看视频在线观看| 国产一区二区在线观看日韩| 亚洲国产精品专区欧美| 亚洲精品日韩av片在线观看| 亚洲精品成人久久久久久| 国产精品av视频在线免费观看| 最新中文字幕久久久久| 精品久久久久久久久亚洲| 日本与韩国留学比较| 免费高清在线观看视频在线观看| av.在线天堂| 中文字幕av成人在线电影| 2021天堂中文幕一二区在线观| 只有这里有精品99| 国产不卡一卡二| 亚洲真实伦在线观看| 少妇人妻一区二区三区视频| 成人国产麻豆网| 在线免费观看的www视频| or卡值多少钱| 久久人人爽人人爽人人片va| 亚洲最大成人av| 啦啦啦中文免费视频观看日本| 国产精品精品国产色婷婷| 亚洲aⅴ乱码一区二区在线播放| 乱人视频在线观看| 国国产精品蜜臀av免费| 欧美一区二区亚洲| 搡老妇女老女人老熟妇| 欧美zozozo另类| 丰满少妇做爰视频| 久久99热这里只频精品6学生| 国产黄色视频一区二区在线观看| 97热精品久久久久久| 卡戴珊不雅视频在线播放| 亚洲国产最新在线播放| 久久99热6这里只有精品| 日韩欧美国产在线观看| 国产高清三级在线| 精品久久久噜噜| 天天一区二区日本电影三级| 国产午夜精品论理片| 老司机影院成人| 国产中年淑女户外野战色| 国产精品久久久久久久久免| 中文字幕制服av| 在线观看人妻少妇| 人人妻人人看人人澡| 国产日韩欧美在线精品| 国产伦精品一区二区三区四那| 看免费成人av毛片| 人人妻人人澡人人爽人人夜夜 | 日韩欧美精品免费久久| 国产精品熟女久久久久浪| 99热6这里只有精品| 天堂俺去俺来也www色官网 | 三级毛片av免费| 午夜精品在线福利| 能在线免费观看的黄片| 国产亚洲一区二区精品| av线在线观看网站| 国产伦精品一区二区三区四那| 亚洲天堂国产精品一区在线| 黄色欧美视频在线观看| 亚洲国产精品国产精品| 日韩视频在线欧美| 精品久久久噜噜| 美女被艹到高潮喷水动态| 国产欧美日韩精品一区二区| 美女被艹到高潮喷水动态| 精品人妻一区二区三区麻豆| 麻豆乱淫一区二区| 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看| a级毛色黄片| 直男gayav资源| 天天一区二区日本电影三级| 久久99蜜桃精品久久| 欧美性感艳星| 成年免费大片在线观看| 亚洲欧美一区二区三区黑人 | 国产片特级美女逼逼视频| 天堂俺去俺来也www色官网 | 男人舔奶头视频| av在线天堂中文字幕| 成年免费大片在线观看| 日韩成人伦理影院| 久久久久久九九精品二区国产| av在线蜜桃| 欧美激情久久久久久爽电影| 亚洲av二区三区四区| 在线天堂最新版资源| 欧美不卡视频在线免费观看| 又黄又爽又刺激的免费视频.| 亚洲精品国产av蜜桃| 欧美极品一区二区三区四区| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 日韩,欧美,国产一区二区三区| 欧美+日韩+精品| 欧美不卡视频在线免费观看| 在线天堂最新版资源| 亚洲精品久久久久久婷婷小说| 美女大奶头视频| av免费在线看不卡| 国产 亚洲一区二区三区 | 永久网站在线| 1000部很黄的大片| 成年女人看的毛片在线观看| 人人妻人人澡人人爽人人夜夜 | 简卡轻食公司| 国产成人aa在线观看| 晚上一个人看的免费电影| 99热这里只有精品一区| 久久久a久久爽久久v久久| kizo精华| 欧美激情国产日韩精品一区| 欧美97在线视频| 国产成人精品一,二区| 青春草国产在线视频| 老司机影院成人| 欧美xxxx黑人xx丫x性爽| 91精品伊人久久大香线蕉| 美女内射精品一级片tv| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久av不卡| 国产成人精品婷婷| 爱豆传媒免费全集在线观看| 床上黄色一级片| 久久久久久国产a免费观看| 美女xxoo啪啪120秒动态图| 两个人视频免费观看高清| 亚洲成人久久爱视频| 免费看日本二区| 天堂影院成人在线观看| 看黄色毛片网站| av天堂中文字幕网| 日韩成人伦理影院| 日本熟妇午夜| 边亲边吃奶的免费视频| 黄片无遮挡物在线观看| 亚洲av福利一区| 啦啦啦中文免费视频观看日本| 好男人在线观看高清免费视频| 国产69精品久久久久777片| 久热久热在线精品观看| 日韩欧美国产在线观看| 在线播放无遮挡| 免费av不卡在线播放| 精品国产露脸久久av麻豆 | 久久久久精品性色| 熟女人妻精品中文字幕| 精品久久久久久久久久久久久| 精品少妇黑人巨大在线播放| 成人毛片a级毛片在线播放| 婷婷色麻豆天堂久久| 美女国产视频在线观看| 一级毛片电影观看| 午夜老司机福利剧场| 久久99热这里只频精品6学生| 欧美xxxx黑人xx丫x性爽| 久久97久久精品| 国产在视频线精品| 99热这里只有精品一区| 黄色欧美视频在线观看| 亚洲人成网站在线观看播放| 国产精品.久久久| 日韩av不卡免费在线播放| 精品一区二区免费观看| 久久久精品欧美日韩精品| 国产精品久久久久久av不卡| 亚洲精品成人av观看孕妇| 真实男女啪啪啪动态图| 国产精品一区二区三区四区免费观看| 男人舔奶头视频| 亚洲怡红院男人天堂| 亚洲精品久久午夜乱码| 在现免费观看毛片| 精品亚洲乱码少妇综合久久| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜添av毛片| av一本久久久久| 青春草亚洲视频在线观看| 国产亚洲精品久久久com| 国产精品国产三级国产专区5o| 亚洲精华国产精华液的使用体验| 3wmmmm亚洲av在线观看| 男女视频在线观看网站免费| 日韩欧美三级三区| 国产成人一区二区在线| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 日韩欧美 国产精品| 日日干狠狠操夜夜爽| 亚洲在线观看片| 午夜福利在线观看免费完整高清在| 少妇的逼好多水| 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 中文字幕制服av| 人妻一区二区av| 国产av在哪里看| 91久久精品国产一区二区成人| 极品少妇高潮喷水抽搐| 91久久精品电影网| 国产亚洲午夜精品一区二区久久 | 国产单亲对白刺激| 精品国产一区二区三区久久久樱花 | 男女边吃奶边做爰视频| 99久国产av精品| 午夜福利在线观看免费完整高清在| 国产精品日韩av在线免费观看| 午夜福利成人在线免费观看| 国产精品一区二区性色av| 国产综合精华液| 丝袜喷水一区| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合| 韩国av在线不卡| 色网站视频免费| 日韩av免费高清视频| 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 亚洲在线观看片| 亚洲欧美成人综合另类久久久| 欧美xxxx性猛交bbbb| 全区人妻精品视频| 亚洲欧美日韩卡通动漫| 91aial.com中文字幕在线观看| 午夜福利网站1000一区二区三区| 久久韩国三级中文字幕| 国产欧美日韩精品一区二区| 亚洲国产av新网站| 麻豆av噜噜一区二区三区| 亚洲国产高清在线一区二区三| 欧美激情在线99| 久久亚洲国产成人精品v| 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品 | 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 色吧在线观看| 免费黄网站久久成人精品| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 三级国产精品片| 寂寞人妻少妇视频99o| av卡一久久| 18+在线观看网站| 天堂√8在线中文| 免费黄网站久久成人精品| 日韩欧美精品v在线| 国产美女午夜福利| 亚洲成色77777| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 亚洲国产精品国产精品| 中文欧美无线码| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| 国模一区二区三区四区视频| 亚洲人成网站高清观看| 日韩制服骚丝袜av| 蜜桃亚洲精品一区二区三区| 22中文网久久字幕| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看| 国产精品三级大全| 精品人妻一区二区三区麻豆| 免费观看a级毛片全部| 男插女下体视频免费在线播放| 久久久久久久久久久免费av| 69人妻影院| 亚洲无线观看免费| 激情五月婷婷亚洲| 久久久久久久亚洲中文字幕| 青春草国产在线视频| 97超碰精品成人国产| 国产视频首页在线观看| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产av不卡久久| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 亚洲不卡免费看| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 免费观看av网站的网址| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 国产精品精品国产色婷婷| 免费av观看视频| 色哟哟·www| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| av线在线观看网站| av免费观看日本| 久热久热在线精品观看| 国产黄频视频在线观看| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 精品酒店卫生间| 成人午夜高清在线视频| 麻豆成人av视频| 校园人妻丝袜中文字幕| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 亚洲av一区综合| 伦精品一区二区三区| 青青草视频在线视频观看| 高清视频免费观看一区二区 | 免费看不卡的av| 色综合站精品国产| 久久久欧美国产精品| 丰满乱子伦码专区| 少妇的逼水好多| 激情 狠狠 欧美| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 亚洲精品国产成人久久av| 在线播放无遮挡| 有码 亚洲区| 免费观看精品视频网站| 色哟哟·www| 免费av观看视频| 欧美性感艳星| 一个人看视频在线观看www免费| 综合色丁香网| 久久久久国产网址| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 欧美成人a在线观看| 熟女电影av网| 高清欧美精品videossex| 人妻夜夜爽99麻豆av| 亚洲国产色片| 日韩人妻高清精品专区| 国产精品美女特级片免费视频播放器| 天堂中文最新版在线下载 | 国产亚洲91精品色在线| 午夜久久久久精精品| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 国产成年人精品一区二区| 成人综合一区亚洲| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 欧美日本视频| 成人漫画全彩无遮挡| 国产成人一区二区在线| 欧美一区二区亚洲| 九草在线视频观看| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 久久97久久精品| h日本视频在线播放| 欧美xxxx黑人xx丫x性爽| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 亚洲精品乱码久久久久久按摩| 麻豆av噜噜一区二区三区| 国产不卡一卡二| videos熟女内射| 九色成人免费人妻av| 国产精品不卡视频一区二区| 免费观看性生交大片5| 免费av不卡在线播放| 午夜福利视频1000在线观看| 我的老师免费观看完整版| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 一级av片app| 精品久久久久久电影网| 夜夜爽夜夜爽视频| 欧美另类一区| 欧美人与善性xxx| 欧美zozozo另类| 肉色欧美久久久久久久蜜桃 | 91久久精品国产一区二区成人| 成人亚洲精品一区在线观看 | 久久久久久久久中文| 亚洲精品国产成人久久av| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频 |