• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Darboux Transformations,Higher-Order Rational Solitons and Rogue Wave Solutions for a(2+1)-Dimensional Nonlinear Schr dinger Equation?

    2019-01-10 06:57:44MiChen陳覓BiaoLi李彪andYaXuanYu于亞璇
    Communications in Theoretical Physics 2019年1期

    Mi Chen(陳覓),Biao Li(李彪), and Ya-Xuan Yu(于亞璇)

    Department of Mathematics,and Ningbo Collaborative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere,Ningbo University,Ningbo 315211,China

    Abstract By Taylor expansion of Darboux matrix,a new generalized Darboux transformations(DTs)for a(2+1)-dimensional nonlinear Schr dinger(NLS)equation is derived,which can be reduced to two(1+1)-dimensional equation:a modified KdV equation and an NLS equation.With the help of symbolic computation,some higher-order rational solutions and rogue wave(RW)solutions are constructed by its(1,N?1)-fold DTs according to determinants.From the dynamic behavior of these rogue waves discussed under some selected parameters,we find that the RWs and solitons are demonstrated some interesting structures including the triangle,pentagon,heptagon profiles,etc.Furthermore,we find that the wave structure can be changed from the higher-order RWs into higher-order rational solitons by modulating the main free parameter.These results may give an explanation and prediction for the corresponding dynamical phenomena in some physically relevant systems.

    Key words:Darboux transformations,nonlinear Schr dinger equation,higher-order rational solution,rogue wave solution

    1 Introduction

    There are many methods to obtain some exact solutions to the integrable nonlinear systems,for example,Darboux transformation(DT),inverse scattering transformation,Hirota bilinear method,and so on.[1?3]Among them,DT is usually a more valid and powerful method to investigate multi-soliton solutions of an integrable system from a simple seed solution.In 2009,the DT is modified to obtain the higher-order Rogue waves(RW)solutions of the focusing NLS equation,[4]but it cannot give an accurate formulae for multi-RW solutions.Recently,the Matveev’s generalized DT method[5]was developed to construct the higher-order RW solutions of the NLS and KN equations.[6?7]More Recently,Wen et al.presented a novel and simple method to find the generalized(n,M)-fold DT of the(2+1)-dimensional KP equation and the(2+1)-dimensional generalized KP equation and obtained their higher-order rogue waves and rational solutions.[8?9]

    where u=u(x,y,t)and V=V(x,y,t),which is derived by dimensionally reducing the self-dual Yang Mills equation by Strachan.We know that the(2+1)-dimensional NLS equation is of great importance in fluid mechanics and nonlinear theory.[26?28]From a moving space curve formalism,geometrical as well as gauge equivalence between a(2+1)-dimensional spin equation(M-I equation)and the(2+1)-dimensional NLS originally have been established.[29?31]Its geometrical properties have been studied in Ref.[32].Radha et al.investigated its Painlev′e property and obtained its exact solutions by using Hirota’s bilinear method.[33]One and two-soliton solution of Eq.(1)are obtained in Ref.[34]and dromionic ones can be found in Ref.[35].Our work is mainly to study its generalized N-order DTs in terms of the Taylor series expansion and a limit procedure to directly obtain the higher-order rational solutions and RW solutions of Eq.(1).From the process of this method,we can see that some high-order RW solutions can be obtained by relatively simple iterations,and the relationship between high-order RW solutions and the seed solution can be derived simply.

    The outline of this paper is as follows.In Sec.2,we firstly review the usual DT of Eq.(1),then following the idea of Refs.[8–9],we derive the new,generalized perturbation(n,M)-fold DT for the(2+1)-dimensional NLS equation by using the Taylor expansion and a limit procedure.In Sec.3,by selecting generalized perturbation(1,N?1)-fold DTs,we obtain its higher-order rational solutions and RW solutions according to determinants with help of symbolic computation and discuss their rich wave structures.Some conclusions and discussions are given in the last section.

    2 Rational Solutions and Rouge Waves of the(2+1)-Dimensional NLS Equation

    The(2+1)-dimensional NLS equation can be separated into two(1+1)-dimensional equations[36]as follows:

    If u=ψ is fit for NLS equation

    then Eq.(1)is reduced to(1+1)-dimensional complex mKdV equation

    In line with the decomposition,a unified new DT will be constructed and more solutions with several free parameters of Eq.(1)will be found.Next,we will find the solution of Eq.(1)by solving the solution ψ(x,y,t)of Eqs.(2)and(3).

    The Lax pair(i.e.,linear spectral problems)of Eqs.(2)and(3)is

    with

    where the star denotes the complex conjugation,the vector Φ =(?,φ)Tis an eigenfunction associated with spectrl parameter λ,and i2= ?1.It is easy to verify that Eqs.(2)and(3)can be generated by two zero curvature equations My?Vx+[M,V]=0 and Mt?Wx+[M,W]=0.

    2.1 Lax Pair and Darboux Transformation

    We introduce the gauge transformation with the Darboux matrix T(λ):

    and we can obtain

    where the generalized bracket for the square matrix is defined byBased on Ref.[37],the usual N-order Darboux matrix T(λ)is chosen as follows

    where N is a positive integer,Ai,Bi(0 6 i 6 N?1)are 2N unknown complex functions and satisfy the following 2N equations

    where Φs(λs)=(?s(λs), φs(λs))T,(s=1,2,...,N)are the solutions of Lax pair(4)for the spectral parameters λsand the initial solution ψ0.

    It is easy to know that the system(12)has 2N distinct parameters λk,(λi?= λj,λi?=0,i ?=j,i=1,2,...,N)which are the roots of the 2N order polynomial detT(λ),i.e.,

    The following Darboux transformation can be found in Ref.[37],then Eq.(8)holds the Darboux matrix(11).

    Theorem 1Let Φi(λi)=(?i(λi), φi(λi))T(i=1,2,...,N)be N distinct column vector solutions of the spectral problem(4)for the corresponding N distinct spectral parameters λ1, λ2,...,λNand the initial solution ψ0of Eqs.(2)and(3),respectively,then the N-fold Darboux transformation of Eq.(1)is as follows

    where B(N?1)= △B(N?1)/△N,with

    where?B(N?1)is given by the determinant?Nby replacing its(N+1)the column with the column vector

    2.2 Generalized Perturbation(1,N?1)-fold Darboux Transformation

    Next we will discuss generalized perturbation(1,N?1)-fold Darboux transformation.We can select some functions Aiand Biin the above-mentioned Darboux matrix T and the initial solution ψ0to obtain some solutions of Eq.(1)such as multi-rogue wave solutions.We maintain spectral parameter λ = λ1not N spectral parameters λ=λk(k=1,2,...,N)of the Darboux matrix(11),from the condition T(λ1)Φ(λ1)=0 we can derive the following system

    where(?(λ1),φ(λ1))Tis a solution of the linear spectral problem(8).Next we can expand the expression T(λλ1)Φ(λ1)|λ1=λ1+?=T(λ1+?)Φ(λ1+?)at ?=0.As we know that

    with Φ(k)(λ1)=(1/k!)(?k/?λk)Φ(λ)|λ=λ1and

    where T(0)(λ1)=T(λ1),T(N)(λ1)=I,and

    Let

    we can determine the 2N unknown functions Ai,Bi,(0 6 i 6 N?1)in Eq.(11).So based on Eq.(19),we can obtain the linear algebraic system with the 2N equations,

    We can choose a suitable eigenvalue λ1in order to the determinant of the system(20)is non-zero.So the transformation matrix T can be uniquely determined by the system(20).Then we can obtain the new DT with the same eigenvalue λ = λ1by new distinct functions Ai,Biobtained in the N-order Darboux matrix T.

    Theorem 2Let Φ(λ1)=(?(λ1),φ(λ1))Tbe a distinct column vector solutions of the spectral problem(4)for the corresponding spectral parameters λ1and the initial solution ψ0of Eqs.(2)and(3),respectively,then the(1,N?1)-fold Darboux transformation of Eq.(1)is as follows

    where B(N?1)= △B(N?1)/△N,with

    here?i,k(1 6 i,k 6 2N),with

    and(N+1)-th column with the vector b=(bi)2N×1of?Ncan produce?B(N?1),with

    2.3 Generalized Perturbation(n,M)-fold Darboux Transformation

    Now we investigate the Darboux matrix(11)and assume that the eigenfunctions Φi(λi)(i=1,2,...,n)are the solutions of Eq.(8)with λiand initial solution ψ0of Eqs.(2)and(3).So we obtain

    with i=1,2,...,n and ki=0,1,...,mi.According to the idea of Section 2.2,we can get the 2N equations

    Comparing system(22)with system(12),it is easy to see that the first several systems for every index i are the same,when there exist at least one index mi?=0 then they are different.

    Theorem 3Let Φi(λi)=(?i(λi),φi(λi))T(i=1,2,...,n)be a distinct column vector solutions of the spectral problem(4)for the corresponding the spectral parameters λi(i=1,2,...,n)and the initial solution ψ0of Eqs.(2)and(3),respectively,the(n,M)-fold Darboux transformation of Eq.(1)is as follows

    and?B(N?1)is obtained from the determinantby replacing its(N+1)-th column with the vector(b(1)···b(n))T,where

    By solving Eq.(22),we can obtain the new functions Aiand Biin the N-order Darboux matrix different from in the usual DT transformation.So we can derive some new solutions by the new(1,N?1)-fold DT with the same eigenvalue λ = λ1or the(n,M)-fold DT with n distinct eigenvalues λi(i=1,2,...,n).We call Eqs.(5)and(23)as a generalized perturbation(n,M)-fold DT of Eq.(1).

    3 The Higher-Order Rational Solutions and Rouge Waves Solutions of the(2+1)-Dimensional NLS Equation

    In this section,we will use the generalized perturbation(1,N?1)-fold DT to present some higher-order rational solutions and RW solutions of Eq.(1).Differing from the chosen zero seed solution to study multi-soliton solutions,[18]here we select a plane wave solution as a seed solution of Eqs.(2)and(3)as the following

    where a is a real parameter,the wave numbers in x-and y-directions are a and a2?2,respectively.From Eq.(24)it is easy to derive that the phase velocities in x-and y-directions are(6?a2)and a(6?a2)/(a2?2),respectively,and the group velocities in x-and y-directions are 3(2?a2)and 3?2a2,respectively.

    The eigenfunctions solution of the Lax pair(4)with Eq.(24)is as follows:

    with

    where pi,qi(i=1,2,...,N)are all real parameters and ? is a small parameter.

    Next,by setting the eigenvalue λ =a+2i+ ?2and expanding the vector function Φ(?2)in Eq.(25)as a Taylor series at ?=0,[8]we derive to the following results

    (?(i),φ(i))T(i=2,3,...)are cumbersome,so we omit them here.

    Next we discuss the solution(21)from the following four cases(N=1,2,3,4)to comprehend the obtained exact solutions of Eq.(1).According to solution(21),for n=1,we can only give the trivial constant solution.In this case,we do not use the derivatives of T(λ1)Φ(λ1)to determine B(0)so we cannot obtain a new solution.

    Case 1For N=2,from the generalized perturbation(1,1)-fold DT,we can obtain the first-order RW solution(regular rational solution)of the(2+1)-dimensional NLS Eq.(1).

    with

    where a is a free parameter.

    Based on Eq.(26)we can obtain the maximum √and minimum values of the modulus ofWhen x=3t(a2+2)and y=?3at,we have the maximum valueand when x=3t(a2+2)± and y=?3at,we have the minimum valueHere we consider t as arbitrary real number.When x,t→∞,

    It needs to be pointed out that when a=0,Eq.(1)has the solution as the following

    when y=0,u(x,y,t)is the solution of the(1+1)-dimensional complex mKdV equation.That is to say,we can use the reduction y=0 of the RW solution of the(2+1)-dimensional NLS equation to obtain the RW solution of the(1+1)-dimensional complex mKdV equation.It also fits for the following higher-order RW solutions.

    Fig.1 (Color online)u1=|?u1|2is the square of the modulus of the first-order rational solution and RW solution given by Eq.(26)at different two-dimensional spaces.(a)a=y=0,(b)a=1,y=0,(c)a=t=0,(d)a=0,x=0,(e)a=0,t=2,(f)a=0,t=3.

    Keep y=0,when the parameter a=0 and a?=0(e.g.,a=1)the wave profiles of solution(26)in(x,t)-space are obviously different.The solution(26)displays the W-shaped solitary wave with a=0,and it is not localized(see Fig.1(a)),while the solution(26)displays the first-order RW profile(see Fig.1(b)).So that when y=0,the parameter a can change the solution(26)in the(x,t)-space from the non-localized solution(a=0)to the localized solutions(a=1).From Fig.1(c)and Fig.1(d),we can know that for any parameter a,whether t=0 or x=0,the solution(37)generates the same first-order RW profiles.

    Next,we mainly discuss the localized wave structure of Eq.(26)in(x,y)-space under fixed time:

    We make t change and keep the parameter a=0,the solution(26)keeps the shape of the first-order RW profile;From Figs.1(a),1(b),1(c)we can see a phenomenon that the core of the first-order RW is located at the origin with t=0;The core moves positive along the x-axis,when t increases;

    Fig.2 (Color online)u1= and is the first-order rational solution and RW solution given by Eq.(26).(a)a=1,t=?3,(b)a=1,t=0,(c)a=1,t=3,(d)a=?1,t=?3,(e)a=?1,t=0,(f)a=?1,t=3.

    As we can see from Figs.2(a),2(b),2(c),when a?=0,the shape of the first-order RW does not change and the graphics core remains at the origin with t=0.When time t increases or decreases,the first-order RW moves to the low right or upper left on the(x,y)-plane with a>0,and the first-order RW moves to the upper right or low left on the(x,y)-plane with a<0(see Figs.2(d),2(e),2(f)).

    Case 2For N=3,on the basis of the generalized(1,2)-fold DT,the second-order RW solution of the(2+1)-dimensional NLS Eq.(1)can be derived as follows

    which includes three parameters a,b1,and c1.Due to the complexity of the equation,we omitted it here.Because b1and c1have the similar effect on the solution(28),we only consider a and b1and let c1=0 with y=0.Under different parameters,we can get four cases as follows:

    From Fig.3(a),we can derive that the solution(28)displays the elastic interaction of two soliton solutions at a=b1=0 and is not localized.While a?=0(e.g.,a=1),b1=0,the solution(28)yields the strong interaction of two first-order RWs with(e.g.,a=1),b1=0(see Fig.3(b)).

    From Figs.3(a),3(b),we can clearly know that the solution(28)in the(x,t)-space can be modulated by the parameter a from the non-localized solution into the localized second-order RW solutions.

    When a=0 and b1?=0(e.g.b1=100),the solution(28)is not localized and it is divided into two soliton solutions without any interaction.The amplitude of one soliton becomes high and another one becomes low as|x|,|t|increase(see Fig.3(c)).Moreover,it follows from Fig.3(c)that the width of the upper solitary wave becomes narrow and another one becomes wide as|x|,|t|increase.

    When a?=0(e.g.a=1)and b1=100,the solution(28)expresses three first-order RWs without any interaction(Fig.3(d)),so we can see the solution(28)in the(x,t)-space can be modulated from the non-localized solution into localized solutions by the parameter a.

    Based on Eq.(28)we can obtain the maximum and minimum values of the modulus ofat a=0,b1=0,and c1=0.When x=0 and y=0,we have the maximum value=5,and when x=∞and y=∞,we have the minimum value

    Fig.3 (Color online)u1= and is the second-order rational solution and RW solution of Eq.(28).(a)a=0,b1=0,c1=0,(b)a=1,b1=0,c1=0,(c)a=0,c1=0,b1=100,(d)a=1,b1=100,c1=0.

    Fig.4 (Color online)u1= and is the second-order rational solution and RW solution of Eq.(28)(a)b1=0,t=0,(b)b1=0,t=1,(c)b1=100,t=0,(d)b1=100,t=1.

    In other words,compare Figs.3(a)and 3(b),we know that the solution(28)exhibits both non-localized wave profile in(x,t)-space at a=0 with the different parameter b1.While the solution(28)represents two parallel solutions with b1=100 and it displays the strong interaction of two solutions with b1=0.Then,compare Figs.3(b)and 3(c),the solution(28)expresses both localized wave profiles in(x,t)-space with a=1.

    The solution(28)performed the similar second-order RW profiles in both(x,y)-space at t=0 and(y,t)-space at x=0 with any parameters a and b1.In the following we fixed a=0,c1=0,t=0,and set different parameters b1to discuss the wave profiles of the second-order RW solution.

    We have the profiles of weak interactions of second-order RWs at t=0,b1=10,(Fig.4(c))and t=1,b1=100,(Fig.4(d))with a=c1=0,and the second-order RW is split into three first-order RWs that array an isosceles triangle structure.

    From(Fig.4(c))and(Fig.4(d)),we can know that as time increases,the center of triangle structure is farther away from the origin with b1(e.g.b1=100).

    From(Fig.4(a))and(Fig.4(b)),we can know that the second-order RW can be converted into the separable three first-order RWs by adjusting b1and t.

    Fig.5 (Color online)u1= and is the third-order RW solution of Eq.(29)(a)b1=0,b2=0,c2=0,t=0,(b)b1=0,b2=0,c2=0,t=1,(c)b1=50,b2=0,c2=0,t=0,(d)b1=50,b2=0,c2=0,t=1,(e)b1=0,b2=50,c2=0,t=0,(f)b1=0,b2=50,c2=0,t=1,(g)b1=0,b2=500,c2=500,t=0,(h)b1=0,b2=500,c2=500,t=1.

    Case 3For N=4,the second-order RW solution of the(2+1)-dimensional NLS Eq.(1)can be derived by the generalized perturbation(1,3)-fold DT

    Because of its complexity,we omit it here,but we can know it has five parameters(a,b1,b2,c1,c2).Next we discuss some meaningful structure of the third-order RW solution(29).

    The wave structures of third-order RW are shown in Figs.5(a)–5(b)with parameters a=b1=b2=c1=c2=0 at different time.

    From Figs.5(c),5(d),we can see the third-order RW is made up of the six first-order RWs,and the distribution form is a regular triangle shape with a=b2=c1,2=t=0 and b1=0,or b1>0(e.g.b1=50).

    From Figs.5(e),5(f)we can see the third-order RW is made up of the six first-order RWs and the shape is a regular pentagon,while as the time increases the shape develops towards the regular triangle with b1=0,a=0,b2>0,(e.g.,b2=50),c1,2=t=0,and b1=0,a=0,b2>0,c1,2=0,t0,(e.g.t=1,b2=50).

    From Figs.5(g),5(h)we can see the third-order RW is made up of the six first-order RWs and the shape is a regular pentagon with b1=0,a=0,b2>0,c1=0,c2>0,t=0,(e.g.b2=c2=500),while the six first-order RWs array an irregular pentagon with t?0(e.g.t=1).

    It is necessary to point out that for N>4,we can also find higher-order rational solutions and RW solutions of Eq.(1)with rich structures.

    4 Summary and Discussion

    In summary,we have constructed the new generalized perturbation(n,M)-fold Darboux transformation(DT)to find the higher-order rational solutions and rogue wave(RW)solutions of the(2+1)-dimensional NLS equation.The process is mainly divided into two steps:Firstly,a brief introduction to the usual N-fold DT for Eq.(1)is given.Secondly,the N-order Darboux matrix,the Taylor expansion and a limit procedure are used to construct the generalized perturbation(n,M)-fold DTs for Eq.(1).Next,the generalized(1,N?1)-fold DT with only one spectral parameter is chosen to obtain higher-order RW solutions of Eq.(1).RW solutions’propagation and interaction are discussed and demonstrated by some figures,which display rich and interesting wave structures including the triangle,pentagon,heptagon profiles,etc.The results of this article are general and interesting.The used idea can be also applied to other physically nonlinear wave models.Because more higher-order rational solutions contain more parameters,general spatial-temporal structures of those RWs may be expected and need further investigate in the future.

    成年免费大片在线观看| 日本一本二区三区精品| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 九九热线精品视视频播放| 国产黄片视频在线免费观看| 成人二区视频| 一个人看视频在线观看www免费| 边亲边吃奶的免费视频| 国产高清视频在线观看网站| av女优亚洲男人天堂| 国产高清三级在线| 国产精品一区二区性色av| 国产精品一及| 一本一本综合久久| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 又粗又硬又长又爽又黄的视频 | 啦啦啦韩国在线观看视频| 你懂的网址亚洲精品在线观看 | 日日摸夜夜添夜夜爱| 日本黄色片子视频| 不卡视频在线观看欧美| eeuss影院久久| 丰满乱子伦码专区| 日本黄色片子视频| 国产毛片a区久久久久| 精品人妻视频免费看| 日韩强制内射视频| av女优亚洲男人天堂| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 97超视频在线观看视频| 在线免费十八禁| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 综合色av麻豆| 午夜免费激情av| 日本在线视频免费播放| 99久久九九国产精品国产免费| 99久国产av精品国产电影| 中文字幕制服av| 久久精品国产亚洲av涩爱 | 直男gayav资源| 黄色一级大片看看| 日日撸夜夜添| 国产片特级美女逼逼视频| 国产成人a区在线观看| 国产精品久久久久久久电影| 亚洲内射少妇av| 精品一区二区三区视频在线| 精品久久久久久久人妻蜜臀av| 色哟哟哟哟哟哟| 长腿黑丝高跟| 久99久视频精品免费| 免费人成在线观看视频色| 麻豆久久精品国产亚洲av| av又黄又爽大尺度在线免费看 | 能在线免费看毛片的网站| 蜜桃久久精品国产亚洲av| 色综合色国产| 搡女人真爽免费视频火全软件| 一个人观看的视频www高清免费观看| 99久国产av精品| 成人高潮视频无遮挡免费网站| www日本黄色视频网| 女人十人毛片免费观看3o分钟| 嘟嘟电影网在线观看| 国产精品乱码一区二三区的特点| 国产精品一二三区在线看| 精品久久久久久久久久免费视频| 亚洲精品亚洲一区二区| 亚洲最大成人av| 久久人人爽人人片av| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 99久国产av精品| 伦理电影大哥的女人| 国产高清激情床上av| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩高清在线视频| 国产乱人视频| 精品免费久久久久久久清纯| 别揉我奶头 嗯啊视频| av福利片在线观看| 亚洲av成人av| 在线免费十八禁| 少妇的逼水好多| 免费看a级黄色片| 欧美日韩乱码在线| 国产91av在线免费观看| 在线a可以看的网站| 久久久久久久久大av| 给我免费播放毛片高清在线观看| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 成年版毛片免费区| 国产一区二区在线观看日韩| 国产精品三级大全| 一级毛片我不卡| 国产精品嫩草影院av在线观看| 日本撒尿小便嘘嘘汇集6| 中文字幕制服av| 欧美最黄视频在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看| 你懂的网址亚洲精品在线观看 | 深夜a级毛片| 亚洲一区二区三区色噜噜| 国产精品无大码| 国产精品久久久久久精品电影| 九九热线精品视视频播放| 午夜福利在线观看吧| 国产视频内射| 久久久久久久久久久免费av| 天堂√8在线中文| 一进一出抽搐动态| 岛国毛片在线播放| 国产成人精品婷婷| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| 天堂网av新在线| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 久久草成人影院| .国产精品久久| 亚洲精品色激情综合| 国产精品一区www在线观看| 日韩成人伦理影院| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| 国产精品久久久久久精品电影| 国内精品宾馆在线| kizo精华| 91麻豆精品激情在线观看国产| 在线免费十八禁| av在线亚洲专区| 日韩精品有码人妻一区| 国产真实乱freesex| 国产午夜精品论理片| 在线观看一区二区三区| 国产人妻一区二区三区在| 亚洲精华国产精华液的使用体验 | 国产成人a区在线观看| 久久精品人妻少妇| 国产黄片视频在线免费观看| 国产大屁股一区二区在线视频| 边亲边吃奶的免费视频| 亚洲av一区综合| 亚洲不卡免费看| 免费观看在线日韩| 日本免费a在线| 高清在线视频一区二区三区 | 亚洲国产精品sss在线观看| 国产成人a∨麻豆精品| 久久久a久久爽久久v久久| 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 日本色播在线视频| 日本一二三区视频观看| 伦精品一区二区三区| 日韩制服骚丝袜av| 秋霞在线观看毛片| 三级经典国产精品| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 高清午夜精品一区二区三区 | 色综合色国产| or卡值多少钱| 又黄又爽又刺激的免费视频.| 日韩av不卡免费在线播放| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 精品人妻视频免费看| 亚洲欧美清纯卡通| 国产伦在线观看视频一区| 国产成人91sexporn| 热99re8久久精品国产| 岛国毛片在线播放| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 精品久久国产蜜桃| 中文在线观看免费www的网站| 欧美+亚洲+日韩+国产| 卡戴珊不雅视频在线播放| 天堂网av新在线| 美女大奶头视频| 久久九九热精品免费| 国产午夜精品论理片| 国产精品一及| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线播放欧美日韩| 免费大片18禁| 又黄又爽又刺激的免费视频.| 免费看a级黄色片| 一级毛片我不卡| 日日摸夜夜添夜夜添av毛片| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 久久热精品热| 插阴视频在线观看视频| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| av视频在线观看入口| 青春草视频在线免费观看| 亚洲成人中文字幕在线播放| 国产精品美女特级片免费视频播放器| 插逼视频在线观看| 丝袜美腿在线中文| 日韩成人伦理影院| 色哟哟·www| 99久久人妻综合| 日韩欧美 国产精品| 岛国在线免费视频观看| 日韩在线高清观看一区二区三区| 美女黄网站色视频| 九九爱精品视频在线观看| 此物有八面人人有两片| 午夜福利在线观看吧| 久久亚洲国产成人精品v| 亚洲一级一片aⅴ在线观看| 国产视频内射| 日韩av不卡免费在线播放| 国模一区二区三区四区视频| 国产精品乱码一区二三区的特点| 亚洲最大成人av| 真实男女啪啪啪动态图| 国产三级在线视频| 国产精品久久久久久精品电影小说 | 久久草成人影院| www.av在线官网国产| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 日本免费一区二区三区高清不卡| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| 校园春色视频在线观看| 国内精品一区二区在线观看| 欧美日韩在线观看h| av在线天堂中文字幕| 精品无人区乱码1区二区| 美女被艹到高潮喷水动态| ponron亚洲| 亚洲国产欧美人成| 亚洲欧美中文字幕日韩二区| 免费人成在线观看视频色| 91午夜精品亚洲一区二区三区| a级毛片a级免费在线| 91精品国产九色| 三级男女做爰猛烈吃奶摸视频| 国产一区亚洲一区在线观看| 日韩精品有码人妻一区| 一级二级三级毛片免费看| 婷婷色av中文字幕| 在线a可以看的网站| a级毛片a级免费在线| 欧美丝袜亚洲另类| 特级一级黄色大片| 日韩人妻高清精品专区| 97超视频在线观看视频| 一边亲一边摸免费视频| 一级毛片电影观看 | 亚洲自拍偷在线| 深爱激情五月婷婷| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 18禁在线播放成人免费| 亚洲国产精品国产精品| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 久久6这里有精品| 黄色欧美视频在线观看| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 国产av一区在线观看免费| av在线蜜桃| 青春草亚洲视频在线观看| 99热这里只有精品一区| 国内精品美女久久久久久| 在线观看美女被高潮喷水网站| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 三级经典国产精品| 精品一区二区免费观看| 一本一本综合久久| 日韩欧美在线乱码| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 国产成人a区在线观看| 久久久久久九九精品二区国产| 舔av片在线| 如何舔出高潮| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 青春草国产在线视频 | 在线观看美女被高潮喷水网站| 亚洲成a人片在线一区二区| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 麻豆成人午夜福利视频| 18+在线观看网站| 精品国产三级普通话版| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 日本-黄色视频高清免费观看| 黑人高潮一二区| 欧美色视频一区免费| 中文字幕久久专区| 12—13女人毛片做爰片一| 又粗又硬又长又爽又黄的视频 | 少妇的逼水好多| 哪个播放器可以免费观看大片| 欧美zozozo另类| 在线播放国产精品三级| 国产熟女欧美一区二区| 黑人高潮一二区| 51国产日韩欧美| 欧美+日韩+精品| 日韩欧美一区二区三区在线观看| 老司机影院成人| 91精品一卡2卡3卡4卡| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人| 直男gayav资源| 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 成人三级黄色视频| 久久久久网色| 欧美+日韩+精品| 国产私拍福利视频在线观看| 在现免费观看毛片| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 欧美变态另类bdsm刘玥| 日韩欧美精品v在线| 亚洲美女视频黄频| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频| 深夜a级毛片| 久久九九热精品免费| 日韩欧美在线乱码| 精品一区二区免费观看| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 亚洲av男天堂| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 国产视频内射| 九九在线视频观看精品| av视频在线观看入口| 日本一本二区三区精品| av在线观看视频网站免费| 夜夜爽天天搞| 中文字幕av在线有码专区| 亚洲精品成人久久久久久| 国产精华一区二区三区| 免费av观看视频| 国内揄拍国产精品人妻在线| 成人av在线播放网站| 婷婷精品国产亚洲av| av在线天堂中文字幕| 国产国拍精品亚洲av在线观看| 99久久精品国产国产毛片| kizo精华| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 亚洲电影在线观看av| 亚洲内射少妇av| 变态另类丝袜制服| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 午夜免费激情av| 欧美高清成人免费视频www| 久久这里只有精品中国| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 国产精品精品国产色婷婷| 国产精品野战在线观看| 我的女老师完整版在线观看| 午夜激情福利司机影院| 国产精品一区二区在线观看99 | 久久6这里有精品| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 日韩,欧美,国产一区二区三区 | 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 亚洲五月天丁香| kizo精华| 91麻豆精品激情在线观看国产| 免费看av在线观看网站| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 中文字幕av在线有码专区| 丰满的人妻完整版| 亚洲精品456在线播放app| 中文亚洲av片在线观看爽| 日本免费a在线| 欧美潮喷喷水| 美女国产视频在线观看| 嘟嘟电影网在线观看| 麻豆久久精品国产亚洲av| 性插视频无遮挡在线免费观看| 久久久久久久久中文| 99热只有精品国产| 精品久久久久久成人av| 亚洲真实伦在线观看| 久久午夜亚洲精品久久| 大香蕉久久网| av在线天堂中文字幕| 国产色婷婷99| 亚洲av.av天堂| 99热这里只有精品一区| 国产av在哪里看| 好男人在线观看高清免费视频| 亚洲经典国产精华液单| 嫩草影院新地址| 小蜜桃在线观看免费完整版高清| 26uuu在线亚洲综合色| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 亚洲四区av| 免费av不卡在线播放| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 在现免费观看毛片| 在线a可以看的网站| av视频在线观看入口| 日日摸夜夜添夜夜添av毛片| 又粗又硬又长又爽又黄的视频 | 久久久欧美国产精品| 国产成年人精品一区二区| 国产91av在线免费观看| 日本与韩国留学比较| 麻豆成人午夜福利视频| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 看片在线看免费视频| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 亚洲人成网站在线播放欧美日韩| 69av精品久久久久久| 国产免费男女视频| 久久久精品欧美日韩精品| 国产av一区在线观看免费| 国产不卡一卡二| 免费看日本二区| 少妇人妻一区二区三区视频| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 51国产日韩欧美| 国产女主播在线喷水免费视频网站 | 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 国产真实乱freesex| av在线蜜桃| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 亚洲高清免费不卡视频| 国产毛片a区久久久久| 国产黄色小视频在线观看| 亚洲,欧美,日韩| 69人妻影院| 免费av不卡在线播放| 春色校园在线视频观看| 1000部很黄的大片| 丝袜美腿在线中文| 天堂av国产一区二区熟女人妻| 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 久久久a久久爽久久v久久| 18禁黄网站禁片免费观看直播| 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在 | 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 国产91av在线免费观看| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 国产av在哪里看| 国产片特级美女逼逼视频| 国产高潮美女av| 亚洲人与动物交配视频| 国产精品一区二区性色av| 亚洲av熟女| 国产av麻豆久久久久久久| 亚洲欧洲国产日韩| 国产日本99.免费观看| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 美女被艹到高潮喷水动态| 国产伦精品一区二区三区视频9| 亚洲国产精品国产精品| 黑人高潮一二区| 国产午夜精品一二区理论片| 五月玫瑰六月丁香| av专区在线播放| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| 一级二级三级毛片免费看| 人妻制服诱惑在线中文字幕| 男女视频在线观看网站免费| 欧美最新免费一区二区三区| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说 | 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区久久| 大又大粗又爽又黄少妇毛片口| 亚洲18禁久久av| 成人美女网站在线观看视频| 99热只有精品国产| 国产大屁股一区二区在线视频| 99在线人妻在线中文字幕| 亚洲国产日韩欧美精品在线观看| 免费观看人在逋| 在线a可以看的网站| 国产淫片久久久久久久久| 日韩精品青青久久久久久| 亚洲精品456在线播放app| 婷婷色综合大香蕉| 亚洲国产精品久久男人天堂| 亚洲18禁久久av| 免费av观看视频| 69av精品久久久久久| 熟女电影av网| 美女 人体艺术 gogo| 只有这里有精品99| 亚洲一区高清亚洲精品| 久久人人精品亚洲av| 成年av动漫网址| 国产亚洲91精品色在线| 久久久欧美国产精品| 国产高清有码在线观看视频| 九九在线视频观看精品| 日韩亚洲欧美综合| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 久久久成人免费电影| 亚洲丝袜综合中文字幕| 国产精品爽爽va在线观看网站| 欧美激情国产日韩精品一区| 狠狠狠狠99中文字幕| 伊人久久精品亚洲午夜| а√天堂www在线а√下载| 国产亚洲精品久久久久久毛片| 国产淫片久久久久久久久| 男人舔奶头视频| 久久99热6这里只有精品| 成人三级黄色视频| 如何舔出高潮| 久久这里只有精品中国| 久久久久久久亚洲中文字幕| 国产一区亚洲一区在线观看| 午夜精品一区二区三区免费看| 亚洲18禁久久av| 看黄色毛片网站| 一夜夜www| 国产黄片美女视频| 久久九九热精品免费| 亚洲精品亚洲一区二区| 91精品国产九色| 久久久成人免费电影| 成人美女网站在线观看视频| 天堂√8在线中文| 赤兔流量卡办理| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区 | 久久午夜福利片| 两个人的视频大全免费| 国产69精品久久久久777片| 久久久久久伊人网av| 成人午夜精彩视频在线观看| 我要搜黄色片| 国产黄片美女视频|