• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degenerate Solutions of the Nonlinear Self-Dual Network Equation?

    2019-01-10 06:57:24YingYangQiu邱迎陽JingSongHe賀勁松andMaoHuaLi李茂華
    Communications in Theoretical Physics 2019年1期

    Ying-Yang Qiu(邱迎陽),Jing-Song He(賀勁松),and Mao-Hua Li(李茂華)

    Department of Mathematics,Ningbo University,Ningbo 315211,China

    Abstract The N-fold Darboux transformation(DT) of the nonlinear self-dual network equation is given in terms of the determinant representation.The elements in determinants are composed of the eigenvalues λj(j=1,2...,N)and the corresponding eigenfunctions of the associated Lax equation.Using this representation,the N-soliton solutions of the nonlinear self-dual network equation are given from the zero “seed” solution by the N-fold DT.A general form of the N-degenerate soliton is constructed from the determinants of N-soliton by a special limit λj → λ1and by using the higher-order Taylor expansion.For 2-degenerate and 3-degenerate solitons,approximate orbits are given analytically,which provide excellent fit of exact trajectories.These orbits have a time-dependent “phase shift”,namely ln(t2).

    Key words:nonlinear self-dual network equation,Darboux transformation,soliton,degenerate solution

    1 Introduction

    The studies of the discrete integrable systems were initiated in the middle of 1970s.Hirota had discretized various integrable equations such as the nonlinear partial difference KdV equation,[1]the discrete-time Toda equation,[2]the discrete Sine-Gordon(SG)equation,[3]the Liouville’s equation,[4]and the Bcklund transformation of the discrete-time Toda equation,[5]based on the bilinear transformation methods.Following those works,the discrete nonlinear systems may be used to the diverse areas to describe such physical situations as the rogue waves in optical fibers and water tanks,[6]and the general rogue waves in the focusing and defocusing Ablowitz-Ladik equations.[7?8]In the ladder type electric circuit,connection type electric circuit,in connection with the propagation of electrical signals is the following nonlinear self-dual network equation[9?10]

    where In=I(n,t)and Vn=V(n,t)are voltage and current in the n-th capacitance and inductance respectively,the functions of the discrete variable n and time variable t,In,t=dIn/dt,and Vn,t=dVn/dt.

    During the recent decades,finding analytical and explicit solutions are one of the most aspect in the studies of discrete systems[11?14]There are quite a few methods of the nonlinear integrable systems,such as the inverse scattering transformation,the bilinear transformation methods of Hirota,the dressing method,the B¨acklund and the Darboux transformation(DT),the algebraic curve method.[15?17]It is known that the DT[17]is a powerful tool not only for the continuous integrable system,which generates new solutions of an integrable equation from a “seed” solutions,but also is useful for the discrete integrable system.Matveev gave the discrete DT of the differential-difference equation.[18]From then on the various DT of the discrete integrable system are becoming more and more important for the discrete problems.[19?20]In recent years,the determinant representation TNis widely used to get degenerate solitons and breathers[21?23]by a limit λj→ λ1,and even get rogue waves by a double degeneration with the help of limit λj→ λ1→ λ0.[24?26]Although there are some known solutions[27]of Eq.(1),the determinant representationthe N-fold DT has not been given in literature.This fact inspires us to constructof Eq.(1).

    The study of the degenerate soliton can go back to Zakharov who has shown that the distance of two peaks in a 2-degenerate soliton increases with time like ln(4η2t)as|t|→ ∞.[28]The positons[29?30]of KdV was firstly introduced by Matveev,which is a special degenerate soliton involved a positive eigenvalue.The positon solutions have many interesting properties that different from the other of soliton solutions.Then the positon solutions have been constructed for many models,such as the defocusing mKdV equation,[31?32]the SG equation[33]and the Todalattice.[34]Moreover,positon can also be given by Hirota method and the limit of eigenvalues λj→ λ1.[35]It is easy to see from Refs.[28]–[36]that the essential feature of the above solutions is the degeneration of eigenvalues.This fact motivates us to construct the N-degenerate soliton of the nonlinear self-dual network equation by degenerate limit of eigenvalues λj→ λ1(j=2,3,...,N)according to theand further discuss its properties.

    This paper is organized as follows.In Sec.2,a determinant representationof the N-fold DT for the nonlinear self-dual network equation is given.The new solutions ofandgenerated byare also provided explicitly by determinants.In Sec.3,the N-degenerate solitons In?dsand Vn?dsare obtained from N-solitons by a limit λj→ λ1,namely the degeneration of eigenvalues.Our conclusions and discussions are provided in the last section.

    2 Determinant Representation of DT

    First,the Lax pair of the nonlinear self-dual network equation is as follows[27]

    where ψn=(ψ11,ψ12)Tis the vector eigenfunction,λ is the eigenvalue parameter independent of n and t,the shift operator E is defined by Ef(n,t)=f(n+1,t)=fn+1,n∈Z,t∈R.From the compatibility condition of the nonlinear self-dual network equation ψn,t= ψt,n,we can obtain the zero curvature equation

    It is easy to find that Eq.(4)is compatible with the Eq.(1)by the calculations.Next,the discrete DT for Eq.(1)is given on the basis of Eqs.(2)and(3).So,we introduce an N-fold gauge transformation such that

    Let N=1,set one-fold DT as

    Here eigenfunction ψ1is in the form of

    Solving Eq.(10)yields

    where the matrix

    where

    In this case,we are going to make sure that each element of the matrix is a determinant consisting of the same submatrix W1.The representation given in Eq.(11)is more helpful to understand clearly and accurately the process for iteration ofin order to get the N-fold DT.It is clear that

    Solving the algebraic equations given by the its kernel,i.e.,then

    Here

    which can be determined by solving the algebraic equationsThus we get following theorem.

    Theorem 1The determinant representation of the N-fold DT is expressed by

    Here

    Here

    Corollary 1The N-fold DTgenerates two new solutions from initial“seed” solutions Inand Vn,namely

    Here

    3 The N-Degenerate Solutions

    In the last section,new solutionsandgenerated by theare given by the determinants involved with eigenvalue λj(j=1,2,...,N)and their eigenfunctions.Setting In=Vn=0 in Lax equations Eqs.(2)and(3),it is straightforward to get N-fold eigenfunctions

    Taking In=Vn=0,and above eigenfunctions back into Corollary 1,it yields N-solitons

    The aim of this section is to get N-degenerate solitons by taking a limit λj→ λ1in N-solitons.

    Setting N=1,Eq.(17)produces two single solitons

    Here α1=lnλ1. There are two kinds of soliton in Eqs.(18)and(19).

    (i)When λ1>1,namely α1>0,theis a bright soliton(Fig.1(a))anda dark soliton(Fig.1(b)).

    (ii)When 0< λ1<1,namely α1<0,theis a dark soliton andis a bright soliton.

    The speed of two solitons is?α1/sinhα1.The trajec-tory ofis a line L01:tsinhα1+α1/2+nα1=0 in the(n,t)-plane,while L02:tsinhα1+ α1+nα1=0 for the.The height ofandare(e2α1? 1)/2eα1and?(e2α1? 1)/2eα1respectively,which can be confirmed by Fig.1 with λ1=3.

    Fig.1 The amplitudes of single solitons and with λ1=3.(a)The amplitude is 4/3 for ;(b)The amplitude is?4/3 for

    Setting N=2,Eq.(17)generates two 2-solitons:

    Fig.2 (Color online)The discrete profiles of two-soliton solution in the(n,t)-plane with discrete variable n ∈ [?5,5].(a)Two bright soltions,α1= ?2,α2=1.5.(b)One bright and one dark solitons,α1=2,α2=3.(c)Two dark solitons,α1= ?1.5,α2=2.Here αj=lnλj,j=1,2.

    Corollary 2The N-degengrate solitons of Eq.(1)are expressed by

    Here

    and ni=[(i+1)/2],[i]define the floor function of i.

    Setting N=2,Corollary 2 yields a 2-degenerate solitonwhich is plotted in Fig.3.Note that Fig.3(b)is a density plot ofby using continuous variable n in order to get a good visibility,and all following density plots are generated by this way.To make a compact form of this paper,profiles ofare omitted.

    Fig.3 (Color online)The discrete pro file of a two-degenerate solution in the(n,t)-plane(a)and its density plot(b)with α1=2.

    Fig.4 (Color online)A sketchy demonstration of the limit λ2 → λ1in a two-soliton density plot)with a=0,c=1/2,λ1=2i/5,s1=0,and α1=2.From the left to the right,α2=3,2.5,2.2.Note that λj=eαj(j=1,2).(c)looks like Fig.3(b)very much.

    We are now in a position to demonstrate intuitively the limit of degeneration by a graphical way based on analytical solutionsand,i.e.a 2-soliton approaches to a 2-degenerate soliton by λ2→ λ1.Note that we set αj=lnλj(j=1,2)and then use α2→ α1in order to show clearly this limit process.It is seen from Fig.4 that the trajectory(density plot)of a 2-soliton approaches to the trajectory(Fig.3(b))of a 2-degenerate soliton when α2goes to α1,which shows vividly the limit of a 2-soliton to a 2-degenerate soliton.Figure 4(c)is a good approximation of Fig.3(b)although?α= α2?α1=0.2 is not very small.Moreover,when|t|≥2,it is interesting to find in Fig.4 that the excellent agreement between the exact trajectories(density plots)and two approximate orbits,namely

    which shows the validity of the approximate orbits(black lines).A remarkable feature of two approximate orbits is that there is a time-dependent “phase shift”,namely ln(t2). We are not able to decompose properly a 2-degenerate soliton into two single solitons,unlike we have obtained an excellent decomposition for the real mKdV and complex mKdV in Refs.[22–23],because the 2-degenerate solitonincludes a mixed combination of one bright soliton and one dark soliton,and there exists a transition from a bright soliton to a dark soliton(or a reverse process)along the time evolution.But we still retain this idea to find above orbits.

    Fig.5 (Color online)The exact trajectories(density plots,red)and approximate orbits of a 2-degenerate soliton The approximate orbits L1(dashed line,black)and L2(solid line,black)in the(n,t)-plane with α1=2 when n ∈ [?10,10].

    From Fig.6 the excellent agreement with exact trajectories(density plots)and three approximate orbits(black lines)for 3-degenerate soliton,namely

    Note that there does not exist“phase shift”for the soliton propagating along

    Fig.6 (Color online)The exact trajectories(density plots,red)and approximate orbits of a 3-degenerate soliton with α1=2 when n ∈ [?15,15].The approximate orbits (dashed line,black), (solid line,black)and (dot line,black)in the(n,t)-plane.

    4 Summary and Discussion

    In this article,a determinant representation of the N-fold Darboux transformationof the nonlinear selfdual network equation is given in Theorem 1.It is easy to verify(λj)ψj=0(j=1,2,...,N),which shows ψj(j=1,2,...,N)is the kernel of.Using this representation,the N-soliton solutions are obtained in Eq.(17).A general form of the N-degenerate solitons is given in Corollary 2,which is obtained by a limit λj→ λ1and by using higher-order Taylor expansion from the N-solitons.For 2-degenerate and 3-degenerate solitons,approximate orbits(Li,?Lj(i=1,2;j=1,2,3))are given analytically,which provide excellent fit of exact trajectories(density plots),see Figs.5 and 6.A remarkable feature of approximate orbits in the degenerate solitons is that there is a time-dependent “phase shift”,namely ln(t2).

    If we compare our results with the work in Ref.[27]of the self-dual network equation,our results have the following advantages and innovation points.

    (i)The determinant expressionis given for the first time.

    (ii)The one-soliton solution is analyzed to classify the bright and dark soliton,and its height,speed and trajectory are presented analytically.

    (iii)The N-degenerate solutions are given by determinants.The approximate orbits of 2-degenerate and 3-degenerate solitons and the time-dependent “phase shift”are presented in analytical way.

    (i)The former has a different form as a polynomial of λ due to the new relations of matrix coefficients,see Eq.(12).

    (ii)Here we just replace one column in WNto get new solutions by one same column vector in former,see Eqs.(14)and(15),while two column vectors are needed for a continuous system in Ref.[38].

    Thus it is highly nontrivial to extend determinant representation of N-fold DT to discrete system.

    Finally,the explicit form ofN)can be given analytically by using Theorem 1,and thus provides a convenient tool to study the discrete soliton surfaces and the dynamical evolution ofin the near future.

    Acknowledgments

    We thank Prof.D.J.Zhang and Dr.X.Y.Wen for many helpful suggestions on this paper.

    国产精品久久视频播放| 一a级毛片在线观看| 看十八女毛片水多多多| 麻豆成人av在线观看| 91狼人影院| 亚洲国产日韩欧美精品在线观看| 中文字幕高清在线视频| av专区在线播放| 午夜免费男女啪啪视频观看 | 一区二区三区高清视频在线| 床上黄色一级片| 久久国内精品自在自线图片| 久久久久久久久久久丰满 | 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 婷婷亚洲欧美| 精品一区二区免费观看| 久久久久国内视频| 十八禁国产超污无遮挡网站| 身体一侧抽搐| 色哟哟·www| 好男人在线观看高清免费视频| 中文在线观看免费www的网站| 久久久久久久久久成人| 色噜噜av男人的天堂激情| 我要搜黄色片| 啦啦啦啦在线视频资源| 可以在线观看毛片的网站| 看黄色毛片网站| av天堂中文字幕网| 嫩草影视91久久| 有码 亚洲区| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 欧美精品国产亚洲| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 少妇丰满av| 日本爱情动作片www.在线观看 | 国产亚洲精品av在线| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 色视频www国产| 国产精品不卡视频一区二区| 亚洲乱码一区二区免费版| 淫秽高清视频在线观看| 蜜桃亚洲精品一区二区三区| 久久久久国产精品人妻aⅴ院| 国产真实伦视频高清在线观看 | 欧美最新免费一区二区三区| 88av欧美| 99在线视频只有这里精品首页| 国产成人a区在线观看| 在线天堂最新版资源| 99热网站在线观看| 在线观看午夜福利视频| 久久久精品大字幕| 欧美+亚洲+日韩+国产| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看的亚洲视频| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| 国产成人福利小说| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱 | 国产乱人视频| 天美传媒精品一区二区| 91麻豆av在线| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 久久久国产成人免费| 精品国内亚洲2022精品成人| 日日啪夜夜撸| 日日干狠狠操夜夜爽| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 搡老岳熟女国产| а√天堂www在线а√下载| 又爽又黄无遮挡网站| 国产成人一区二区在线| 黄色女人牲交| 禁无遮挡网站| 欧美日本视频| 日本 av在线| 亚洲精华国产精华精| 直男gayav资源| 在线a可以看的网站| 久久99热这里只有精品18| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 在线免费观看的www视频| 久久国内精品自在自线图片| 午夜免费男女啪啪视频观看 | 天美传媒精品一区二区| 老女人水多毛片| 日本黄色视频三级网站网址| 欧美一区二区精品小视频在线| 久久精品久久久久久噜噜老黄 | 亚洲va在线va天堂va国产| 无人区码免费观看不卡| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 欧美潮喷喷水| 黄色日韩在线| 婷婷精品国产亚洲av在线| 久久久久久久久大av| 亚洲狠狠婷婷综合久久图片| 男女啪啪激烈高潮av片| 免费av毛片视频| 18禁在线播放成人免费| 久久久色成人| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验 | 在现免费观看毛片| 看黄色毛片网站| 国产一区二区三区av在线 | 极品教师在线免费播放| 日本在线视频免费播放| 国产高潮美女av| 欧美性猛交黑人性爽| 久久99热6这里只有精品| 日本熟妇午夜| 色吧在线观看| 99热这里只有是精品在线观看| 成人高潮视频无遮挡免费网站| 日韩精品有码人妻一区| 国产真实乱freesex| 亚洲成av人片在线播放无| 亚洲欧美日韩无卡精品| 毛片女人毛片| 成人精品一区二区免费| 日本色播在线视频| 精品欧美国产一区二区三| a级一级毛片免费在线观看| 婷婷精品国产亚洲av在线| 亚洲av第一区精品v没综合| 亚洲美女搞黄在线观看 | 亚洲自偷自拍三级| 免费看av在线观看网站| 在线天堂最新版资源| 国产成人福利小说| 内地一区二区视频在线| 欧美一区二区精品小视频在线| 欧美性感艳星| 国产 一区 欧美 日韩| 两个人的视频大全免费| а√天堂www在线а√下载| 99久久成人亚洲精品观看| 午夜福利在线观看免费完整高清在 | 可以在线观看的亚洲视频| 国产成人一区二区在线| 国产精品人妻久久久影院| 18禁黄网站禁片午夜丰满| 欧美人与善性xxx| 亚洲美女视频黄频| bbb黄色大片| 国产探花极品一区二区| 日韩欧美三级三区| 成人鲁丝片一二三区免费| 看十八女毛片水多多多| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 久久香蕉精品热| 少妇的逼好多水| 桃色一区二区三区在线观看| av.在线天堂| 淫秽高清视频在线观看| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 成人无遮挡网站| 淫妇啪啪啪对白视频| 伦理电影大哥的女人| 精品一区二区免费观看| 在线看三级毛片| 久久久久国产精品人妻aⅴ院| 99久久中文字幕三级久久日本| 能在线免费观看的黄片| 亚洲色图av天堂| 丰满的人妻完整版| 欧美在线一区亚洲| 干丝袜人妻中文字幕| av专区在线播放| 国内少妇人妻偷人精品xxx网站| 88av欧美| 99久久精品国产国产毛片| 内地一区二区视频在线| 亚洲国产日韩欧美精品在线观看| 国产单亲对白刺激| 久久精品国产亚洲av涩爱 | 欧美3d第一页| 搡老熟女国产l中国老女人| 国产精品综合久久久久久久免费| 久久久久久久久久黄片| 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 久久人妻av系列| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 露出奶头的视频| 国产麻豆成人av免费视频| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 91在线精品国自产拍蜜月| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 亚洲最大成人av| 啦啦啦啦在线视频资源| 网址你懂的国产日韩在线| 免费av毛片视频| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 国产综合懂色| 国产免费一级a男人的天堂| 热99在线观看视频| 免费人成视频x8x8入口观看| 女人被狂操c到高潮| 午夜视频国产福利| 日本黄色视频三级网站网址| 精品午夜福利在线看| 国内精品宾馆在线| 国产色爽女视频免费观看| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| www.www免费av| 国产精品一区二区免费欧美| 亚洲电影在线观看av| 精品久久久久久久久av| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 国产国拍精品亚洲av在线观看| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 日韩一区二区视频免费看| 悠悠久久av| 国产一区二区激情短视频| 国产精品一区www在线观看 | 成人三级黄色视频| 制服丝袜大香蕉在线| 成年女人毛片免费观看观看9| 中国美白少妇内射xxxbb| 久久热精品热| 久久精品综合一区二区三区| 午夜爱爱视频在线播放| 少妇的逼水好多| 波多野结衣高清无吗| 乱人视频在线观看| 中出人妻视频一区二区| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 久久香蕉精品热| 日日干狠狠操夜夜爽| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 在线看三级毛片| 身体一侧抽搐| 日本一二三区视频观看| 波野结衣二区三区在线| 丝袜美腿在线中文| 天天一区二区日本电影三级| 舔av片在线| 午夜精品一区二区三区免费看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 久久精品人妻少妇| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 亚洲av免费在线观看| 色av中文字幕| av国产免费在线观看| 日韩 亚洲 欧美在线| 国产亚洲精品久久久久久毛片| 国产精品爽爽va在线观看网站| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 欧美潮喷喷水| 国产午夜精品论理片| 国产高清激情床上av| 99riav亚洲国产免费| 精品久久久久久久久久免费视频| 动漫黄色视频在线观看| 长腿黑丝高跟| 国产视频内射| 淫妇啪啪啪对白视频| 国产色婷婷99| av.在线天堂| 日韩欧美三级三区| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 韩国av一区二区三区四区| 国产精品无大码| 毛片一级片免费看久久久久 | 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩高清在线视频| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免| 国产亚洲精品久久久久久毛片| or卡值多少钱| 亚洲不卡免费看| 99视频精品全部免费 在线| 少妇的逼好多水| 国产日本99.免费观看| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 久久国产精品人妻蜜桃| 3wmmmm亚洲av在线观看| 国产精品美女特级片免费视频播放器| 亚洲经典国产精华液单| 极品教师在线免费播放| 十八禁国产超污无遮挡网站| 国产精品无大码| 欧美成人一区二区免费高清观看| 国产在线男女| 热99在线观看视频| 非洲黑人性xxxx精品又粗又长| 国产高清不卡午夜福利| 极品教师在线免费播放| 中文在线观看免费www的网站| 国产精品无大码| 国产精品一区www在线观看 | 久久久久久大精品| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 国产在线精品亚洲第一网站| 亚洲色图av天堂| 一级a爱片免费观看的视频| 毛片女人毛片| 日韩大尺度精品在线看网址| 国产一区二区三区av在线 | av福利片在线观看| 在线观看美女被高潮喷水网站| 亚洲在线自拍视频| 国产真实伦视频高清在线观看 | 成人av一区二区三区在线看| 变态另类丝袜制服| 男插女下体视频免费在线播放| 国产色婷婷99| 久久精品国产亚洲av香蕉五月| xxxwww97欧美| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 亚洲精品456在线播放app | 69人妻影院| 国产欧美日韩精品一区二区| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 国产精品一区二区性色av| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 日韩精品有码人妻一区| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| 岛国在线免费视频观看| 国产精品不卡视频一区二区| 精品乱码久久久久久99久播| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av在线| 久久久久久久精品吃奶| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 一进一出抽搐gif免费好疼| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 少妇的逼好多水| 亚洲天堂国产精品一区在线| 国产一区二区在线观看日韩| 能在线免费观看的黄片| 亚洲第一区二区三区不卡| 啪啪无遮挡十八禁网站| 熟妇人妻久久中文字幕3abv| 久久精品影院6| 99久久成人亚洲精品观看| eeuss影院久久| 精品无人区乱码1区二区| 两个人的视频大全免费| 精品久久久久久久末码| 看免费成人av毛片| 我要看日韩黄色一级片| 观看免费一级毛片| 在线观看一区二区三区| 午夜老司机福利剧场| 精品一区二区三区av网在线观看| 国产高清激情床上av| 亚洲最大成人手机在线| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 成人二区视频| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久成人av| 男人舔奶头视频| 国模一区二区三区四区视频| 亚洲性久久影院| 国产国拍精品亚洲av在线观看| 一本精品99久久精品77| 亚洲av中文av极速乱 | 日本成人三级电影网站| 亚洲av.av天堂| a级毛片免费高清观看在线播放| 精品久久久久久成人av| 人人妻,人人澡人人爽秒播| 亚洲欧美清纯卡通| 看免费成人av毛片| 免费高清视频大片| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 麻豆国产av国片精品| 在线天堂最新版资源| 日本 欧美在线| 日韩欧美在线乱码| 麻豆国产97在线/欧美| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 国产视频内射| 国产高清视频在线播放一区| 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 露出奶头的视频| 淫妇啪啪啪对白视频| 亚洲美女视频黄频| 婷婷丁香在线五月| av中文乱码字幕在线| 男人的好看免费观看在线视频| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 国产三级中文精品| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片 | 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 亚州av有码| 国产精品美女特级片免费视频播放器| h日本视频在线播放| 久久精品综合一区二区三区| 一级黄片播放器| 国产精品1区2区在线观看.| 欧美日韩中文字幕国产精品一区二区三区| 日日撸夜夜添| 夜夜看夜夜爽夜夜摸| 长腿黑丝高跟| 午夜久久久久精精品| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 一区二区三区四区激情视频 | 免费观看的影片在线观看| 全区人妻精品视频| 禁无遮挡网站| 精品一区二区三区人妻视频| 99在线视频只有这里精品首页| 悠悠久久av| 国产真实乱freesex| 日韩一本色道免费dvd| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 少妇人妻精品综合一区二区 | 久久99热6这里只有精品| 亚洲美女黄片视频| 日本黄色片子视频| 亚洲欧美日韩无卡精品| 中出人妻视频一区二区| 天美传媒精品一区二区| 欧美高清成人免费视频www| 欧美日韩中文字幕国产精品一区二区三区| 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 99在线视频只有这里精品首页| 亚洲成人免费电影在线观看| 嫩草影院新地址| 国产激情偷乱视频一区二区| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 我要搜黄色片| 在线观看舔阴道视频| 丰满乱子伦码专区| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 久久久成人免费电影| 国产av一区在线观看免费| av国产免费在线观看| 午夜爱爱视频在线播放| 久久久久久九九精品二区国产| av女优亚洲男人天堂| 午夜福利高清视频| 亚洲人与动物交配视频| 又粗又爽又猛毛片免费看| 一进一出抽搐动态| 熟女电影av网| 国产欧美日韩精品亚洲av| 真人一进一出gif抽搐免费| 成年女人看的毛片在线观看| 天天躁日日操中文字幕| 黄色一级大片看看| 69人妻影院| 久久久久久久久久成人| 日本免费a在线| 老熟妇乱子伦视频在线观看| 性插视频无遮挡在线免费观看| 国产成人一区二区在线| а√天堂www在线а√下载| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 网址你懂的国产日韩在线| videossex国产| 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 无遮挡黄片免费观看| 精品日产1卡2卡| 欧美bdsm另类| 亚洲男人的天堂狠狠| 男女下面进入的视频免费午夜| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 无人区码免费观看不卡| av中文乱码字幕在线| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 尤物成人国产欧美一区二区三区| 黄色女人牲交| 亚洲在线自拍视频| 久久久久久国产a免费观看| 日韩欧美在线乱码| 岛国在线免费视频观看| 九九在线视频观看精品| 亚洲四区av| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 日日啪夜夜撸| 91麻豆av在线| 国产蜜桃级精品一区二区三区| 又黄又爽又刺激的免费视频.| 哪里可以看免费的av片| 日韩欧美在线乱码| а√天堂www在线а√下载| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄 | 国内精品一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 国产精品无大码| 久久久久精品国产欧美久久久| 九色成人免费人妻av| 91狼人影院| 亚洲精品影视一区二区三区av| 一区二区三区激情视频| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 亚洲电影在线观看av| 久久久久性生活片| 国产一区二区在线观看日韩| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 婷婷亚洲欧美| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| 亚洲综合色惰| 成人综合一区亚洲| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 精品欧美国产一区二区三| 日韩欧美精品v在线| 国产又黄又爽又无遮挡在线| a级毛片免费高清观看在线播放| 看免费成人av毛片| 一本一本综合久久| 欧美日本亚洲视频在线播放| 99久久成人亚洲精品观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩东京热| 99久久精品国产国产毛片| 国产精品久久久久久亚洲av鲁大| 国产v大片淫在线免费观看| 国产91精品成人一区二区三区| 真人做人爱边吃奶动态| 岛国在线免费视频观看| 悠悠久久av| 中出人妻视频一区二区| 国产精品人妻久久久影院| 91狼人影院| 男人的好看免费观看在线视频| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 深夜精品福利| av在线亚洲专区|