• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust H∞Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach

    2018-05-02 07:11:31YonghuiSunYingxuanWangZhinongWeiGuoqiangSunandXiaopengWu
    IEEE/CAA Journal of Automatica Sinica 2018年2期

    Yonghui Sun,Yingxuan Wang,Zhinong Wei,Guoqiang Sun,and Xiaopeng Wu

    I.INTRODUCTION

    LOAD frequency control(LFC)is important and necessary in electric power system operation,which could help damp frequency and voltage oscillations originated from load variations or sudden changes in load demands[1]-[2].When the system is subject to disturbances or sudden changes in load demands,the input mechanical power to the generators is employed to control the frequency of the output electrical power and to maintain the power exchange between different control areas as per scheduled values during normal operation.Therefore,a well designed and operated power system should be able to cope with changes in the load and system disturbances,and it should provide acceptably high level of power quality while maintaining both voltage and frequency within tolerable limits.

    Until now,lots of classical and advanced techniques have been proposed to solve the LFC problems for single or interconnected power system,e.g.,proportional integral(PI)control approach[3]was first proposed to solve the LFC problems.In[4],a robust decentralized proportional-integral control design was proposed for LFC of a multi-area power system.In[5],considering the parameter uncertainties,a robust decentralized controller was designed for multi-area power system based on the Riccati-equation approach.In[6],based on the concept of active disturbance rejection control,a robust decentralized LFC algorithm was proposed for an interconnected three-area power system using frequency-domain analysis.In[7],the adaptive control scheme was proposed to deal with the changes of system parameters under the LFC strategies.With the emerging intelligent control techniques,some hybrid controllers can drive better desirable responses than the traditional LFC.The intelligent PILFC using genetic algorithm[8],bat inspired algorithm[9],fuzzy logic[10]and neural network[11]have been adopted to consider the effect of uncertainty and disturbances in the power system model.For the other related results,please refer to[12],and the references therein.

    On the other hand,as time delays are mainly derived from the local measurement device,for traditional power system,time delays are too small which can be ignored in most cases[13],[14].However,with the development of power system,remote signals have become available as feedback signals to design modern power system.Therefore,time delays are becoming more and more ubiquitous and have become a source of instability and performance deterioration in system.In[15],two robust decentralized PI controller designs were proposed for LFC of power system with communication delays.In[16],the authors presented a load frequency control method based on linear matrix inequalities(LMIs),where a robust controller was proposed in the face of delayed control signals.In[17],the authors considered the delay-dependent stability of load frequency control scheme based on Lyapunov theory,where a delay-dependent criterion was developed.In[18],the authors considered the LFC problem with communication delays,where a delay-dependent two-termH∞controller design was proposed using LMIs.In[19],a delay-dependent robust method was proposed for analysis/synthesis of a PID-type LFC scheme considering time delays,where a new way to assess robustness against delays and estimate delay margins was also presented.However,with the increasing size,changing structure and complexity of interconnected power system[20],[21],LFC problem is becoming much more significant today,in order to get fast response,insensitivity to variation in plant parameters and complete rejection of external perturbations,some other effective robust control methods should be explored and developed.

    Since the 1970s,variable structure control has attracted signi ficant attentions in the control community.As a special type of variable structure controls,sliding mode control(SMC)is assumed to provide an effective alternative to deal with the robust issues of dynamic systems.The main feature of SMC is claimed to result in system performance including fast response,easy realization,insensitivity to variation in plant parameters and complete rejection of external perturbations,for some more detailed discussions,please refer to[22]-[27]and the references therein.In SMC,the behavior of the closedloop system is determined by a submanifold in the state space,named as the sliding surface,the goal is to drive the system trajectory to reach the sliding surface and then to stay on it.In[28],the second-order sliding mode control design problem was investigated for nonlinear system with uncertainties bounded by positive functions.Considering its robust properties,SMC has been utilized for analyzing and controlling of complex power system in the past few years.In[29],by using SMC approach,the authors presented LFC for multi-area power system with unmatched uncertainties.In[30],the authors considered LFC by neural-network-based integral sliding mode for power system with wind turbines.For the other related results,please refer to[31]-[32]and the references therein.However,most of the above mentioned results ignored the time delay in multi-area power system,and there are few results considering time delay in the design of switching surface in SMC,where the fast response and robust performance cannot be guaranteed.Furthermore,to the best of the authors’knowledge,there are also few results considering SMLFC of delayed power system with stochastic disturbances,therefore,in this paper,the attention is paid to the robustH∞SMLFC of multi-area power system with time delay.

    The rest of the paper is organized as follows.In Section II,the LFC problem for multi-area power system is presented,a useful lemma is also introduced in advanced.In Section III,a new switching surface considering time delay is designed for each area of power system.In Section IV,the sliding mode controller is designed to drive the system trajectory to reach the sliding surface and stay on it.In Section V,some simulation results are provided to show the feasibility of the developed results.At last,this paper is completed with a conclusion.

    II.MODEL DESCRIPTION

    It is known that power system is a complex nonlinear dynamic system,especially the multi-area power system,however,the linearized model is permissible in the LFC problem due to only small changes in load are expected during its normal operation.In this paper,by using the SMC approach,the robustH∞LFC problem for multi-area power system with time delay is discussed in detail.For convenience,a two-area interconnected power system with time delay is provided as an example to illustrate the LFC problem for multi-area power system,which is shown in Fig.1.

    Fig.1.A typical two-area LFC power system.

    The dynamic model can be described by

    wherei,j=1,2,i/=j,and ΔP12=-ΔP21.

    De fine the state vector asx(t)=[Δf1,ΔPm1,ΔPv1,ΔE1,ΔP12,Δf2,ΔPm2,ΔPv2,ΔE2]T,then system(1)can be represented in the following compact form:

    wherew(t)is the load disturbance vector de fined asw(t)=ΔPd= [ΔPd1,ΔPd2]T,without loss generality,w(t)is bounded and satis fies‖ΔPd1‖<h1,‖ΔPd2‖<h2,h1andh2are two positive constants.τ1andτ2are the transmission delays induced by signals transmitted from different control areas,and system parameters are given by

    The main purpose of this paper is to consider the robustH∞SMLFC of multi-area power system with time delay and stochastic disturbances,and before presenting the main results,the following useful lemma is introduced in advance.

    Lemma 1[33]:For a given symmetric matrixS=,whereS11isr×rdimensional matrix,S11=The following three conditions are equivalent:

    III.SWITCHING SURFACE DESIGN

    The traditional sliding mode controller design includes two relatively independent parts,the first part is to choose the sliding mode surface for desired performance,and the second part is to design the control law to drive the system trajectory to the surface and maintain motion on it.In this paper,considering the time delay induced by signal transmission between different control areas,in order to enhance the dynamic performance and robustness during the reaching phase,an improved PI switching surface is selected as

    whereGandKare constant matrices,andGis selected to ensure matrixGBto be nonsingular.

    When the dynamic trajectory reaches the sliding mode,the switching function(3)satis fies the following condition:

    Differentiating(3)will yield

    Then,by substituting(2)into(5),one has

    If the dynamic trajectory satis fies(t)=0,the following equivalent controller can be derived when the state trajectory reaches the sliding mode surface

    Furthermore,by substituting(7)into system(2),the equivalent dynamic equation in sliding mode can be derived

    whereA0=A-BK,D0=D-B(GB)-1GD.Therefore,by using the equivalent controller(7),the LFC for two-area interconnected power system can be derived

    the relationship between interference and output isTwz(s)=C[sI-(A0+BK)-A1e-τ1s-A2e-τ2s]-1D0.Meanwhile,the controller design should meet theH∞performance‖Twz‖∞<γ,γ >0.

    Remark 1:Compared to the traditional switching surface designing approaches[29]and[30],in which only the proportional and integral part are included,the priority of the designed switching surface in this paper is that time delay between different control areas is taken into account,two integral parts with the corresponding transmission delays are introduced into the switching surface functional.Therefore,these improvements could be expected to enhance the dynamic performance under the wide area environment.

    Now,we are ready to develop the following frequency stabilization result.

    Theorem 1:For a prescribed attenuation levelγ>0,the frequency of controlled interconnected power system(9)is asymptotically stable with‖Twz‖∞<γ,forτ1>0,τ2>0,if there exist matrices 0<PT=P∈Rn×n,0<=Q1∈Rn×n,0<=Q2∈Rn×nand an arbitrary matrixSsatisfying the following LMI:

    where Φ11=AP+PAT+BS+STBT+Q1+Q2,δ=γ2.Moreover,the gain of the state feedback controller can be calculated byK=SP-1.

    Proof:Firstly,consider the stability of controlled interconnected power system(9)withw(t)=0,construct the following Lyapunov functional:

    Calculating the derivative of(11)along the trajectory(9),one can get

    where

    By using Lemma 1,it follows from the LMI condition(10)that Δ<0,which means˙V<0.Therefore,it can be concluded that the frequency of controlled multi-area power system(9)is asymptotically stable withw(t)=0.

    Furthermore,for a prescribed attenuation levelγ>0,de fine the following performance index:

    It is noted that ifJzw≤0,then the closed-loop system(9)is robustlyH∞stable satisfying the conditionH∞≤γ.Thus,the next objective is becoming to ensure thatJzw≤0.For zero initial conditionV(0)=0 and sinceV(∞)≥0,one can get

    By using Lemma 1,it follows from the condition(10)that Ω<0,as we knowJzw≤0,we can conclude that the closedloop system(9)is robustlyH∞stable.

    Furthermore,the optimal attenuation level can be obtained by solving the following constrained optimization problem:

    Then the optimal performance level can be obtained byγ=

    Remark 2:Based on the proposed SMLFC scheme,Theorem 1 could guarantee the multi-area power system with time delay and stochastic disturbances to be robustly stable with an optimal attenuation levelγ.Compared to some existing results considering LFC of power system by feedback control approaches[17]-[19],the proposed SMLFC scheme is much robust against the variations in plant parameters and shows complete rejection of external perturbations,which enables to get fast response and good performance.

    IV.CONTROL LAW DESIGN

    For the controlled multi-area power system(9),the corresponding reachability condition for each area can be described by the following theorem.

    Theorem 2:A decentralized switching control law can be designed to guarantee the reaching conditionσi(t)?i(t)<0 to be satisfied

    where

    Proof:Constructing the following Lyapunov function:

    Note that‖ΔPd1‖<h1,‖ΔPd2‖ <h2,then combining(6)and(16),one can further get

    The derivative ofV(t)can be calculated by

    Therefore,one can conclude that the reaching condition can be ensured by the designed controller(16). ¥

    Remark 3:It should be pointed out that in[29],the authors presented LFC for multi-area power system with unmatched uncertainties by SMC approach,and in[30],the authors considered LFC by neural-network-based integral sliding mode for power system with wind turbines.However,both of them ignored time delay in multi-area power system.Furthermore,by taking into account stochastic disturbances induced by the integration of renewable energies,based onH∞control theory,the optimal attenuation level describing the power system tolerant against the fluctuations of renewable power could be obtained.

    Remark 4:With more and more renewable energy resources integrated into power grid,the inherent randomness and uncertainties should be paid more attention,some robust control approaches would be utilized and explored for LFC of multiarea power system.Motivated by the idea in[30],some intelligent control approaches combined with the traditional control approaches,such as fuzzy logic control[34]could be an effective way,which are left as the future research directions.

    V.SIMULATION AND ANALYSIS

    In this section,a two-area interconnected power system is provided to illustrate the effectiveness of the proposed decentralized sliding mode control scheme.Some basic parameters of the system are provided in Table I.

    TABLE IPARAMETERS OF TWO-AREA INTERCONNECTED POWER SYSTEM

    A.The Open Loop System

    First,consider a two-area power system(2)without external control inputu,which only includes an integral partki/s(i=1,2)in each control area.Without loss of generality,time delays in both control areas are manually set asτ1=0.1,τ2=0.2.The block diagram of the open loop system is shown in Fig.1.

    Based on the MATLAB/Simulink,the frequency deviation of the two-area power system is illustrated in Fig.2,it follows from the simulation that the frequency deviation of the two-area power system is divergent with the local PI controllerK1=0.5,K2=0.5.

    B.The Closed Loop System via SMLFC

    In this part,by using the designed sliding mode load frequency controller(16)and the improved switching surface(3),the two-area interconnected power system(2)could be robustly stabilized with an optimal attenuation level.The block diagram of the SMLFC scheme is shown in Fig.3,where Δx1,Δx2are the direct feedback state vectors of each area,respectively,u1andu2are the sliding mode control terms of each area,respectively.It should be pointed out that in the designed SMC controller(16),the first item is utilized to guarantee the state of the system tend towards the equilibrium point on the sliding surface,and the second item is to ensure the system has better performance to suppress the interference.

    Fig.2.Frequency deviation curve of the open loop system.

    For the given system parameters provided in Table I,by using the MATLAB LMI control toolbox,the stability condition(10)could be verified effectively,the corresponding gain matrix can be calculated by

    and the optimal attenuation levelγ=0.1643 could be obtained after solving the constrained optimization problem(15)simultaneously.It follows from Theorem 1 that the controlled interconnected power system(2)could be robustly stabilized via the designed controller.

    In the simulation results,without loss of generality,the matrixGis selected as

    and the bound of stochastic disturbances is set ash=[0.2,0.3]T.Here,we consider the stochastic disturbances as the step load disturbances,at 10s,the stochastic disturbances in two areas are set as the set load changes ΔPd1= ΔPd2=0.1.Fig.4 shows the frequency derivation of the controlled power system via the proposed control design scheme.It can be observed from Fig.4 that the frequency deviation of the controlled interconnected power system could be stabilized in 4s,and even with the step load disturbances,it can be robustly stabilized in 2s.

    Furthermore,in order to demonstrate the robustness of the proposed control design scheme,at 10s,we further consider the control performance with different stochastic disturbances in the two areas ΔPd1=0.1,ΔPd2=0.2,the simulation results are provided in Fig.5,where it can be found that the frequency could be maintained in a tolerable limit time.The switching surface function and the control law of the controller in Area 1 and Area 2 are also presented in Figs.6-9.It can be found from these simulation results that the proposed SMLFC scheme is effective and useful.

    Fig.3.The block diagram of SMLFC scheme.

    Fig.4.Frequency deviation curve by using SMLFC scheme.

    Fig.5.Frequency deviation curve with stochastic disturbances.

    Fig.6. Switching surface of σ1.

    Fig.7.Switching surface of σ2.

    Fig.8.Sliding mode controller u1(t).

    Fig.9. Sliding mode controller u2(t).

    VI.CONCLUSIONS

    In this paper,by taking into account stochastic disturbances,a robust decentralized SMLFC design scheme was proposed for multi-area power system with time delay.In order to get a better control performance,an improved PI switching surface function was constructed,then the robust stability criterion was developed for the multi-area power system with an optimal attenuation level.Furthermore,an SMC law has been proposed to ensure the stability of the closed-loop system,and to drive the state of the controlled system into the prede fined sliding surface.Finally,simulation results on two-area interconnected power system with time delay have been provided to illustrate the effectiveness of the obtained results.

    [1]P.Kundur,Power System Stability and Control.New York,USA:McGraw-Hill Press,1994.

    [2]P.Ju,E.Handschin,and D.Karlsson,“Nonlinear dynamic load modelling:model and parameter estimation,”IEEE Trans.Power Syst.,vol.11,no.4,pp.1689-1697,Nov.1996.

    [3]M.A.Sheirah and M.M.Abd-El-Fattah,“Improved load-frequency self-tuning regulator,”Int.J.Control,vol.39,no.1,pp.143-158,Jan.1984.

    [4]M.R.Toulabi,M.Shiroei,and A.M.Ranjbar,“Robust analysis and design of power system load frequency control using the Kharitonov’s theorem,”Int.J.Electr.Power Energy Syst.,vol.55,pp.51-58,Feb.2014.

    [5]K.Y.Lim,Y.Wang,and R.Zhou,“Robust decentralised load-frequency control of multi-area power systems,”IEE Proc.-Gener.,Trans.Distrib.,vol.143,no.5,pp.377-386,Sep.1996.

    [6]L.L.Dong,Y.Zhang,and Z.Q.Gao,“A robust decentralized load frequency controller for interconnected power systems,”ISA Trans.,vol.51,no.3,pp.410-419,May 2012.

    [7]M.Zribi,M.Al-Rashed,and M.Alrifai,“Adaptive decentralized load frequency control of multi-area power systems,”Int.J.Electr.Power Energy Syst.,vol.27,no.8,pp.575-583,Oct.2005.

    [8]F.Daneshfar and H.Bevrani,“Multiobjective design of load frequency control using genetic algorithms,”Int.J.Electr.Power Energy Syst.,vol.42,no.1,pp.257-263,Nov.2012.

    [9]M.R.Sathya and M.M.T.Ansari,“Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system,”Int.J.Electr.Power Energy Syst.,vol.64,pp.365-374,Jan.2015.

    [10]K.R.Sudha and R.V.Santhi,“Robust decentralized load frequency control of interconnected power system with generation rate constraint using Type-2 fuzzy approach,”Int.J.Electr.Power Energy Syst.,vol.33,no.3,pp.699-707,Mar.2011.

    [11]L.C.Saikia,S.Mishra,N.Sinha,and J.Nanda,“Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller,”Int.J.Electr.Power Energy Syst.,vol.33,no.4,pp.1101-1108,May 2011.

    [12]H.Bevrani,Y.Mitani,and K.Tsuji,“Robust decentralised loadfrequency control using an iterative linear matrix inequalities algorithm,”IEE Proc.-Gener.,Trans.Distrib.,vol.151,no.3,pp.347-354,May 2004.

    [13]H.X.Wu,K.S.Tsakalis,and G.T.Heydt,“Evaluation of time delay effects to wide-area power system stabilizer design,”IEEE Trans.Power Syst.,vol.19,no.4,pp.1935-1941,Nov.2004.

    [14]X.M.Zhao,Y.H.Sun,C.Yuan,Z.N.Wei,and G.Q.Sun,“Robust load frequency control of multi-area interconnected power system with time delay,”inProc.34th Chinese Control Conf.,Hangzhou,China,2015,pp.8969-8974.

    [15]H.Bevrani and T.Hiyama,“Robust decentralised PI based LFC design for time delay power systems,”Energy Convers.Manage.,vol.49,no.2,pp.193-204,Feb.2008.

    [16]X.F.Yu and K.Tomsovic,“Application of linear matrix inequalities for load frequency control with communication delays,”IEEE Trans.Power Syst.,vol.19,no.3,pp.1508-1515,Aug.2004.

    [17]L.Jiang,W.Yao,Q.H.Wu,J.Y.Wen,and S.J.Cheng,“Delaydependent stability for load frequency control with constant and timevarying delays,”IEEE Trans.Power Syst.,vol.27,no.2,pp.932-941,May 2012.

    [18]R.Dey,S.Ghosh,G.Ray,and A.Rakshit,“H∞load frequency control

    of interconnected power systems with communication delays,”Int.J.Electr.Power Energy Syst.,vol.42,no.1,pp.672-684,Nov.2012.

    [19]C.K.Zhang,L.Jiang,Q.H.Wu,Y.He,and M.Wu,“Delay-dependent robust load frequency control for time delay power systems,”IEEE Trans.Power Syst.,vol.28,no.3,pp.2192-2201,Aug.2013.

    [20]F.Wu,P.Ju,X.P.Zhang,C.Qin,G.J.Peng,H.Huang,and J.Fang,“Modeling,control strategy,and power conditioning for direct-drive wave energy conversion to operate with power grid,”Proc.IEEE,vol.101,no.4,pp.925-941,Apr.2013.

    [21]Y.H.Sun,X.M.Zhao,N.Li,Z.N.Wei,and G.Q.Sun,“Robust stochastic stability of power system with time-varying delay under Gaussian random perturbations,”Neurocomputing,vol.162,pp.1-8,Aug.2015.

    [22]V.Utkin,“Variable structure systems with sliding modes,”IEEE Trans.Automat.Control,vol.22,no.2,pp.212-222,Apr.2017.

    [23]Y.Q.Xia and Y.M.Jia,“Robust sliding-mode control for uncertain time-delay systems:an LMI approach,”IEEE Trans.Automat.Control,vol.48,no.6,pp.1086-1091,Jun.2003.

    [24]L.G.Wu and D.W.C.Ho,“Sliding mode control of singular stochastic hybrid systems,”Automatica,vol.46,no.4,pp.779-783,Apr.2010.

    [25]S.H.Ding and W.X.Zheng,“Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation,”Int.J.Robust Nonlin.Control,vol.26,no.9,pp.1857-1872,Jun.2016.

    [26]H.Y.Li,P.Shi,D.Y.Yao,and L.G.Wu,“Observer-based adaptive sliding mode control for nonlinear Markovian jump systems,”Automatica,vol.64,pp.133-142,Feb.2016.

    [27]H.Y.Li,H.J.Gao,P.Shi,and X.D.Zhao,“Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach,”Automatica,vol.50,no.7,pp.1825-1834,Jul.2014.

    [28]S.H.Ding,J.D.Wang,and W.X.Zheng,“Second-order sliding mode

    control for nonlinear uncertain systems bounded by positive functions,”IEEE Trans.Ind.Electron.,vol.62,no.9,pp.5899-5909,Sep.2015.

    [29]Y.Mi,Y.Fu,C.S.Wang,and P.Wang,“Decentralized sliding mode load frequency control for multi-area power systems,”IEEE Trans.Power Syst.,vol.28,no.4,pp.4301-4309,Nov.2013.

    [30]D.W.Qian,S.W.Tong,H.Liu,and X.J.Liu,“Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines,”Neurocomputing,vol.173,pp.875-885,Jan.2016.

    [31]K.Vrdoljak,N.Peric′,and I.Petrovic′,“Sliding mode based loadfrequency control in power systems,”Electr.Power Syst.Res.,vol.80,no.5,pp.514-527,May 2010.

    [32]Y.Mi,Y.Fu,D.D.Li,C.S.Wang,P.C.Loh,and P.Wang,“The sliding mode load frequency control for hybrid power system based on disturbance observer,”Int.J.Electr.Power Energy Syst.,vol.74,pp.446-452,Jan.2016.

    [33]S.Boyd,L.El Ghaoui,E.Feron,and V.Balakrishnan,Linear Matrix Inequalities in System and Control Theory.Philadelphia,PA,USA:SIAM,1994.

    [34]C.D.Li,J.Q.Yi,and G.Q.Zhang,“On the monotonicity of interval type-2 fuzzy logic systems,”IEEE Trans.Fuzzy Syst.,vol.22,no.5,pp.1197-1212,Oct.2014.

    国产精品一区二区三区四区免费观看| 色噜噜av男人的天堂激情| 成人亚洲精品av一区二区| 99国产精品一区二区蜜桃av| 精品久久久久久久久av| 99热只有精品国产| 精品一区二区免费观看| 久久99精品国语久久久| 国产午夜福利久久久久久| 在线国产一区二区在线| 国产 一区 欧美 日韩| 精品久久久久久成人av| 久久久久性生活片| 在线观看午夜福利视频| 狠狠狠狠99中文字幕| 听说在线观看完整版免费高清| 亚洲国产欧洲综合997久久,| 久久久久久久久久黄片| 久久99热这里只有精品18| 九九久久精品国产亚洲av麻豆| 久久国产乱子免费精品| 99视频精品全部免费 在线| av天堂中文字幕网| 网址你懂的国产日韩在线| 亚洲国产精品合色在线| av在线亚洲专区| www.av在线官网国产| 午夜免费男女啪啪视频观看| 小蜜桃在线观看免费完整版高清| 在线国产一区二区在线| 中国美白少妇内射xxxbb| 18+在线观看网站| 免费观看精品视频网站| 国产激情偷乱视频一区二区| 成人综合一区亚洲| 亚洲三级黄色毛片| 免费观看精品视频网站| 欧美高清成人免费视频www| 亚洲,欧美,日韩| 欧美激情国产日韩精品一区| 天堂av国产一区二区熟女人妻| 麻豆一二三区av精品| 成人欧美大片| 乱码一卡2卡4卡精品| 亚洲欧美精品综合久久99| 成人亚洲精品av一区二区| 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 亚洲国产精品国产精品| 国产91av在线免费观看| 夜夜夜夜夜久久久久| 六月丁香七月| 激情 狠狠 欧美| 哪里可以看免费的av片| 久久精品综合一区二区三区| 中文字幕熟女人妻在线| 青青草视频在线视频观看| 青春草亚洲视频在线观看| 青春草亚洲视频在线观看| 中文字幕熟女人妻在线| 搡老妇女老女人老熟妇| 一级二级三级毛片免费看| 国产精品一及| 少妇的逼好多水| 哪里可以看免费的av片| 嫩草影院精品99| 校园人妻丝袜中文字幕| 岛国在线免费视频观看| 美女大奶头视频| 久久欧美精品欧美久久欧美| 天堂中文最新版在线下载 | 国产又黄又爽又无遮挡在线| 国产精华一区二区三区| 午夜福利在线观看吧| 一本久久中文字幕| 午夜免费激情av| 婷婷六月久久综合丁香| 亚洲欧洲国产日韩| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠久久av| 91aial.com中文字幕在线观看| 日韩人妻高清精品专区| 午夜福利在线在线| 欧美三级亚洲精品| 日本成人三级电影网站| 大型黄色视频在线免费观看| 日韩欧美 国产精品| 国产午夜福利久久久久久| 日本黄大片高清| 国产成人精品久久久久久| 国产精品久久久久久久电影| 三级男女做爰猛烈吃奶摸视频| 欧美激情久久久久久爽电影| 伊人久久精品亚洲午夜| 国产精品不卡视频一区二区| 天堂av国产一区二区熟女人妻| 国产色爽女视频免费观看| 18+在线观看网站| 国产精品人妻久久久久久| 赤兔流量卡办理| 日本熟妇午夜| 99久久九九国产精品国产免费| 熟妇人妻久久中文字幕3abv| 成人综合一区亚洲| 又爽又黄无遮挡网站| 国产麻豆成人av免费视频| 插阴视频在线观看视频| 一区二区三区免费毛片| 欧美成人一区二区免费高清观看| 一级毛片我不卡| 可以在线观看的亚洲视频| 最近的中文字幕免费完整| 亚洲av熟女| 欧美xxxx黑人xx丫x性爽| 国产精品久久视频播放| 两个人视频免费观看高清| 嫩草影院入口| 一级毛片我不卡| 一本一本综合久久| 久久久久网色| 久久99热6这里只有精品| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影小说 | 草草在线视频免费看| 亚洲精品自拍成人| 国产极品精品免费视频能看的| 午夜福利在线在线| 自拍偷自拍亚洲精品老妇| 神马国产精品三级电影在线观看| 国产精品无大码| 国产精品无大码| 男女做爰动态图高潮gif福利片| 亚洲精品粉嫩美女一区| 听说在线观看完整版免费高清| 精品免费久久久久久久清纯| 久久午夜福利片| 偷拍熟女少妇极品色| 在线观看美女被高潮喷水网站| 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 综合色av麻豆| 综合色丁香网| 亚洲欧美清纯卡通| 久久国内精品自在自线图片| 一边摸一边抽搐一进一小说| 给我免费播放毛片高清在线观看| 啦啦啦啦在线视频资源| 99热这里只有精品一区| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 国产成人aa在线观看| 美女cb高潮喷水在线观看| 男插女下体视频免费在线播放| 99久久精品国产国产毛片| 日本一二三区视频观看| av女优亚洲男人天堂| 久久精品久久久久久久性| 极品教师在线视频| 在线播放国产精品三级| 国产成人午夜福利电影在线观看| 久久久久免费精品人妻一区二区| 亚洲最大成人中文| 欧美区成人在线视频| av天堂在线播放| 日韩欧美一区二区三区在线观看| 亚洲av男天堂| 中文精品一卡2卡3卡4更新| 亚洲av成人av| 久久久久久大精品| a级毛片免费高清观看在线播放| 亚洲av第一区精品v没综合| 久久6这里有精品| 亚洲aⅴ乱码一区二区在线播放| 在现免费观看毛片| av女优亚洲男人天堂| 老司机福利观看| 可以在线观看毛片的网站| 国产亚洲精品av在线| 亚洲av中文字字幕乱码综合| 欧美激情久久久久久爽电影| 伦理电影大哥的女人| 婷婷亚洲欧美| 日本-黄色视频高清免费观看| 亚洲自拍偷在线| 高清日韩中文字幕在线| 欧美精品国产亚洲| 日本爱情动作片www.在线观看| 性插视频无遮挡在线免费观看| 69av精品久久久久久| 亚洲五月天丁香| 欧美3d第一页| 级片在线观看| 精品国内亚洲2022精品成人| 欧美日韩国产亚洲二区| 老熟妇乱子伦视频在线观看| 国产女主播在线喷水免费视频网站 | 一级毛片我不卡| 一级毛片久久久久久久久女| 男人和女人高潮做爰伦理| 久久精品久久久久久久性| 久久久a久久爽久久v久久| 亚洲,欧美,日韩| 日本黄色视频三级网站网址| 中文欧美无线码| 深夜精品福利| 偷拍熟女少妇极品色| 国产片特级美女逼逼视频| 99热6这里只有精品| 麻豆精品久久久久久蜜桃| 国产视频内射| 成人一区二区视频在线观看| 国产成人一区二区在线| 在线观看免费视频日本深夜| 97人妻精品一区二区三区麻豆| 国产私拍福利视频在线观看| 精品久久国产蜜桃| 插阴视频在线观看视频| 日韩一区二区三区影片| 亚洲在线自拍视频| 中文字幕av在线有码专区| 寂寞人妻少妇视频99o| 此物有八面人人有两片| 26uuu在线亚洲综合色| 长腿黑丝高跟| 亚洲精品久久国产高清桃花| 韩国av在线不卡| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 寂寞人妻少妇视频99o| 国产精品免费一区二区三区在线| 亚洲欧洲日产国产| 日日干狠狠操夜夜爽| 最近2019中文字幕mv第一页| 中出人妻视频一区二区| 日韩欧美国产在线观看| 91精品一卡2卡3卡4卡| 99久久久亚洲精品蜜臀av| 哪个播放器可以免费观看大片| 亚洲国产欧美在线一区| 一级毛片久久久久久久久女| 久久久久网色| 久久久久久久亚洲中文字幕| 91精品一卡2卡3卡4卡| 国产免费男女视频| 亚洲自拍偷在线| 久久久精品94久久精品| 99久久精品国产国产毛片| 极品教师在线视频| 免费观看精品视频网站| 12—13女人毛片做爰片一| 精品国产三级普通话版| av在线天堂中文字幕| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色| 国产在线男女| 少妇高潮的动态图| av在线观看视频网站免费| a级毛片免费高清观看在线播放| 亚洲精品国产成人久久av| 欧美xxxx黑人xx丫x性爽| 十八禁国产超污无遮挡网站| 午夜视频国产福利| 日本-黄色视频高清免费观看| 欧美bdsm另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久国产成人免费| 中文字幕精品亚洲无线码一区| 欧洲精品卡2卡3卡4卡5卡区| 国产探花在线观看一区二区| 欧美日韩国产亚洲二区| 国内精品美女久久久久久| 日韩制服骚丝袜av| 免费观看人在逋| 国产成人aa在线观看| 日韩欧美在线乱码| 午夜福利在线观看免费完整高清在 | 久久久久久伊人网av| 日本免费a在线| 毛片女人毛片| 亚洲天堂国产精品一区在线| 特级一级黄色大片| 欧美一区二区精品小视频在线| 在线观看一区二区三区| av卡一久久| 美女高潮的动态| 赤兔流量卡办理| 2022亚洲国产成人精品| 亚洲av免费在线观看| 少妇猛男粗大的猛烈进出视频 | 一个人免费在线观看电影| 毛片女人毛片| 国产精品久久电影中文字幕| 国产高清不卡午夜福利| 亚洲欧美精品专区久久| 五月玫瑰六月丁香| 日日摸夜夜添夜夜爱| 成人鲁丝片一二三区免费| 久久这里有精品视频免费| 精品熟女少妇av免费看| 国产成年人精品一区二区| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| www.av在线官网国产| 日韩中字成人| 国产成人影院久久av| 精品99又大又爽又粗少妇毛片| 一个人看视频在线观看www免费| 在线观看一区二区三区| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 欧美一级a爱片免费观看看| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 天天躁日日操中文字幕| 成人亚洲精品av一区二区| 国产精品1区2区在线观看.| 在线观看一区二区三区| 国模一区二区三区四区视频| 久久久色成人| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 在线a可以看的网站| 美女高潮的动态| 亚洲精品国产av成人精品| 久久精品国产99精品国产亚洲性色| 日韩在线高清观看一区二区三区| 99久久久亚洲精品蜜臀av| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 黄色视频,在线免费观看| 久久九九热精品免费| 联通29元200g的流量卡| 免费看a级黄色片| 中文字幕熟女人妻在线| 麻豆av噜噜一区二区三区| 欧美最黄视频在线播放免费| 国产白丝娇喘喷水9色精品| 国产精品av视频在线免费观看| 国产精品嫩草影院av在线观看| 可以在线观看毛片的网站| 村上凉子中文字幕在线| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看 | 国产av一区在线观看免费| 美女脱内裤让男人舔精品视频 | 婷婷亚洲欧美| 亚洲精品自拍成人| 99久国产av精品| 夜夜夜夜夜久久久久| 免费观看精品视频网站| 日韩精品青青久久久久久| 久久久久久久午夜电影| 岛国在线免费视频观看| 精品99又大又爽又粗少妇毛片| 国产免费男女视频| 国产av在哪里看| 日韩成人av中文字幕在线观看| 青春草国产在线视频 | av福利片在线观看| 91av网一区二区| 最近中文字幕高清免费大全6| 最近2019中文字幕mv第一页| 特级一级黄色大片| 自拍偷自拍亚洲精品老妇| 日韩欧美三级三区| 最近的中文字幕免费完整| 午夜视频国产福利| 在线观看av片永久免费下载| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 色综合色国产| 高清日韩中文字幕在线| av女优亚洲男人天堂| 国产激情偷乱视频一区二区| 此物有八面人人有两片| 夜夜爽天天搞| 国产一级毛片在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久婷婷人人爽人人干人人爱| 午夜免费激情av| 中国美白少妇内射xxxbb| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 狠狠狠狠99中文字幕| 成年av动漫网址| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 能在线免费看毛片的网站| 成年av动漫网址| ponron亚洲| 少妇的逼好多水| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 久久久久久久久大av| 亚洲成人久久爱视频| 国产伦理片在线播放av一区 | 久久久久久伊人网av| 春色校园在线视频观看| 国产综合懂色| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 一区二区三区高清视频在线| 亚洲最大成人av| 午夜精品国产一区二区电影 | 色综合色国产| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 97在线视频观看| 久久精品久久久久久久性| 岛国毛片在线播放| 九色成人免费人妻av| 桃色一区二区三区在线观看| 成人亚洲欧美一区二区av| 天堂√8在线中文| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 国产精品一区www在线观看| 九草在线视频观看| 亚洲美女视频黄频| 麻豆乱淫一区二区| 久久久久久久久中文| 久久精品人妻少妇| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 美女大奶头视频| 日韩高清综合在线| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 亚洲丝袜综合中文字幕| 免费看a级黄色片| 嫩草影院入口| 欧美激情国产日韩精品一区| 26uuu在线亚洲综合色| 亚洲最大成人手机在线| www.av在线官网国产| 久久人人爽人人爽人人片va| 一卡2卡三卡四卡精品乱码亚洲| 三级男女做爰猛烈吃奶摸视频| 天堂√8在线中文| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 成年女人永久免费观看视频| 亚洲国产精品成人久久小说 | 熟妇人妻久久中文字幕3abv| 色吧在线观看| 性欧美人与动物交配| 色综合色国产| 免费电影在线观看免费观看| 日本黄色片子视频| 亚洲人成网站在线播放欧美日韩| 观看美女的网站| 久久久久久久久久久丰满| 亚洲人成网站在线播放欧美日韩| 欧美日韩乱码在线| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 毛片一级片免费看久久久久| 久久久精品大字幕| 大型黄色视频在线免费观看| 一级毛片我不卡| 亚洲无线观看免费| 国产一区亚洲一区在线观看| 亚洲一区高清亚洲精品| 1000部很黄的大片| 最近中文字幕高清免费大全6| 三级毛片av免费| 国产精品99久久久久久久久| 精品久久国产蜜桃| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 丝袜喷水一区| 波多野结衣高清无吗| 丰满乱子伦码专区| 一本精品99久久精品77| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 亚洲人成网站高清观看| 看非洲黑人一级黄片| 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片| 欧美又色又爽又黄视频| 男人和女人高潮做爰伦理| 尾随美女入室| 成人国产麻豆网| 午夜爱爱视频在线播放| 亚洲人成网站在线播放欧美日韩| 狂野欧美激情性xxxx在线观看| 亚洲人成网站在线播| 男的添女的下面高潮视频| 精品久久久久久久末码| 成人欧美大片| 日本与韩国留学比较| 国产成人影院久久av| 国产精品不卡视频一区二区| 日韩欧美精品v在线| 久久精品夜色国产| 亚洲av二区三区四区| 久久久久久大精品| 99久久成人亚洲精品观看| 欧美日韩精品成人综合77777| 99久国产av精品国产电影| 少妇熟女aⅴ在线视频| 亚州av有码| 又爽又黄无遮挡网站| 插逼视频在线观看| 国产黄a三级三级三级人| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 亚洲欧美清纯卡通| 在线a可以看的网站| 欧美一区二区亚洲| 午夜精品一区二区三区免费看| 国产精品无大码| 午夜老司机福利剧场| 日韩成人伦理影院| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 伦精品一区二区三区| 嫩草影院精品99| 国产成人精品一,二区 | 国产精华一区二区三区| 精品久久久久久久久久久久久| 2021天堂中文幕一二区在线观| 午夜福利视频1000在线观看| 美女脱内裤让男人舔精品视频 | 99久国产av精品国产电影| 小说图片视频综合网站| 我要看日韩黄色一级片| 国产成人精品一,二区 | 免费搜索国产男女视频| 久久这里有精品视频免费| 哪里可以看免费的av片| 久久久久久久久久久丰满| 波多野结衣高清无吗| 高清毛片免费观看视频网站| 亚洲无线观看免费| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 亚洲精品日韩在线中文字幕 | 亚洲国产日韩欧美精品在线观看| 色综合亚洲欧美另类图片| 久久草成人影院| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 国产成人午夜福利电影在线观看| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 日本色播在线视频| 国产单亲对白刺激| 亚洲成人久久性| 夜夜爽天天搞| 91狼人影院| 精品久久久久久久久av| 久久这里有精品视频免费| 国产精品,欧美在线| 国产精品美女特级片免费视频播放器| 亚洲电影在线观看av| 亚洲精品影视一区二区三区av| 欧美+日韩+精品| 亚洲av第一区精品v没综合| 亚洲三级黄色毛片| 久久婷婷人人爽人人干人人爱| 国产乱人偷精品视频| 26uuu在线亚洲综合色| 蜜桃久久精品国产亚洲av| 精品人妻偷拍中文字幕| 国产老妇伦熟女老妇高清| 亚洲一区二区三区色噜噜| 六月丁香七月| 波多野结衣巨乳人妻| 一级二级三级毛片免费看| 看片在线看免费视频| 中国国产av一级| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区久久| 久久久精品大字幕| 91麻豆精品激情在线观看国产| 国产成人a区在线观看| 成人三级黄色视频| 免费观看的影片在线观看| 亚洲国产高清在线一区二区三| 六月丁香七月| 欧美日韩一区二区视频在线观看视频在线 | 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 91aial.com中文字幕在线观看| 亚洲成人久久爱视频| 少妇高潮的动态图| videossex国产| 成年版毛片免费区| 嫩草影院入口| 日本熟妇午夜| 亚洲av一区综合| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级av手机在线观看| 欧美高清成人免费视频www| 亚洲av成人av| 乱码一卡2卡4卡精品| 亚洲18禁久久av| 中文在线观看免费www的网站|