• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship Between Integer Order Systems and Fractional Order Systems and Its Two Applications

    2018-05-02 07:11:37XuefengZhang
    IEEE/CAA Journal of Automatica Sinica 2018年2期

    Xuefeng Zhang

    I.INTRODUCTION

    THE concept of fractional differentiation appeared first in a famous correspondence between L.Hopital and Leibniz,in 1695.Fractional calculus has had a 300 years old history,the development of fractional calculus theory is a matter of almost exclusive interest for few mathematicians and theoretical physicists.In recent years,researchers have noticed that the description of some phenomena is more accurate when the fractional derivative is introduced.Many practical control system models can be described by fractional differential equations.It is worth mentioning that many physical phenomena having memory and genetic characteristics can be described by modeling as fractional order systems.Fractional order systems have attracted much attention.In what concerns automatic control,Hartley and Lorenzo[1]studied the fractional order algorithms for the control of dynamic systems.Podlubny[2]proposed a generalization of the PID controller,namely the PIλDμcontroller,involving an integrator of orderλand a differentiator of orderμ.Liet al.[3]propose the definition of Mittag-Leffler stability and introduce the fractional Lyapunov direct method.Fractional comparison principle is introduced and the application of Riemann-Liouville fractional order systems is extended by using Caputo fractional order systems.Li and Zhang[4]give a survey on the stability of fractional differential equations based on analytical methods.

    Fractional-order differential operators present unique and intriguing peculiarities,not supported by their integer-order counterpart,which raise exciting challenges and opportunities related to the development of control and estimation methodologies involving fractional order dynamics.In recent years,most of papers are devoted to the solvability of the linear fractional equation in terms of a special function and to problems of analyticity in the complex domain.Fractional system and its control has become one of the most popular topics in control theory[5]-[8].The number of applications where fractional calculus has been used rapidly grows.These mathematical phenomena allow to describe a real object more accurately than the classical“integer-order”methods[9]-[12].Reference[10]gives the non existence of periodic solutions in fractional order systems with Mellin transform.But for singular fractional order systems,the Mellin transform method is invalid because of singularity of systems.

    In this paper,we will show that rational fractional order linear time invariant autonomous system is equivalent to an integer order linear time invariant non-autonomous system but cannot be equivalent to any integer order linear time invariant autonomous system with any system parameters.The nonexistence of periodic solutions of fractional order dynamic systems are proved by means of contradiction method.Stability of a fractional order linear time invariant autonomous system is equivalent to the stability of another corresponding integer order linear time invariant autonomous system.The examples and state figures are given to illustrate the effects of the conclusions derived.The conclusions provided in the paper can be easily extended to singular fractional order linear time invariant systems.

    II.PRELIMINARIES

    Let us denote by Z+the set of positive integer numbers,C the set of complex numbers,Rn×nthe set ofn×ndimension real numbers.We denote the real part of complex numberαby Re(α).

    Caputo derivative has been often used in fractional order systems since it has the practical initial states like that of integer order systems.

    Definition 1:The Caputo fractional order derivative with orderαof functionx(t)is de fined as

    wheren-1<α<n∈Z+,Γ is well-known Euler Gamma function.

    Definition 2:The Riemann-Liouville derivative of fractional orderαof functionx(t)is de fined as

    wheren-1<α<n∈Z+.

    Definition 3:The Grunwald-Letnikov derivative of fractional orderαof functionx(t)is defined as

    wheren-1<α<n∈Z+.

    Definition 4:The Mittag-Leffler function is defined as

    where Re(α)>0,t∈C.The two-parameter Mittag-Leffler function is de fined as

    where Re(α)>0,β,t∈C.

    Property 1:The Laplace transform of Caputo derivative of functionx(t)is

    whereX(s)=L[x](s),n-1<α<n∈Z+.

    Property 2:If letα∈(0,∞)N.Then,we have

    wheren-1<α<n∈Z+.

    Lemma 1:The Laplace transform oftα-1

    +/Γ(α)is:

    and

    Lemma 2:The Laplace transform ofis:

    where erf(t)is the error function for each element oft,

    Lemma3:The Laplace transform ofis:

    where daw(t)is Dawson function for each element oft,

    Lemma 4:The Laplace transform ofAcos(ωt)is:

    Lemma 5:The Laplace transform oftβ-1Eα,β(-ωtα)is:

    Lemma 6:The Laplace transform ofnorder derivativefn(t)is:

    III.MAIN RESULTS

    A.Equivalence Between FOS and IOS

    Integer order linear time invariant(LTI)systems have been developed quite maturely.Fractional order LTI system is a subsystem of dynamic control system and is less discussed due to its difficulty.In order to obtain the better control cost index,the control components and devices with fractional order properties are needed to be introduced.Algorithms in measurement technology sometimes process the fractional order characteristics.Some control plants are more difficult to be modeled than integer order systems.By the above reason,fractional order dynamic control systems are essential to be introduced.From Fig.1,we can see that state figures of˙x(t)=tx(t),and those ofDαx(t)=x(t),α=0.2,0.4,...,1,are similar to each other,but they are not identically coincided with each other.An obvious question is whether there exists an integer order LTI system(1)equivalent to a fractional order LTI system(2)with any appropriate parameters or be equivalent to a fractional order linear time varying(LTV)system(3)with any appropriate parameters or not.It is an important problem for the reason that if the answer is “yes”so the fractional order systems can be regarded as a part of integer order systems and if the answer is“no”so the fractional order systems cannot be ignored so that the research of fractional order systems(FOS)is magnificently innovative.From the theorems in this section,it is found that the answer is negative.It can hold only if the state is zero solution.Actually,(1)is equivalent to(4)in some cases.In the following subsection,we can have that ifα=1/2,(4)reduces to(5).

    Fig.1.Plot of states of˙x(t)=tx(t)and Dαx(t)=x(t).

    From the discussion on relationship between FOS and integer order systems(IOS)in the above subsection,it is easy to introduce its two applications i.e.,non existence of periodic solutions for FOS and stability between FOS and IOS.

    B.Non Existence of Periodic Solutions for FOS

    Theorem 1:Whileα=1/2,(1)is equivalent to(5).

    Proof:Using Laplace transform for(1),taking into account the Caputos definition for the fractional-order derivatives in(2),and applying Property 1 in the case that 0<α<1,it yields that

    Pre-and post-multiplying above equation bys1-α,it follows that

    By Lemma 1 and taking inverse Laplace transform in above equation,we have(4).

    Whenα= 1/2,we have(5).If we denoteB=then(5)changes as(6)

    Whenα=p/q,p,q∈Z+,(1)can be proved to be equivalent to(7).

    whereδis the unit pulse function.

    Theorem 2:Whileα=p/q,System(1)is equivalent to(7).

    Proof:Using Laplace transform in(1),taking into account the Caputos definition for the fractional-order derivatives in(2),and applying Property 1 in the case that 0<α<1,we have that

    Pre-and post-multiplying above equation bysp/q,it follows that

    Keeping on pre-and post-multiplying above equation bysp/qtillqtimes,it follows that

    By Lemma 1 and Property 1 and taking inverse Laplace transform in above equation,we have(7).

    Theorem 3:Linear time invariant fractional system(1)with order 0<α<1,α=p/q,p,q∈Z+has no periodic solution.

    Proof:By contradiction,suppose linear time invariant fractional system(1)has a periodic solutionx(t).ForT-periodic functionx(t+T)=x(t),from

    it is easy to see thatx(k)(t+T)=x(k)(t).From Theorem 2,we know that(1)is equivalent to(7).If we denote

    thenf(t)=g(t).However,f(t)is periodic function butg(t)is a non-periodic function.So,there does not exist any periodic solution for(1). ¥

    Remark 1:From Theorem 2,we know that there does not exist any integer order LTI system(2)be equivalent to a fractional order LTI system(7)with any appropriate parameters.It means the properties of fractional order LTI systems may be different from those of integer order LTI systems.It can attract researchers to explore the distinct properties of fractional order LTI systems.

    Remark 2:Theorem 3 gives a concise and effective proof that there does not exist periodic solutions for fractional order LTI(7).

    Remark 3:With the equivalence between the integer order LTI(7)and the fractional order LTI(1),we succeed in finding a new research approach of discussing the difficult fractional order LTI(1).However,relative to(1),it is easy and there exists extensive results to discuss the integer order LTI(7).For example,we can further discuss the stability and robust stability of fractional order LTI system(1)in the future.

    Remark4:From Theorem 3,we can see that only ifαis an integer,it followsg(t)=0.This means only ifαis an integer,it is possible for(1)to satisfy periodic solutions.

    C.Stabilities Between FOS and IOS

    Lemma 7[12]:System(1)with 0<α<1 is asymptotically stable if and only if there exist two matricesX,Y∈Rn×n,such that

    wherea=sin(απ/2),b=cos(απ/2).

    Lemma 8[12]:System(1)with 1<α<2 is asymptotically stable if and only if there exist two matricesX,Y∈Rn×n,such that

    anda,bare the same as those in Lemma 7.

    Lemma 9[12]:A complex matrixX∈Cn×nsatis fiesX<0 if and only if

    Consider the following specific complex integer order linear time invariant system:

    where system matrixA∈Rn×n,jis the imaginary unit.

    Using Lyapunov theory of integer order systems and Lemmas 7 and 8,it is easy to obtain the following equivalence stability criterion.

    Theorem 4:Fractional order system(1)with 1<α<2 is asymptotically stable if and only if integer order system(9)is asymptotically stable.

    Proof:For the specific complex integer order LTI system(9),we choose the quadratic Lyapunov candidate function as

    whereX+jY>0.Then,differentiatingV(x(t))with respect to timetalong to the solution of(9),we obtain

    Using Lyapunov theory of complex integer order systems and considering(8)in Lemma 9,this completes the proof.

    IV.NUMERICAL EXAMPLES

    Example1:Consider integer order system(2)with parameters as follows:

    from Fig.2,we can see that the solutions are periodic.But if we consider(1)with the same above parameters andα=1/2,then by Laplace transform for(1)we have

    Fig.2. State curves of IOS in Example 1.

    It is easy to obtain the solutions of the above equations as follows:

    Consider Lemmas 1 and 3,and take the inverse Laplace transform forX1(s)andX2(s),it follows that:

    With Lemma 5,it also follows that:

    It is easy to see from Fig.3 that the state curves of fractional order system(1)with parameterα=1/2 do not possess periodic dynamic orbits.

    Fig.3.State curves of FOS in Example 1.

    Example2:By Theorem 2,forα=1/3,we have that(1)is equivalent to

    From Fig.4,we can see the state curves of fractional order system(1)with parameterα=1/3 are completely identical to the corresponding state curves of integer order(7).

    Fig.4. State curves of FOS in Example 2.

    V.CONCLUSIONS

    Many systems exhibit the fractional phenomena,such as motions in complex media or environments,random walk of bacteria in fractal substance,etc.These models can be obtained by solving modified fractional order systems.In this paper,we discuss the relationship between rational fractional order systems and integer order systems and conclude that the two kind of systems cannot be substituted for each other.The criteria of nonexistence of periodic solution of fractional order systems are addressed.The proof approach is based on the properties of Laplace transform of fractional order systems.Stability of a fractional order linear time invariant autonomous system is equivalent to the stability of another corresponding integer order linear time invariant autonomous system.Some numerical examples are given to verify the feasibility of results presented.The methods provided in the paper can be extended to singular fractional order linear time invariant systems in the future.

    [1]T.T.Hartley and C.F.Lorenzo,“Dynamics and control of initialized fractional-order systems,”Nonlinear Dyn.,vol.29,no.1-4,pp.201-233,Jul.2002.

    [2]I.Podlubny, “Fractional-order systems and PIλDμ-controllers,”IEEE Trans.Auto.Control,vol.44,no.1,pp.208-214,Jan.1999.

    [3]Y.Li,Y.Q.Chen,and I.Podlubny,“Mittag-Leffler stability of fractional order nonlinear dynamic systems,”Automatica,vol.45,no.8,pp.1965-1969,Aug.2009.

    [4]C.P.Li and F.R.Zhang,“A survey on the stability of fractional differential equations,”Eur.Phys.J.Special Topics,vol.193,no.1,pp.27-47,Mar.2011.

    [5]Z.Liao,C.Peng,W.Li,and Y.Wang,“Robust stability analysis for a class of fractional order systems with uncertain parameters,”J.Franklin Inst.,vol.348,no.6,pp.1101-1113,Aug.2011.

    [6]C.P.Li and W.H.Deng, “Remarks on fractional derivatives,”Appl.Math.Comput.,vol.187,no.2,pp.777-784,Apr.2007.

    [7]H.J.Haubold,A.M.Mathai,and R.K.Saxena,“Mittag-Leffler functions and their applications,”J.Appl.Math.,vol.2011,Article ID 298628,Feb.2011.

    [8]A.Erd′elyi,Tables of Integral Transforms.New York:McGraw-Hill,1954.

    [9]J.Sabatier,M.Moze,and C.Farges,“LMI stability conditions for fractional order systems,”Comput.Math.Appl.,vol.59,no.5,pp.1594-1609,Mar.2010.

    [10]E.Kaslik and S.Sivasundaram,“Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions,”Nonlinear Anal.:Real World Appl.,vol.12,no.3,pp.1489-1497,Jun.2012.

    [11]R.L.Bagley and R.A.Calico,“Fractional order state equations for the control of viscoelastically damped structures,”J.Guidance Control Dyn.,vol.14,no.2,pp.304-311,Mar.1991.

    [12]X.F.Zhang and Y.Q.Chen,“D-stability based LMI criteria of stability and stabilization for fractional order systems,”inProc.ASME 2015 Int.Design Engineering Technical Conf.&Computers and Information in Engineering Conf.,Boston,USA,2015.

    18禁国产床啪视频网站| 亚洲男人天堂网一区| 人人澡人人妻人| 久久久久国产一级毛片高清牌| 别揉我奶头~嗯~啊~动态视频| 久久精品成人免费网站| 欧美zozozo另类| a级毛片a级免费在线| 欧美激情 高清一区二区三区| 亚洲av成人不卡在线观看播放网| 黑人巨大精品欧美一区二区mp4| 少妇熟女aⅴ在线视频| 一级毛片高清免费大全| 黄片播放在线免费| 最近最新中文字幕大全电影3 | aaaaa片日本免费| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 国产高清有码在线观看视频 | 欧美亚洲日本最大视频资源| 国产成人精品久久二区二区91| 国产伦一二天堂av在线观看| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 韩国av一区二区三区四区| 国产精品av久久久久免费| 国产精品久久久av美女十八| 99久久99久久久精品蜜桃| 在线看三级毛片| 免费高清视频大片| 日韩精品中文字幕看吧| 嫩草影视91久久| 久久这里只有精品19| 一级毛片精品| 99久久国产精品久久久| 97人妻精品一区二区三区麻豆 | 色尼玛亚洲综合影院| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| 满18在线观看网站| 美女午夜性视频免费| 亚洲 国产 在线| 午夜免费成人在线视频| 一本大道久久a久久精品| 亚洲自拍偷在线| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 啦啦啦免费观看视频1| 变态另类成人亚洲欧美熟女| 亚洲国产日韩欧美精品在线观看 | 中文亚洲av片在线观看爽| 久久午夜综合久久蜜桃| 99riav亚洲国产免费| 日韩欧美三级三区| 中文资源天堂在线| 亚洲国产精品999在线| 黄色女人牲交| 日本熟妇午夜| 丁香六月欧美| 国产成人啪精品午夜网站| 麻豆成人午夜福利视频| 国产一区二区激情短视频| 国产精品 国内视频| 好男人电影高清在线观看| 午夜成年电影在线免费观看| 成人手机av| 欧美成人性av电影在线观看| 日韩欧美三级三区| 国产高清激情床上av| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久久久免费视频| 麻豆成人午夜福利视频| 俄罗斯特黄特色一大片| 日本 av在线| 麻豆成人av在线观看| 亚洲午夜理论影院| 欧洲精品卡2卡3卡4卡5卡区| 1024香蕉在线观看| 成人特级黄色片久久久久久久| 色尼玛亚洲综合影院| 两性夫妻黄色片| 中文亚洲av片在线观看爽| 91大片在线观看| bbb黄色大片| 欧美黑人巨大hd| 亚洲片人在线观看| 天天一区二区日本电影三级| 久久青草综合色| 久久性视频一级片| 国产片内射在线| videosex国产| 草草在线视频免费看| 亚洲中文字幕日韩| 国产亚洲精品av在线| √禁漫天堂资源中文www| 女警被强在线播放| 99久久国产精品久久久| 一边摸一边抽搐一进一小说| 国产精品爽爽va在线观看网站 | 亚洲人成伊人成综合网2020| 一进一出抽搐动态| 亚洲成av人片免费观看| 国产午夜精品久久久久久| 欧美在线黄色| 国产成人欧美| 成人亚洲精品av一区二区| 老司机午夜十八禁免费视频| 欧美在线一区亚洲| 中文字幕人妻丝袜一区二区| 曰老女人黄片| 人妻久久中文字幕网| 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 又黄又爽又免费观看的视频| 黄片播放在线免费| 亚洲人成伊人成综合网2020| 两个人视频免费观看高清| 国产一区二区激情短视频| 欧美zozozo另类| 欧美乱妇无乱码| 少妇的丰满在线观看| 黄色a级毛片大全视频| 成人一区二区视频在线观看| av电影中文网址| 色婷婷久久久亚洲欧美| 日韩国内少妇激情av| 亚洲熟女毛片儿| 国产精品亚洲一级av第二区| 一二三四在线观看免费中文在| 国产精品99久久99久久久不卡| av免费在线观看网站| 老司机靠b影院| 国产亚洲精品综合一区在线观看 | 久久 成人 亚洲| 国产精品永久免费网站| 美女 人体艺术 gogo| 国产成人精品久久二区二区91| 天堂动漫精品| 日本精品一区二区三区蜜桃| 精品人妻1区二区| 欧美乱码精品一区二区三区| 国产极品粉嫩免费观看在线| 色播亚洲综合网| 18禁国产床啪视频网站| 免费看a级黄色片| 动漫黄色视频在线观看| 老司机深夜福利视频在线观看| 精品高清国产在线一区| 久久久国产成人免费| 亚洲免费av在线视频| 欧美乱妇无乱码| 在线观看日韩欧美| 日本一区二区免费在线视频| 99久久无色码亚洲精品果冻| 亚洲av美国av| av电影中文网址| 岛国在线观看网站| 99久久国产精品久久久| 亚洲色图 男人天堂 中文字幕| 中国美女看黄片| 亚洲一码二码三码区别大吗| 无遮挡黄片免费观看| 波多野结衣av一区二区av| 国产精品香港三级国产av潘金莲| 色婷婷久久久亚洲欧美| 热re99久久国产66热| 精品久久久久久久人妻蜜臀av| 国产av一区在线观看免费| 亚洲国产中文字幕在线视频| 亚洲色图av天堂| 日韩欧美国产一区二区入口| 欧美一区二区精品小视频在线| 国产av在哪里看| 亚洲成人精品中文字幕电影| 男女做爰动态图高潮gif福利片| 草草在线视频免费看| 黄色女人牲交| 波多野结衣高清无吗| 欧美在线黄色| 亚洲欧美日韩无卡精品| 欧美黑人欧美精品刺激| 免费高清视频大片| 久久中文看片网| 日本精品一区二区三区蜜桃| 视频区欧美日本亚洲| 国产精品,欧美在线| 国产爱豆传媒在线观看 | 天堂影院成人在线观看| 国产熟女午夜一区二区三区| 久久这里只有精品19| 91麻豆av在线| 中文字幕最新亚洲高清| 不卡av一区二区三区| 亚洲av电影不卡..在线观看| 精品熟女少妇八av免费久了| 一级作爱视频免费观看| 国产日本99.免费观看| 亚洲人成电影免费在线| 制服诱惑二区| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区四区第35| 国产精品香港三级国产av潘金莲| 日韩国内少妇激情av| 色综合婷婷激情| 美女国产高潮福利片在线看| 国内少妇人妻偷人精品xxx网站 | 十八禁人妻一区二区| 国产精品日韩av在线免费观看| 亚洲成人国产一区在线观看| 在线天堂中文资源库| 俄罗斯特黄特色一大片| 国产精品美女特级片免费视频播放器 | av中文乱码字幕在线| 色老头精品视频在线观看| 在线观看免费视频日本深夜| 日韩欧美国产一区二区入口| 欧美在线黄色| 91av网站免费观看| 国产久久久一区二区三区| 99国产精品一区二区三区| 国产精品久久久av美女十八| 欧美成人一区二区免费高清观看 | 白带黄色成豆腐渣| 欧美黑人精品巨大| 亚洲五月天丁香| www.精华液| 麻豆成人av在线观看| 国产精品,欧美在线| 在线永久观看黄色视频| 久久久久久久久久黄片| 人人妻,人人澡人人爽秒播| 久久99热这里只有精品18| 午夜福利视频1000在线观看| 午夜免费鲁丝| 丝袜在线中文字幕| 亚洲,欧美精品.| 亚洲成人久久爱视频| 久久久久免费精品人妻一区二区 | 亚洲av成人av| 老鸭窝网址在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕日韩| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 亚洲久久久国产精品| 老司机午夜十八禁免费视频| 国产精品国产高清国产av| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 岛国在线观看网站| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 看黄色毛片网站| 精品国产亚洲在线| 男女下面进入的视频免费午夜 | 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 国产野战对白在线观看| 中亚洲国语对白在线视频| 91老司机精品| 精品国产亚洲在线| 精品国产乱码久久久久久男人| 午夜老司机福利片| 两性午夜刺激爽爽歪歪视频在线观看 | av免费在线观看网站| 亚洲成av片中文字幕在线观看| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 亚洲av成人一区二区三| 免费看a级黄色片| 51午夜福利影视在线观看| 精品久久久久久久久久免费视频| 黄色 视频免费看| av天堂在线播放| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 久久久国产欧美日韩av| 人成视频在线观看免费观看| 黄片播放在线免费| 999久久久精品免费观看国产| 久久天堂一区二区三区四区| 精品无人区乱码1区二区| 色老头精品视频在线观看| 久久精品影院6| 久久精品国产99精品国产亚洲性色| 国产午夜福利久久久久久| 视频区欧美日本亚洲| 99热这里只有精品一区 | av有码第一页| 亚洲免费av在线视频| 日日爽夜夜爽网站| 亚洲 欧美 日韩 在线 免费| 哪里可以看免费的av片| 大型av网站在线播放| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 91成年电影在线观看| 国产熟女午夜一区二区三区| 亚洲成人国产一区在线观看| 亚洲第一青青草原| 女性生殖器流出的白浆| 精品一区二区三区四区五区乱码| 欧美精品啪啪一区二区三区| 久久99热这里只有精品18| 在线观看日韩欧美| 国产精品国产高清国产av| АⅤ资源中文在线天堂| 久久久精品国产亚洲av高清涩受| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 曰老女人黄片| 大型黄色视频在线免费观看| 99在线人妻在线中文字幕| 午夜老司机福利片| 久久久久免费精品人妻一区二区 | 日韩三级视频一区二区三区| 亚洲成国产人片在线观看| 亚洲色图av天堂| 国产欧美日韩一区二区三| 日本一区二区免费在线视频| 欧美不卡视频在线免费观看 | 国产精品av久久久久免费| 成人18禁高潮啪啪吃奶动态图| 大型黄色视频在线免费观看| 久久人妻福利社区极品人妻图片| 九色国产91popny在线| 亚洲成人精品中文字幕电影| 成人免费观看视频高清| 国产精品永久免费网站| 午夜影院日韩av| 无人区码免费观看不卡| 成人特级黄色片久久久久久久| 黄频高清免费视频| 男女那种视频在线观看| 亚洲一区二区三区色噜噜| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| a级毛片在线看网站| 亚洲全国av大片| 国产私拍福利视频在线观看| 久热爱精品视频在线9| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区在线臀色熟女| 亚洲无线在线观看| 长腿黑丝高跟| 一本一本综合久久| 黄色丝袜av网址大全| 欧美国产精品va在线观看不卡| 亚洲国产毛片av蜜桃av| 欧美日韩中文字幕国产精品一区二区三区| 国产色视频综合| 欧美久久黑人一区二区| 亚洲精品国产区一区二| av有码第一页| 久久这里只有精品19| 老司机深夜福利视频在线观看| 亚洲国产看品久久| 欧美日韩乱码在线| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 亚洲av片天天在线观看| 2021天堂中文幕一二区在线观 | 丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 亚洲精品国产区一区二| 亚洲无线在线观看| 国产v大片淫在线免费观看| 色老头精品视频在线观看| 在线免费观看的www视频| 国产麻豆成人av免费视频| 夜夜躁狠狠躁天天躁| 熟女电影av网| 天堂动漫精品| av福利片在线| 又黄又粗又硬又大视频| 午夜a级毛片| 久久亚洲真实| 国产片内射在线| 午夜视频精品福利| 国产爱豆传媒在线观看 | 麻豆久久精品国产亚洲av| 国产高清激情床上av| 国产精品二区激情视频| 午夜福利视频1000在线观看| 欧美大码av| 亚洲成人久久性| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 99国产精品一区二区三区| 国产又色又爽无遮挡免费看| 免费看十八禁软件| 天堂影院成人在线观看| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 无人区码免费观看不卡| 超碰成人久久| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 我的亚洲天堂| 男人舔女人的私密视频| 国产一区二区三区在线臀色熟女| 国产成人欧美在线观看| 国产黄片美女视频| 色综合亚洲欧美另类图片| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 99久久精品国产亚洲精品| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 国产色视频综合| 99久久99久久久精品蜜桃| 国产不卡一卡二| a级毛片在线看网站| 午夜久久久在线观看| 在线观看www视频免费| 久久久久久大精品| 成人亚洲精品av一区二区| 欧美日韩精品网址| 女性生殖器流出的白浆| 欧美日韩亚洲国产一区二区在线观看| 午夜激情av网站| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 欧美激情久久久久久爽电影| 亚洲第一青青草原| 国产日本99.免费观看| 国产成+人综合+亚洲专区| 亚洲片人在线观看| a在线观看视频网站| 亚洲av片天天在线观看| 91麻豆精品激情在线观看国产| 亚洲美女黄片视频| 韩国精品一区二区三区| 侵犯人妻中文字幕一二三四区| 精品电影一区二区在线| 亚洲片人在线观看| 色播亚洲综合网| 在线播放国产精品三级| 国产精品98久久久久久宅男小说| 自线自在国产av| 国产一区二区在线av高清观看| 亚洲黑人精品在线| 在线播放国产精品三级| 在线观看www视频免费| a级毛片a级免费在线| 久久午夜亚洲精品久久| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 精品午夜福利视频在线观看一区| 亚洲一区二区三区不卡视频| 美女午夜性视频免费| 国产精品久久久久久人妻精品电影| 在线av久久热| 国产精品1区2区在线观看.| 熟女少妇亚洲综合色aaa.| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 宅男免费午夜| 两性夫妻黄色片| 久久精品国产综合久久久| 午夜福利18| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久 | 好看av亚洲va欧美ⅴa在| 欧美在线黄色| 中国美女看黄片| 可以在线观看毛片的网站| 99国产极品粉嫩在线观看| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 亚洲 欧美 日韩 在线 免费| 黄色视频,在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 可以在线观看的亚洲视频| 亚洲国产欧美网| 搡老岳熟女国产| 俺也久久电影网| 丁香六月欧美| 99re在线观看精品视频| 久9热在线精品视频| 国产熟女xx| 国内揄拍国产精品人妻在线 | 可以在线观看的亚洲视频| 黑人操中国人逼视频| 国产av在哪里看| 亚洲国产精品成人综合色| 精品一区二区三区av网在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕一级| 色av中文字幕| 夜夜看夜夜爽夜夜摸| 成在线人永久免费视频| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| av视频在线观看入口| 精品久久久久久久久久久久久 | 大型黄色视频在线免费观看| 亚洲精品中文字幕一二三四区| 久久热在线av| 亚洲全国av大片| 久久中文字幕人妻熟女| 国产v大片淫在线免费观看| 亚洲精品在线美女| 亚洲性夜色夜夜综合| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 国产高清激情床上av| 亚洲成人久久爱视频| 少妇 在线观看| a级毛片a级免费在线| xxx96com| 日本 av在线| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 日本成人三级电影网站| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| а√天堂www在线а√下载| 日日爽夜夜爽网站| 国产精品,欧美在线| 欧美日韩福利视频一区二区| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久久久久久久 | 女同久久另类99精品国产91| АⅤ资源中文在线天堂| 久久精品91无色码中文字幕| 欧美色欧美亚洲另类二区| 精品国产国语对白av| 国产亚洲av高清不卡| a级毛片a级免费在线| 欧美另类亚洲清纯唯美| 久久香蕉精品热| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 人人妻人人澡人人看| av电影中文网址| 黄片小视频在线播放| 在线看三级毛片| 午夜两性在线视频| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 久久精品91蜜桃| or卡值多少钱| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 成人一区二区视频在线观看| 日本黄色视频三级网站网址| 亚洲中文av在线| 国产v大片淫在线免费观看| 亚洲五月色婷婷综合| 久久中文字幕一级| 精品欧美一区二区三区在线| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 国产亚洲欧美在线一区二区| xxxwww97欧美| 免费无遮挡裸体视频| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| 成人一区二区视频在线观看| 久久婷婷人人爽人人干人人爱| 日本一区二区免费在线视频| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 欧美日韩精品网址| 听说在线观看完整版免费高清| 在线观看午夜福利视频| 亚洲最大成人中文| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 黑人巨大精品欧美一区二区mp4| 精品国产乱码久久久久久男人| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| www.www免费av| 国产免费男女视频| 亚洲国产欧洲综合997久久, | 又黄又粗又硬又大视频|