• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust H∞Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach

    2018-05-02 07:11:31YonghuiSunYingxuanWangZhinongWeiGuoqiangSunandXiaopengWu
    IEEE/CAA Journal of Automatica Sinica 2018年2期

    Yonghui Sun,Yingxuan Wang,Zhinong Wei,Guoqiang Sun,and Xiaopeng Wu

    I.INTRODUCTION

    LOAD frequency control(LFC)is important and necessary in electric power system operation,which could help damp frequency and voltage oscillations originated from load variations or sudden changes in load demands[1]-[2].When the system is subject to disturbances or sudden changes in load demands,the input mechanical power to the generators is employed to control the frequency of the output electrical power and to maintain the power exchange between different control areas as per scheduled values during normal operation.Therefore,a well designed and operated power system should be able to cope with changes in the load and system disturbances,and it should provide acceptably high level of power quality while maintaining both voltage and frequency within tolerable limits.

    Until now,lots of classical and advanced techniques have been proposed to solve the LFC problems for single or interconnected power system,e.g.,proportional integral(PI)control approach[3]was first proposed to solve the LFC problems.In[4],a robust decentralized proportional-integral control design was proposed for LFC of a multi-area power system.In[5],considering the parameter uncertainties,a robust decentralized controller was designed for multi-area power system based on the Riccati-equation approach.In[6],based on the concept of active disturbance rejection control,a robust decentralized LFC algorithm was proposed for an interconnected three-area power system using frequency-domain analysis.In[7],the adaptive control scheme was proposed to deal with the changes of system parameters under the LFC strategies.With the emerging intelligent control techniques,some hybrid controllers can drive better desirable responses than the traditional LFC.The intelligent PILFC using genetic algorithm[8],bat inspired algorithm[9],fuzzy logic[10]and neural network[11]have been adopted to consider the effect of uncertainty and disturbances in the power system model.For the other related results,please refer to[12],and the references therein.

    On the other hand,as time delays are mainly derived from the local measurement device,for traditional power system,time delays are too small which can be ignored in most cases[13],[14].However,with the development of power system,remote signals have become available as feedback signals to design modern power system.Therefore,time delays are becoming more and more ubiquitous and have become a source of instability and performance deterioration in system.In[15],two robust decentralized PI controller designs were proposed for LFC of power system with communication delays.In[16],the authors presented a load frequency control method based on linear matrix inequalities(LMIs),where a robust controller was proposed in the face of delayed control signals.In[17],the authors considered the delay-dependent stability of load frequency control scheme based on Lyapunov theory,where a delay-dependent criterion was developed.In[18],the authors considered the LFC problem with communication delays,where a delay-dependent two-termH∞controller design was proposed using LMIs.In[19],a delay-dependent robust method was proposed for analysis/synthesis of a PID-type LFC scheme considering time delays,where a new way to assess robustness against delays and estimate delay margins was also presented.However,with the increasing size,changing structure and complexity of interconnected power system[20],[21],LFC problem is becoming much more significant today,in order to get fast response,insensitivity to variation in plant parameters and complete rejection of external perturbations,some other effective robust control methods should be explored and developed.

    Since the 1970s,variable structure control has attracted signi ficant attentions in the control community.As a special type of variable structure controls,sliding mode control(SMC)is assumed to provide an effective alternative to deal with the robust issues of dynamic systems.The main feature of SMC is claimed to result in system performance including fast response,easy realization,insensitivity to variation in plant parameters and complete rejection of external perturbations,for some more detailed discussions,please refer to[22]-[27]and the references therein.In SMC,the behavior of the closedloop system is determined by a submanifold in the state space,named as the sliding surface,the goal is to drive the system trajectory to reach the sliding surface and then to stay on it.In[28],the second-order sliding mode control design problem was investigated for nonlinear system with uncertainties bounded by positive functions.Considering its robust properties,SMC has been utilized for analyzing and controlling of complex power system in the past few years.In[29],by using SMC approach,the authors presented LFC for multi-area power system with unmatched uncertainties.In[30],the authors considered LFC by neural-network-based integral sliding mode for power system with wind turbines.For the other related results,please refer to[31]-[32]and the references therein.However,most of the above mentioned results ignored the time delay in multi-area power system,and there are few results considering time delay in the design of switching surface in SMC,where the fast response and robust performance cannot be guaranteed.Furthermore,to the best of the authors’knowledge,there are also few results considering SMLFC of delayed power system with stochastic disturbances,therefore,in this paper,the attention is paid to the robustH∞SMLFC of multi-area power system with time delay.

    The rest of the paper is organized as follows.In Section II,the LFC problem for multi-area power system is presented,a useful lemma is also introduced in advanced.In Section III,a new switching surface considering time delay is designed for each area of power system.In Section IV,the sliding mode controller is designed to drive the system trajectory to reach the sliding surface and stay on it.In Section V,some simulation results are provided to show the feasibility of the developed results.At last,this paper is completed with a conclusion.

    II.MODEL DESCRIPTION

    It is known that power system is a complex nonlinear dynamic system,especially the multi-area power system,however,the linearized model is permissible in the LFC problem due to only small changes in load are expected during its normal operation.In this paper,by using the SMC approach,the robustH∞LFC problem for multi-area power system with time delay is discussed in detail.For convenience,a two-area interconnected power system with time delay is provided as an example to illustrate the LFC problem for multi-area power system,which is shown in Fig.1.

    Fig.1.A typical two-area LFC power system.

    The dynamic model can be described by

    wherei,j=1,2,i/=j,and ΔP12=-ΔP21.

    De fine the state vector asx(t)=[Δf1,ΔPm1,ΔPv1,ΔE1,ΔP12,Δf2,ΔPm2,ΔPv2,ΔE2]T,then system(1)can be represented in the following compact form:

    wherew(t)is the load disturbance vector de fined asw(t)=ΔPd= [ΔPd1,ΔPd2]T,without loss generality,w(t)is bounded and satis fies‖ΔPd1‖<h1,‖ΔPd2‖<h2,h1andh2are two positive constants.τ1andτ2are the transmission delays induced by signals transmitted from different control areas,and system parameters are given by

    The main purpose of this paper is to consider the robustH∞SMLFC of multi-area power system with time delay and stochastic disturbances,and before presenting the main results,the following useful lemma is introduced in advance.

    Lemma 1[33]:For a given symmetric matrixS=,whereS11isr×rdimensional matrix,S11=The following three conditions are equivalent:

    III.SWITCHING SURFACE DESIGN

    The traditional sliding mode controller design includes two relatively independent parts,the first part is to choose the sliding mode surface for desired performance,and the second part is to design the control law to drive the system trajectory to the surface and maintain motion on it.In this paper,considering the time delay induced by signal transmission between different control areas,in order to enhance the dynamic performance and robustness during the reaching phase,an improved PI switching surface is selected as

    whereGandKare constant matrices,andGis selected to ensure matrixGBto be nonsingular.

    When the dynamic trajectory reaches the sliding mode,the switching function(3)satis fies the following condition:

    Differentiating(3)will yield

    Then,by substituting(2)into(5),one has

    If the dynamic trajectory satis fies(t)=0,the following equivalent controller can be derived when the state trajectory reaches the sliding mode surface

    Furthermore,by substituting(7)into system(2),the equivalent dynamic equation in sliding mode can be derived

    whereA0=A-BK,D0=D-B(GB)-1GD.Therefore,by using the equivalent controller(7),the LFC for two-area interconnected power system can be derived

    the relationship between interference and output isTwz(s)=C[sI-(A0+BK)-A1e-τ1s-A2e-τ2s]-1D0.Meanwhile,the controller design should meet theH∞performance‖Twz‖∞<γ,γ >0.

    Remark 1:Compared to the traditional switching surface designing approaches[29]and[30],in which only the proportional and integral part are included,the priority of the designed switching surface in this paper is that time delay between different control areas is taken into account,two integral parts with the corresponding transmission delays are introduced into the switching surface functional.Therefore,these improvements could be expected to enhance the dynamic performance under the wide area environment.

    Now,we are ready to develop the following frequency stabilization result.

    Theorem 1:For a prescribed attenuation levelγ>0,the frequency of controlled interconnected power system(9)is asymptotically stable with‖Twz‖∞<γ,forτ1>0,τ2>0,if there exist matrices 0<PT=P∈Rn×n,0<=Q1∈Rn×n,0<=Q2∈Rn×nand an arbitrary matrixSsatisfying the following LMI:

    where Φ11=AP+PAT+BS+STBT+Q1+Q2,δ=γ2.Moreover,the gain of the state feedback controller can be calculated byK=SP-1.

    Proof:Firstly,consider the stability of controlled interconnected power system(9)withw(t)=0,construct the following Lyapunov functional:

    Calculating the derivative of(11)along the trajectory(9),one can get

    where

    By using Lemma 1,it follows from the LMI condition(10)that Δ<0,which means˙V<0.Therefore,it can be concluded that the frequency of controlled multi-area power system(9)is asymptotically stable withw(t)=0.

    Furthermore,for a prescribed attenuation levelγ>0,de fine the following performance index:

    It is noted that ifJzw≤0,then the closed-loop system(9)is robustlyH∞stable satisfying the conditionH∞≤γ.Thus,the next objective is becoming to ensure thatJzw≤0.For zero initial conditionV(0)=0 and sinceV(∞)≥0,one can get

    By using Lemma 1,it follows from the condition(10)that Ω<0,as we knowJzw≤0,we can conclude that the closedloop system(9)is robustlyH∞stable.

    Furthermore,the optimal attenuation level can be obtained by solving the following constrained optimization problem:

    Then the optimal performance level can be obtained byγ=

    Remark 2:Based on the proposed SMLFC scheme,Theorem 1 could guarantee the multi-area power system with time delay and stochastic disturbances to be robustly stable with an optimal attenuation levelγ.Compared to some existing results considering LFC of power system by feedback control approaches[17]-[19],the proposed SMLFC scheme is much robust against the variations in plant parameters and shows complete rejection of external perturbations,which enables to get fast response and good performance.

    IV.CONTROL LAW DESIGN

    For the controlled multi-area power system(9),the corresponding reachability condition for each area can be described by the following theorem.

    Theorem 2:A decentralized switching control law can be designed to guarantee the reaching conditionσi(t)?i(t)<0 to be satisfied

    where

    Proof:Constructing the following Lyapunov function:

    Note that‖ΔPd1‖<h1,‖ΔPd2‖ <h2,then combining(6)and(16),one can further get

    The derivative ofV(t)can be calculated by

    Therefore,one can conclude that the reaching condition can be ensured by the designed controller(16). ¥

    Remark 3:It should be pointed out that in[29],the authors presented LFC for multi-area power system with unmatched uncertainties by SMC approach,and in[30],the authors considered LFC by neural-network-based integral sliding mode for power system with wind turbines.However,both of them ignored time delay in multi-area power system.Furthermore,by taking into account stochastic disturbances induced by the integration of renewable energies,based onH∞control theory,the optimal attenuation level describing the power system tolerant against the fluctuations of renewable power could be obtained.

    Remark 4:With more and more renewable energy resources integrated into power grid,the inherent randomness and uncertainties should be paid more attention,some robust control approaches would be utilized and explored for LFC of multiarea power system.Motivated by the idea in[30],some intelligent control approaches combined with the traditional control approaches,such as fuzzy logic control[34]could be an effective way,which are left as the future research directions.

    V.SIMULATION AND ANALYSIS

    In this section,a two-area interconnected power system is provided to illustrate the effectiveness of the proposed decentralized sliding mode control scheme.Some basic parameters of the system are provided in Table I.

    TABLE IPARAMETERS OF TWO-AREA INTERCONNECTED POWER SYSTEM

    A.The Open Loop System

    First,consider a two-area power system(2)without external control inputu,which only includes an integral partki/s(i=1,2)in each control area.Without loss of generality,time delays in both control areas are manually set asτ1=0.1,τ2=0.2.The block diagram of the open loop system is shown in Fig.1.

    Based on the MATLAB/Simulink,the frequency deviation of the two-area power system is illustrated in Fig.2,it follows from the simulation that the frequency deviation of the two-area power system is divergent with the local PI controllerK1=0.5,K2=0.5.

    B.The Closed Loop System via SMLFC

    In this part,by using the designed sliding mode load frequency controller(16)and the improved switching surface(3),the two-area interconnected power system(2)could be robustly stabilized with an optimal attenuation level.The block diagram of the SMLFC scheme is shown in Fig.3,where Δx1,Δx2are the direct feedback state vectors of each area,respectively,u1andu2are the sliding mode control terms of each area,respectively.It should be pointed out that in the designed SMC controller(16),the first item is utilized to guarantee the state of the system tend towards the equilibrium point on the sliding surface,and the second item is to ensure the system has better performance to suppress the interference.

    Fig.2.Frequency deviation curve of the open loop system.

    For the given system parameters provided in Table I,by using the MATLAB LMI control toolbox,the stability condition(10)could be verified effectively,the corresponding gain matrix can be calculated by

    and the optimal attenuation levelγ=0.1643 could be obtained after solving the constrained optimization problem(15)simultaneously.It follows from Theorem 1 that the controlled interconnected power system(2)could be robustly stabilized via the designed controller.

    In the simulation results,without loss of generality,the matrixGis selected as

    and the bound of stochastic disturbances is set ash=[0.2,0.3]T.Here,we consider the stochastic disturbances as the step load disturbances,at 10s,the stochastic disturbances in two areas are set as the set load changes ΔPd1= ΔPd2=0.1.Fig.4 shows the frequency derivation of the controlled power system via the proposed control design scheme.It can be observed from Fig.4 that the frequency deviation of the controlled interconnected power system could be stabilized in 4s,and even with the step load disturbances,it can be robustly stabilized in 2s.

    Furthermore,in order to demonstrate the robustness of the proposed control design scheme,at 10s,we further consider the control performance with different stochastic disturbances in the two areas ΔPd1=0.1,ΔPd2=0.2,the simulation results are provided in Fig.5,where it can be found that the frequency could be maintained in a tolerable limit time.The switching surface function and the control law of the controller in Area 1 and Area 2 are also presented in Figs.6-9.It can be found from these simulation results that the proposed SMLFC scheme is effective and useful.

    Fig.3.The block diagram of SMLFC scheme.

    Fig.4.Frequency deviation curve by using SMLFC scheme.

    Fig.5.Frequency deviation curve with stochastic disturbances.

    Fig.6. Switching surface of σ1.

    Fig.7.Switching surface of σ2.

    Fig.8.Sliding mode controller u1(t).

    Fig.9. Sliding mode controller u2(t).

    VI.CONCLUSIONS

    In this paper,by taking into account stochastic disturbances,a robust decentralized SMLFC design scheme was proposed for multi-area power system with time delay.In order to get a better control performance,an improved PI switching surface function was constructed,then the robust stability criterion was developed for the multi-area power system with an optimal attenuation level.Furthermore,an SMC law has been proposed to ensure the stability of the closed-loop system,and to drive the state of the controlled system into the prede fined sliding surface.Finally,simulation results on two-area interconnected power system with time delay have been provided to illustrate the effectiveness of the obtained results.

    [1]P.Kundur,Power System Stability and Control.New York,USA:McGraw-Hill Press,1994.

    [2]P.Ju,E.Handschin,and D.Karlsson,“Nonlinear dynamic load modelling:model and parameter estimation,”IEEE Trans.Power Syst.,vol.11,no.4,pp.1689-1697,Nov.1996.

    [3]M.A.Sheirah and M.M.Abd-El-Fattah,“Improved load-frequency self-tuning regulator,”Int.J.Control,vol.39,no.1,pp.143-158,Jan.1984.

    [4]M.R.Toulabi,M.Shiroei,and A.M.Ranjbar,“Robust analysis and design of power system load frequency control using the Kharitonov’s theorem,”Int.J.Electr.Power Energy Syst.,vol.55,pp.51-58,Feb.2014.

    [5]K.Y.Lim,Y.Wang,and R.Zhou,“Robust decentralised load-frequency control of multi-area power systems,”IEE Proc.-Gener.,Trans.Distrib.,vol.143,no.5,pp.377-386,Sep.1996.

    [6]L.L.Dong,Y.Zhang,and Z.Q.Gao,“A robust decentralized load frequency controller for interconnected power systems,”ISA Trans.,vol.51,no.3,pp.410-419,May 2012.

    [7]M.Zribi,M.Al-Rashed,and M.Alrifai,“Adaptive decentralized load frequency control of multi-area power systems,”Int.J.Electr.Power Energy Syst.,vol.27,no.8,pp.575-583,Oct.2005.

    [8]F.Daneshfar and H.Bevrani,“Multiobjective design of load frequency control using genetic algorithms,”Int.J.Electr.Power Energy Syst.,vol.42,no.1,pp.257-263,Nov.2012.

    [9]M.R.Sathya and M.M.T.Ansari,“Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system,”Int.J.Electr.Power Energy Syst.,vol.64,pp.365-374,Jan.2015.

    [10]K.R.Sudha and R.V.Santhi,“Robust decentralized load frequency control of interconnected power system with generation rate constraint using Type-2 fuzzy approach,”Int.J.Electr.Power Energy Syst.,vol.33,no.3,pp.699-707,Mar.2011.

    [11]L.C.Saikia,S.Mishra,N.Sinha,and J.Nanda,“Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller,”Int.J.Electr.Power Energy Syst.,vol.33,no.4,pp.1101-1108,May 2011.

    [12]H.Bevrani,Y.Mitani,and K.Tsuji,“Robust decentralised loadfrequency control using an iterative linear matrix inequalities algorithm,”IEE Proc.-Gener.,Trans.Distrib.,vol.151,no.3,pp.347-354,May 2004.

    [13]H.X.Wu,K.S.Tsakalis,and G.T.Heydt,“Evaluation of time delay effects to wide-area power system stabilizer design,”IEEE Trans.Power Syst.,vol.19,no.4,pp.1935-1941,Nov.2004.

    [14]X.M.Zhao,Y.H.Sun,C.Yuan,Z.N.Wei,and G.Q.Sun,“Robust load frequency control of multi-area interconnected power system with time delay,”inProc.34th Chinese Control Conf.,Hangzhou,China,2015,pp.8969-8974.

    [15]H.Bevrani and T.Hiyama,“Robust decentralised PI based LFC design for time delay power systems,”Energy Convers.Manage.,vol.49,no.2,pp.193-204,Feb.2008.

    [16]X.F.Yu and K.Tomsovic,“Application of linear matrix inequalities for load frequency control with communication delays,”IEEE Trans.Power Syst.,vol.19,no.3,pp.1508-1515,Aug.2004.

    [17]L.Jiang,W.Yao,Q.H.Wu,J.Y.Wen,and S.J.Cheng,“Delaydependent stability for load frequency control with constant and timevarying delays,”IEEE Trans.Power Syst.,vol.27,no.2,pp.932-941,May 2012.

    [18]R.Dey,S.Ghosh,G.Ray,and A.Rakshit,“H∞load frequency control

    of interconnected power systems with communication delays,”Int.J.Electr.Power Energy Syst.,vol.42,no.1,pp.672-684,Nov.2012.

    [19]C.K.Zhang,L.Jiang,Q.H.Wu,Y.He,and M.Wu,“Delay-dependent robust load frequency control for time delay power systems,”IEEE Trans.Power Syst.,vol.28,no.3,pp.2192-2201,Aug.2013.

    [20]F.Wu,P.Ju,X.P.Zhang,C.Qin,G.J.Peng,H.Huang,and J.Fang,“Modeling,control strategy,and power conditioning for direct-drive wave energy conversion to operate with power grid,”Proc.IEEE,vol.101,no.4,pp.925-941,Apr.2013.

    [21]Y.H.Sun,X.M.Zhao,N.Li,Z.N.Wei,and G.Q.Sun,“Robust stochastic stability of power system with time-varying delay under Gaussian random perturbations,”Neurocomputing,vol.162,pp.1-8,Aug.2015.

    [22]V.Utkin,“Variable structure systems with sliding modes,”IEEE Trans.Automat.Control,vol.22,no.2,pp.212-222,Apr.2017.

    [23]Y.Q.Xia and Y.M.Jia,“Robust sliding-mode control for uncertain time-delay systems:an LMI approach,”IEEE Trans.Automat.Control,vol.48,no.6,pp.1086-1091,Jun.2003.

    [24]L.G.Wu and D.W.C.Ho,“Sliding mode control of singular stochastic hybrid systems,”Automatica,vol.46,no.4,pp.779-783,Apr.2010.

    [25]S.H.Ding and W.X.Zheng,“Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation,”Int.J.Robust Nonlin.Control,vol.26,no.9,pp.1857-1872,Jun.2016.

    [26]H.Y.Li,P.Shi,D.Y.Yao,and L.G.Wu,“Observer-based adaptive sliding mode control for nonlinear Markovian jump systems,”Automatica,vol.64,pp.133-142,Feb.2016.

    [27]H.Y.Li,H.J.Gao,P.Shi,and X.D.Zhao,“Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach,”Automatica,vol.50,no.7,pp.1825-1834,Jul.2014.

    [28]S.H.Ding,J.D.Wang,and W.X.Zheng,“Second-order sliding mode

    control for nonlinear uncertain systems bounded by positive functions,”IEEE Trans.Ind.Electron.,vol.62,no.9,pp.5899-5909,Sep.2015.

    [29]Y.Mi,Y.Fu,C.S.Wang,and P.Wang,“Decentralized sliding mode load frequency control for multi-area power systems,”IEEE Trans.Power Syst.,vol.28,no.4,pp.4301-4309,Nov.2013.

    [30]D.W.Qian,S.W.Tong,H.Liu,and X.J.Liu,“Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines,”Neurocomputing,vol.173,pp.875-885,Jan.2016.

    [31]K.Vrdoljak,N.Peric′,and I.Petrovic′,“Sliding mode based loadfrequency control in power systems,”Electr.Power Syst.Res.,vol.80,no.5,pp.514-527,May 2010.

    [32]Y.Mi,Y.Fu,D.D.Li,C.S.Wang,P.C.Loh,and P.Wang,“The sliding mode load frequency control for hybrid power system based on disturbance observer,”Int.J.Electr.Power Energy Syst.,vol.74,pp.446-452,Jan.2016.

    [33]S.Boyd,L.El Ghaoui,E.Feron,and V.Balakrishnan,Linear Matrix Inequalities in System and Control Theory.Philadelphia,PA,USA:SIAM,1994.

    [34]C.D.Li,J.Q.Yi,and G.Q.Zhang,“On the monotonicity of interval type-2 fuzzy logic systems,”IEEE Trans.Fuzzy Syst.,vol.22,no.5,pp.1197-1212,Oct.2014.

    国产精品女同一区二区软件| 欧美人与善性xxx| 大香蕉久久网| 男女免费视频国产| 国产精品偷伦视频观看了| 久久久久久伊人网av| 免费大片18禁| 日韩 亚洲 欧美在线| 精品亚洲成国产av| 亚洲精品美女久久av网站| 亚洲精品乱码久久久久久按摩| 日日撸夜夜添| 国产免费视频播放在线视频| 热re99久久精品国产66热6| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 日韩中字成人| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看| 日韩制服丝袜自拍偷拍| av视频免费观看在线观看| 国产av精品麻豆| 精品国产乱码久久久久久小说| 人人澡人人妻人| 少妇 在线观看| 国产色婷婷99| 一级毛片黄色毛片免费观看视频| 日本wwww免费看| 久久久久久久精品精品| 成人二区视频| 亚洲在久久综合| 国产极品天堂在线| 一级毛片电影观看| 国产黄色视频一区二区在线观看| 久久精品aⅴ一区二区三区四区 | 久久鲁丝午夜福利片| 1024视频免费在线观看| 国产精品三级大全| 国产精品久久久久成人av| 久久久久久人人人人人| 在线精品无人区一区二区三| 蜜臀久久99精品久久宅男| 色哟哟·www| 老司机亚洲免费影院| 丁香六月天网| 色网站视频免费| 免费播放大片免费观看视频在线观看| 91在线精品国自产拍蜜月| 亚洲av综合色区一区| 国产毛片在线视频| 街头女战士在线观看网站| 搡老乐熟女国产| 久久精品夜色国产| 国产午夜精品一二区理论片| 男女啪啪激烈高潮av片| 一级毛片电影观看| 一边摸一边做爽爽视频免费| 亚洲欧美成人精品一区二区| 超色免费av| 伦理电影免费视频| 韩国av在线不卡| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠久久av| 国产成人精品婷婷| 9热在线视频观看99| 亚洲丝袜综合中文字幕| 国产黄色免费在线视频| 国产日韩一区二区三区精品不卡| 欧美成人午夜精品| 色5月婷婷丁香| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 国产精品久久久久久精品古装| 久久av网站| 国产精品偷伦视频观看了| 天堂8中文在线网| 久久久精品区二区三区| 亚洲国产精品999| 国产黄频视频在线观看| 天堂8中文在线网| 美女视频免费永久观看网站| 欧美+日韩+精品| 中文欧美无线码| 中文字幕最新亚洲高清| 久久精品久久久久久久性| 宅男免费午夜| 91aial.com中文字幕在线观看| 成人影院久久| 韩国高清视频一区二区三区| 欧美人与善性xxx| 观看av在线不卡| av在线播放精品| 久久久久久人人人人人| 亚洲av电影在线进入| 国产麻豆69| av卡一久久| 亚洲av在线观看美女高潮| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品久久久com| 精品亚洲成国产av| 国产永久视频网站| 国产高清国产精品国产三级| 妹子高潮喷水视频| 女人久久www免费人成看片| 亚洲美女视频黄频| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 免费观看av网站的网址| 九色成人免费人妻av| a 毛片基地| 18+在线观看网站| 国产精品偷伦视频观看了| 免费观看性生交大片5| 18禁观看日本| 亚洲人成77777在线视频| 桃花免费在线播放| 五月天丁香电影| 一区二区日韩欧美中文字幕 | 老司机影院成人| 亚洲三级黄色毛片| 日产精品乱码卡一卡2卡三| 9色porny在线观看| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 777米奇影视久久| 亚洲国产精品成人久久小说| 18+在线观看网站| 国产精品蜜桃在线观看| 岛国毛片在线播放| 桃花免费在线播放| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 久久久久久久久久人人人人人人| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 亚洲在久久综合| 色婷婷av一区二区三区视频| 久久久久网色| 18禁国产床啪视频网站| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看 | 99久久综合免费| 少妇精品久久久久久久| 国产精品 国内视频| 色视频在线一区二区三区| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 日韩三级伦理在线观看| 欧美成人午夜精品| 亚洲人成77777在线视频| 国产男女内射视频| 国产一级毛片在线| 国产av码专区亚洲av| 国产激情久久老熟女| 狂野欧美激情性bbbbbb| 久久久久国产网址| 一边亲一边摸免费视频| 久久精品久久久久久久性| 老司机影院毛片| 一级片'在线观看视频| 麻豆乱淫一区二区| 色94色欧美一区二区| 高清av免费在线| 天堂俺去俺来也www色官网| 深夜精品福利| 亚洲伊人久久精品综合| 午夜激情av网站| 捣出白浆h1v1| 五月玫瑰六月丁香| 另类精品久久| 亚洲欧美精品自产自拍| 亚洲国产精品一区三区| 在线观看人妻少妇| 中文欧美无线码| 国语对白做爰xxxⅹ性视频网站| 久久精品国产a三级三级三级| 午夜福利在线观看免费完整高清在| 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 97在线人人人人妻| 亚洲精品,欧美精品| 啦啦啦视频在线资源免费观看| 老女人水多毛片| 美女大奶头黄色视频| 黄色怎么调成土黄色| 一个人免费看片子| 久久99蜜桃精品久久| av电影中文网址| 日韩成人伦理影院| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 久久精品人人爽人人爽视色| 亚洲欧洲日产国产| 亚洲伊人色综图| 一级,二级,三级黄色视频| 国精品久久久久久国模美| 国产精品久久久av美女十八| 国产精品一国产av| 国产精品嫩草影院av在线观看| 亚洲,欧美精品.| 我的女老师完整版在线观看| 国产一级毛片在线| 久久久久久久久久久久大奶| 91精品伊人久久大香线蕉| 免费人成在线观看视频色| 午夜av观看不卡| 女性被躁到高潮视频| 伦精品一区二区三区| 我的女老师完整版在线观看| 国产亚洲一区二区精品| 国产av码专区亚洲av| 亚洲情色 制服丝袜| 男女午夜视频在线观看 | 老熟女久久久| 久久99精品国语久久久| 一级毛片我不卡| 午夜福利,免费看| 久久久久视频综合| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 亚洲色图综合在线观看| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 99热全是精品| 免费观看av网站的网址| 卡戴珊不雅视频在线播放| 久久婷婷青草| 少妇人妻久久综合中文| 999精品在线视频| 男的添女的下面高潮视频| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 国产精品一二三区在线看| 欧美xxⅹ黑人| 美女福利国产在线| 宅男免费午夜| 精品久久蜜臀av无| 久久久久久人妻| 亚洲激情五月婷婷啪啪| 国产在视频线精品| 久久久久久久久久成人| 国产激情久久老熟女| 亚洲精品一区蜜桃| 哪个播放器可以免费观看大片| www日本在线高清视频| 成年人免费黄色播放视频| 国产精品免费大片| 乱人伦中国视频| 欧美精品一区二区免费开放| 人妻少妇偷人精品九色| 在线天堂最新版资源| av在线播放精品| 午夜免费男女啪啪视频观看| 成人国语在线视频| 自线自在国产av| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 宅男免费午夜| 免费av中文字幕在线| 在线观看人妻少妇| 精品一区二区三区四区五区乱码 | 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 国产一区二区激情短视频 | 18+在线观看网站| 我的女老师完整版在线观看| 韩国精品一区二区三区 | 日韩免费高清中文字幕av| 宅男免费午夜| 最近最新中文字幕免费大全7| 国内精品宾馆在线| 大香蕉久久网| 最近中文字幕高清免费大全6| 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片| 欧美成人精品欧美一级黄| 国产精品国产三级专区第一集| 2021少妇久久久久久久久久久| 黄色一级大片看看| 中文字幕最新亚洲高清| 人妻 亚洲 视频| 成人国语在线视频| 极品少妇高潮喷水抽搐| 日韩伦理黄色片| 韩国高清视频一区二区三区| 2022亚洲国产成人精品| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| 9191精品国产免费久久| 国产成人精品在线电影| 欧美日韩视频高清一区二区三区二| 夜夜爽夜夜爽视频| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 另类精品久久| av播播在线观看一区| 免费黄色在线免费观看| 男女边摸边吃奶| 午夜老司机福利剧场| 久久久久久久久久久免费av| 亚洲欧美日韩卡通动漫| 在线天堂中文资源库| 人人澡人人妻人| kizo精华| www.熟女人妻精品国产 | 精品少妇久久久久久888优播| 日韩一区二区视频免费看| 成人国产av品久久久| 在现免费观看毛片| 欧美xxⅹ黑人| 国产精品熟女久久久久浪| 插逼视频在线观看| 亚洲成人手机| 久久亚洲国产成人精品v| 国产精品三级大全| 精品人妻在线不人妻| 99久久中文字幕三级久久日本| 高清毛片免费看| 久久精品久久久久久噜噜老黄| 成人二区视频| 两性夫妻黄色片 | 交换朋友夫妻互换小说| 女性被躁到高潮视频| 天堂中文最新版在线下载| 国产在视频线精品| 免费观看在线日韩| 又黄又粗又硬又大视频| 美女脱内裤让男人舔精品视频| 王馨瑶露胸无遮挡在线观看| 亚洲成人av在线免费| 国精品久久久久久国模美| 国产探花极品一区二区| 色视频在线一区二区三区| 伦精品一区二区三区| 9色porny在线观看| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 欧美97在线视频| 五月玫瑰六月丁香| 日韩精品免费视频一区二区三区 | 高清在线视频一区二区三区| 久久这里只有精品19| 久久久久久人人人人人| 少妇人妻 视频| 久久久久久人人人人人| 少妇人妻 视频| 国产深夜福利视频在线观看| 亚洲av成人精品一二三区| 18禁动态无遮挡网站| 波多野结衣一区麻豆| 国产精品久久久久久久久免| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 国产69精品久久久久777片| 午夜日本视频在线| 麻豆乱淫一区二区| 国产 一区精品| 丝袜在线中文字幕| 欧美日韩精品成人综合77777| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻熟女乱码| 高清毛片免费看| 精品国产一区二区久久| 国产乱人偷精品视频| 日本wwww免费看| 精品人妻一区二区三区麻豆| 大码成人一级视频| 免费人成在线观看视频色| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 亚洲在久久综合| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 蜜臀久久99精品久久宅男| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 午夜福利视频在线观看免费| 有码 亚洲区| 热99久久久久精品小说推荐| 天美传媒精品一区二区| av有码第一页| 亚洲欧美清纯卡通| 国产成人精品无人区| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 亚洲精品第二区| 91国产中文字幕| 国产无遮挡羞羞视频在线观看| 五月伊人婷婷丁香| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 91久久精品国产一区二区三区| 尾随美女入室| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 高清欧美精品videossex| 男女下面插进去视频免费观看 | 99热国产这里只有精品6| 成年av动漫网址| av免费在线看不卡| 男人添女人高潮全过程视频| 中文字幕最新亚洲高清| www.av在线官网国产| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| videossex国产| 国产成人精品久久久久久| 丝袜脚勾引网站| 国产精品国产三级专区第一集| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品第一综合不卡 | 国产毛片在线视频| 亚洲成人手机| 午夜福利网站1000一区二区三区| 侵犯人妻中文字幕一二三四区| 国产精品一国产av| 亚洲少妇的诱惑av| 午夜激情久久久久久久| 亚洲精华国产精华液的使用体验| 久久久久久久精品精品| 插逼视频在线观看| 欧美xxxx性猛交bbbb| 汤姆久久久久久久影院中文字幕| 中文字幕亚洲精品专区| 桃花免费在线播放| 少妇的逼水好多| 久久综合国产亚洲精品| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | 麻豆乱淫一区二区| 视频区图区小说| 又黄又爽又刺激的免费视频.| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| 国产精品久久久久久av不卡| 亚洲欧美精品自产自拍| 建设人人有责人人尽责人人享有的| 99热国产这里只有精品6| 国产色爽女视频免费观看| 日韩av免费高清视频| 人妻一区二区av| 久久 成人 亚洲| 国产熟女欧美一区二区| 国产成人aa在线观看| 波多野结衣一区麻豆| 涩涩av久久男人的天堂| 精品一区在线观看国产| 日本-黄色视频高清免费观看| 最近的中文字幕免费完整| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| av一本久久久久| 99re6热这里在线精品视频| 最黄视频免费看| 十八禁高潮呻吟视频| 亚洲av福利一区| 少妇的逼水好多| 日日摸夜夜添夜夜爱| 老司机影院毛片| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| tube8黄色片| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看 | 亚洲av欧美aⅴ国产| 青春草国产在线视频| 日韩伦理黄色片| 国产免费又黄又爽又色| 欧美性感艳星| 熟女电影av网| 青春草国产在线视频| 国产一区二区在线观看av| 精品一品国产午夜福利视频| 亚洲欧美日韩卡通动漫| 国产女主播在线喷水免费视频网站| 免费看av在线观看网站| 日韩大片免费观看网站| 亚洲国产精品999| videossex国产| 日韩av在线免费看完整版不卡| 999精品在线视频| 成人国语在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清不卡的av网站| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| av免费观看日本| 国产精品久久久av美女十八| 视频中文字幕在线观看| 国产成人精品在线电影| 侵犯人妻中文字幕一二三四区| 亚洲欧洲国产日韩| 80岁老熟妇乱子伦牲交| 99久久综合免费| 日韩av不卡免费在线播放| 黄色 视频免费看| 成人国产av品久久久| 丝袜在线中文字幕| 日韩中文字幕视频在线看片| 国产不卡av网站在线观看| 久久国产亚洲av麻豆专区| 边亲边吃奶的免费视频| 狠狠精品人妻久久久久久综合| 日韩中文字幕视频在线看片| 精品少妇黑人巨大在线播放| 一本大道久久a久久精品| 一级,二级,三级黄色视频| 自线自在国产av| 欧美少妇被猛烈插入视频| 国产免费现黄频在线看| 国产不卡av网站在线观看| 精品国产国语对白av| 久久久亚洲精品成人影院| 美女视频免费永久观看网站| 大码成人一级视频| 看免费成人av毛片| 97人妻天天添夜夜摸| 久久久久精品久久久久真实原创| 美女中出高潮动态图| 精品少妇久久久久久888优播| 亚洲av日韩在线播放| 99热这里只有是精品在线观看| 亚洲综合色惰| 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 国产黄频视频在线观看| 久久久a久久爽久久v久久| 黑人欧美特级aaaaaa片| 午夜福利在线观看免费完整高清在| 黄网站色视频无遮挡免费观看| 国产国语露脸激情在线看| av视频免费观看在线观看| av国产久精品久网站免费入址| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 国产综合精华液| 天堂中文最新版在线下载| 亚洲国产欧美日韩在线播放| 高清av免费在线| 少妇高潮的动态图| 美女国产高潮福利片在线看| 91aial.com中文字幕在线观看| 国产色爽女视频免费观看| 久久人人爽av亚洲精品天堂| 在线天堂最新版资源| 欧美亚洲日本最大视频资源| 亚洲综合色网址| 日韩熟女老妇一区二区性免费视频| 少妇人妻精品综合一区二区| 亚洲美女视频黄频| 亚洲国产精品999| 女性被躁到高潮视频| 日韩精品有码人妻一区| 免费看不卡的av| 高清欧美精品videossex| 亚洲天堂av无毛| 日韩一区二区视频免费看| videossex国产| 欧美精品一区二区免费开放| 国产淫语在线视频| 在线观看免费高清a一片| 天天躁夜夜躁狠狠久久av| av在线app专区| 亚洲精品久久午夜乱码| 男女下面插进去视频免费观看 | 2018国产大陆天天弄谢| 国产成人精品在线电影| 久久99热6这里只有精品| 国产成人精品婷婷| 国产精品一区二区在线观看99| 97精品久久久久久久久久精品| 最近最新中文字幕免费大全7| 欧美日本中文国产一区发布| 精品一区二区三区视频在线| 亚洲美女视频黄频| 亚洲国产精品999| 男人爽女人下面视频在线观看| 成人国产麻豆网| 欧美激情 高清一区二区三区| 中文字幕精品免费在线观看视频 | 亚洲美女搞黄在线观看| 美女xxoo啪啪120秒动态图| 免费观看在线日韩| 天天躁夜夜躁狠狠躁躁| 精品第一国产精品| 纵有疾风起免费观看全集完整版| 伊人久久国产一区二区| 久久青草综合色| 18在线观看网站|