• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering *

    2019-01-05 08:08:30DharmendraTripathiShashiBhushanAnwarNoreenSherAkbar

    Dharmendra Tripathi, Shashi Bhushan, O. Anwar Bég, Noreen Sher Akbar

    1. Department of Science and Humanities, National Institute of Technology, Uttarakhand – 246174, India

    2. Department of Mechanical Engineering, Manipal University, Jaipur, India

    3. Department of Aeronautical and Mechanical Engineering, University of Salford, Manchester M54WT, UK

    4. DBS & H CEME, National University of Sciences and Technology, Islamabad, Pakistan

    Abstract: Peristaltic micro-pumps offer an excellent mechanism for delivery of a variety of medicines including drugs, corneal solutions etc. The surge in deployment of nanoparticles in medicine has provided new potential for such pumps. In light of this we investigate the time-dependent peristaltic flow of nanofluids with diffusive effects through a finite non-uniform channel, this geometry being more representative of real micro-pumps. Creeping flow is taken into account (inertial forces are small compared with viscous forces) i.e., Reynolds number is low (R e < 1) and wavelength is also taken to be very large. The Buongiorno formulation for nanofluids is employed with an Oberbeck-Boussinesq approximation. Closed-form solutions are developed for the non-dimensional governing equations subject to physically realistic boundary conditions. Mathematica symbolic software is employed to evaluate the evolution of nanoparticle fraction, temperature, axial velocity, transverse velocity and pressure difference distribution along the length of the pump channel with variation in thermal Grashof number, basic-density (species i.e., mass) Grashof number, Brownian motion parameter and thermophoresis parameter.

    Key words: Unsteady flow, peristaltic pumps, nanofluids, medical engineering, diffusive process, grashof number, thermophoresis

    Introduction

    Peristaltic micro-pumps have emerged as promising mechanical pumps which exploit the biologically efficient peristalsis mechanism to emulate wave-like contractions/expansions of a tube-shaped organ,resulting in forward motion of fluids. This mechanism is known to mitigate backflow (retro-flux) which is problematic in alternative medical pump systems.Aspects of peristaltic pump technology have been described lucidly by Teymooir and Abbaspour-Sani[1],Wang and Lee[2]. Transient flows in peristaltic pumps are in particular of considerable interest and provide a better understanding of the dynamics and efficiency of such systems[3]. Although most analytical studies of peristaltic flows have been constrained to infinite tubes, several investigations have considered finite length tubes, notably Li and Brasseur[4]. More recently non-Newtonian extensions of the Li-Brasseur study were presented utilizing a power-law fluid model by Misra and Pandey[5]. Further extensions in this direction have been presented for numerous rheological fluids by Tripathi[6], Tripathi and Bég[7], Grosjean et al.[8]who have synthesized a robust peristaltic pump at Caltech. These studies have demonstrated that the finite nature of the transport conduit exerts a substantial influence on peristaltic flow characteristics.

    Nano-science and nano-technology have also stimulated great attention in recent years, largely propelled by the continuous miniaturization of existing technology and improvement in performance of medical devices at smaller scales. A subsection of nanomechanics is nanofluid mechanics, pioneered by Choi[9]which addresses the intelligent modification of macro-fluids using carefully designed nano-particles.This has had a diverse impact in medical engineering,to the extent that a Journal of Nanofluids has been launched in the USA[10], and one of many with a large focus on nano-technological fluid mechanics including ASME Journal of Nanotechnology in Engineering Medicine[11]. Important applications of these medical nanofluids which are revolutionizing clinical care include anti-bacterial wound treatment suspensions[12], respiratory tracking mechanisms[13], magnetic biopolymers for drug coating to enable faster tracking to cancerous zones[14], pharmaco-dynamics(drug delivery)[15-17]and protein identifications[18].Fluid dynamics models for nanofluid transport have been developed by a variety of groups worldwide,notably by Buongiorno[19]at MIT. His model emphasizes the thermophoresis and Brownian motion mechanisms for nano-enhanced performance and is robust for adoption in peristaltic flows. Progress has continued in nanofluid dynamic simulation. For example mathematical models for thermal instability in a porous medium saturated by a nanofluid and convection of nanofluids with single and double diffusion have been reported by Nield and Kuznetsov[20-22]. In other developments, a Predictor homotopy analysis for nanofluid flow through flexible permeable walls and unsteady MHD free convective flow from a permeable stretching vertical surface in a nano-fluid has been considered by Freidoonimehr et al.[23-24]. An analytical approach for entropy generation for Casson rheological nanofluids induced by a stretching surface has been presented by Abolbashari et al.[24].

    Relatively sparse studies of peristaltic transport of nanofluids have been communicated. Of the mathematical studies conducted the vast majority have addressed infinite straight or curved channels including Akbar and Nadeem[25], Aly and Ebaid[26]for slip flows, Mustafa et al.[27], Akbar et al.[28]. While mathematically rigorous, these studies have neglected a serious interpretation of the nanofluid characteristics on real performance in peristaltic systems. Along with the focus on finite channels, in the present study we examine non-uniform (diverging) channels and also place greater emphasis on the Brownian motion and thermophoretic as well as multiple Grashof number effects in peristaltic transport of nanofluids. Nanofluid transport involves both heat and mass transfer and the interaction of both diffusive phenomena. The model developed examines the interactional influence of diffusive process and nanoparticles on time-dependent peristaltic flow through a finite length non-uniform channel. The coupled differential equations are solved by taking the low Reynolds number and long wavelength approximation. Solutions are benchmarked for the Newtonian case with the previous results of Li and Brasseur[4]. The evolution of nanoparticle fraction profile, temperature profile, velocity profile, and pressure difference across the finite length nonuniform channel is visualized using Mathematica software. This work extends the earlier uniform channel model presented in Ref. [7]. This model is applicable to the simulation of nanofluid peristaltic micro-pumps in biomedical engineering.

    1. Geometric model for peristaltic micropump flow

    The geometric model for the peristaltic transport of nanofluid via a non-uniform finite channel, as depicted in Fig. 1 is taken as

    Fig. 1 (Color online) Geometrical model for non-uniform peristaltic micropump flow

    2. Mathematical model

    The peristaltic micro-pump geometry is approximated by a finite channel with non-uniform sinusoidal waves propagating along the surface. The channel walls are assumed to be distensible and identical in constitution. Damping characteristics are ignored. The nanofluid model employed is adapted from Buongiorno[22]. In the original model, although numerous mechanisms are postulated for convective transport in nanofluids with a two-phase non-homogenous framework including diffusiophoresis, the Magnus effect, fluid drainage, gravity, inertia,Brownian diffusion and thermophoresis, only the last two mechanisms are essentially dominant in the low-Reynolds number regime (laminar flows). Furthermore a dilute nanoparticle suspension is considered here. The magnitudes for temperature ()T and nanoparticle fraction ()F at the center line (=0)η and the wall of the channel (=1)η are denoted by,and,respectively. Under the usual Boussinesq approximation, with an appropriate reference pressure, the transport equations for the regime are respectively[19-22]with the following assumptions:(1) laminar incompressible flow, (2) no chemical reactions, (3) negligible external forces, (4) dilute mixture, (5) negligible viscous dissipation, (6)negligible radiative heat transfer, (7) nanoparticles and base fluid locally in thermal equilibrium.

    Continuity equation

    Axial momentum equation

    Transverse momentum equation

    Energy equation

    Conservation equation for the nanoparticles, in the absence of chemical reactions

    The relevant boundary conditions are specified as follows:

    Integrating Eq. (12) twice with respect to η and using the third and fourth boundary conditions of Eq.(13), the nanoparticle fraction (species concentration)field emerges as

    we further double integrate Eq. (11) with respect to η. Thereafter we deploy the first and second boundary conditions of Eq. (13) and this generates the solution for temperature field function, as follows

    Substituting Eqs. (19), (20) into Eq. (9) we further double integrate the latter with respect to η. Next,we use both boundary conditions (14) and (15), and this leads to an expression for the axial (longitudinal)velocity

    where

    Using Eq. (21) in the mass conservation Eq. (8),integrating with respect to η and also invoking the boundary condition (16), then results in the appropriate expression for transverse velocity which takes the form

    Utilizing boundary condition (17) leads to

    where

    Integrating Eq. (23) with respect to ξ the pressure gradient yields

    Integrating once again, the pressure difference across the length of channel is evaluated as

    Upon substituting, ξ=l, we arrive at

    where ()A t is an arbitrary function of time ()t,which is evaluated by a simple manipulation of Eq.(26) and the finite length condition. This leads to

    To undertake a parametric study of the effects of the dominant thermophysical and geometric parameters on peristaltic motions, recourse is made to the appropriate integration routines in the symbolic Mathematica software. Visualization of computations is also greatly facilitated with this code and elaborated in due course.

    3. Numerical evaluation of results and interpretation

    Figures 2-9 illustrate the influence of a range of parameters emerging in the boundary value problem,namely basic-density Grashof numberthermal Grashof number, Brownian motion parameter, thermophoresis parameteron nanofluid temperature, nanoparticle volume fraction, axial velocity and pressure distribution along the length of non-uniform channel. A time cyclic process for bolus(wave) movement has been presented by taking the values of t = 0, 0.25, 0.5, 0.75 and 1.

    Figures 2-4 present the effects of α i.e., nonuniformity channel geometry constant on the nanoparticle volume fraction, temperature and axial velocity profiles, respectively. As α increases, the channel becomes wider and more divergent. For the case of, the non-uniform channel retracts to a uniform channel, a case which has already been examined by Tripathi and Bég[17]. In Figs. 2-4, strong thermophoresis and Brownian motion (small particles) are considered via the default values o fFurthermore the plots are for =0.5t i.e., isochrones of the behavior at that instant. With, the thermal and mass (density) buoyancy forces are respectively equal to the viscous hydrodynamic force in the regime. φ (wave amplitude)and δ (wave number) are also prescribed as 0.5 and 2.0 (an even number of peristaltic waves propagate),respectively.

    Fig. 2 (Color online) Nanoparticle fraction profiles (Φ(η) vs.η) for various values of α=0, 1, 2 and 3 at φ=0.5,ξ=1, δ=2, t=0.5, N t =1, Nb=1

    Fig. 3 (Color online) Temperature profiles (θ (η) vs. η) for various values of α=0, 1, 2 and 3 at φ=0.5, ξ=1,δ = 2, t = 0.5, N t =1, N b=1

    There is an evident growth in nanoparticle volume fraction with increasing transverse coordinate,whereas the increase in non-uniformity parameter clearly induces a decrease in nanoparticle volume fraction. The greater space available in the diverging channel results in a decrease in intensity of nanoparticles in the regime (Fig. 2), which manifests via weaker concentrations across the channel width.Apparently species diffusion is therefore regulated via divergent channel and this may be useful in achieving better controlled delivery of nano-medicines. Although temperatures (Fig. 3) are also elevated with greater transverse coordinate, as with nanoparticle concentrations (volume fraction) they experience decay with greater divergence in the channel i.e., non-uniformity parameter. However whereas the nanoparticle volume fraction profiles ascend monotonically from zero to attain different maxima at the wall, the temperature profiles exhibit a convergence towards a single peak and plateau at high values of transverse coordinate.Evidently greater non-uniformity of the channel also cools the nanofluid flow across the channel. In Fig. 4,we observe that axial velocity profiles are initially negative indicating some reflux (backflow) at low transverse coordinate values. This trend is eliminated at higher -ηvalues, and the velocity distributions continue to ascend monotonically. The increase in non-uniformity again depresses velocity magnitudes, a feature largely attributable to the destruction in momentum with greater widths of the channel. This behavior is representative of diffuser-type flows in engineering and enables a deceleration in axial flow with judicious selection of the channel wall gradient(angle of divergence).

    Fig. 4 (Color online) Ax ial veloc ity pro fi les (u(η) vs. η) for various values ofα=0,1,2,3atφ=0.5,ξ=1,?p/? ξ=1, δ=2, t=0.5, N t =1, N b =1, G rT=1, G rF=1

    Figures 5(a)-5(e) presents the effects of geometric, nanofluid and buoyancy parameters on transverse velocity profiles. In all these plots the peak transverse velocity generally arises in the vicinity of the centerline of the channel, although the distributions are skewed parabolas. In Fig. 5(a) the transverse velocity is observed to be enhanced with greater non-uniformity parameter. The destruction of axial momentum results in a concomitant boost in transverse momentum as the channel diverges.

    Fig.5 (Color online) Transverse velocity profiles (v(η) vs. η)at φ=0.5, ξ=1, ?p/?ξ=1, δ=2, t=0.5

    Fig.6 (Color online) Pre ssure dif ference vs. axia l distance for α=0(unif ormchanne l)α= 0.05,0.1 (no n -uniform channel)andφ=0.8,δ=1,N t =1,N b =0.1,GrF =0.1, G rT =1,pl = p 0 =0, l = 3 at various instants. Dotted color lines represent the position of wave and color solid lines show pressure distribution along the length of channel

    This accelerates flow across the channel but decelerates it along the channel. With increasing Brownian motion parameter,bN, (Fig. 5(b)), the transverse velocity is markedly suppressed, across the width of the channel. Figure 5(c) demonstrates that with an increase in thermophoretic parameter,tN, the transverse velocity is elevated strongly. Thermophoresis physically is the transport of nano-particles in the direction of a decreasing temperature gradient. The net force acting in the opposite direction to the temperature gradient, i.e., towards the low temperature region is produced via differential bombardment of nanoparticles which originate from the relatively hot and cold regions in the vicinity of particles. This effect manifestly influences momentum diffusion.Figs. 5(d), 5(e) illustrate that with increasing thermal and mass (density) Grashof number the transverse velocity is accelerated significantly.

    Figures 6(a)-6(e) depict the collective influence of time ()t and non-uniformity parameter ()α on axial pressure difference distributions. Pressure difference ()pΔ, is generally accentuated with increasing α (channel non-uniformity parameter). The periodic nature of the pressure distributions is clearly captured in these figures. With longer time, the amplitude of pressure difference is observed to be markedly depressed (Fig. 6(d)) compared with smaller time elapses. At large time the pressure difference for a uniform channel is considerably lower than for small times, and is in addition lowest for a uniform channel–whereas in Figs. 6(a)-6(c) the maximum pressure difference (at lower times) corresponds to uniform channels.

    Figures 7(a)-7(e) depict the collective influence of time (t) and Brownian motion parameteron axial pressure difference profiles. Increasing Brownian motion is found to enhance pressure difference magnitudes i.e. smaller nano-particles induce greater pressures in the peristaltic flow regime. Increasing time is also seen to considerably boost pressure differences (Figs. 7(a), 7(e)) have the highest pressure peaks compared with lower peaks in intermediate time plots.

    Figures 8(a), 8(b) present the combined influence of time (t) and thermophoresis parameteron axial pressure difference profiles. Increasingvalues clearly result in a suppression of pressure differences along the channel length. With progression in time, a generally more even distribution in pressure differences is observed. Evidently stronger migration of particles away from the directi on o f i ncreasing temperature gradient contributes to adropinpressure difference in the peristaltic propulsion.

    Fig.7 (Color online) Pressure difference vs. axial distan ce for Nb =0.1, 0.2, 0.3 and α=0.1, φ=0.8, δ=1,Nt =1, δ=1, N t =1, G rF =0.1, G rT =1,pl = p 0 =0,l = 3 at various instants. Dotted color lines represent the position of wave and color solid lines show pressure distribution along the length of channel

    Fig.8 (Color on lin e) Pressure difference v s. axial distance for Nt =0,1,2and α=0.1, φ=0.8,δ=1,N b =0.1,GrF =0.1, G rT =1, p l = p0 =0, l = 3 at various instants. Dotte d colo r lines represent the position o f wave and colorsolidlinesshowpressuredistributionalongthe length of channel

    Fig.9 (Color o nli ne ) Pressure difference vs. axial distance for GrT =0,1,2and α=0.1, φ=0.8, δ=1, N b =0.1,N t =1, G rF =0.1, pl = p 0 =0, l = 3 at various instants. Dotte d colo r lines represent the position of wave and colorsolidlinesshowpressuredistributionalongthe length of channel

    Fig.10 (Color online) Pressure difference vs. axial distance for GrF =0, 0.1, 0.2 and α=0.1, φ=0.8, δ=1, Nb=0.1, G rT =1 , pl = p 0 =0, l = 3 at va rio us ins tants.Dotte dcolo rline srepr esentthe positionof wave and colorsolidlinesshowpressuredistributionalongthe length of channel

    Figures 9(a)-9(d) depict the combined effects of time (t) and thermal Grashof numberon axial pressure difference profiles. IncreasingTGr which implies greater thermal buoyancy relative to viscous force, induces a reduction in pressure difference across the channel length. With increase in time there is a distinct evolution in pressure profiles,with peak pressure difference at very low and very high times (Figs. 9(a), 9(d)) migrating for intermediate values of time.

    Figures 10(a)-10(d) show that although the same general effect is generated on pressure difference-axial coordinate plots with an increase in mass (density)Grashof number, the increase inFGr required is an order of magnitude less than for thermal Grashof number. The pressure difference profiles are modified with time, with peaks migrating. However the overwhelming influence of mass diffusion (nanoparticles)on pressure evolution compared with thermal buoyancy is evident.

    4. Conclusion

    Analytical solutions have been developed for the peristaltic flow, heat and mass transfer of a nanofluid in a non-uniform channel, as a simulation of nanomedical peristaltic micro-pumps, using a robust model for Brownian motion and thermophoresis. The nondimensional solutions have been evaluated via Mathematica symbolic software. Computations have shown that increasing thermophoresis effect accelerates transverse flow whereas it depresses pressure differences. Increasing thermal and mass Grashof number both serve to suppress pressure differences,whereas the latter achieves a greater effect for small increments. Pressure difference is also enhanced with greater Brownian motion effects. Axial velocity,nanoparticle volume fraction (species concentration)and temperatures are all decreased with greater divergence of the channel geometry i.e., non-uniformity parameter. The present model has been restricted to Newtonian formulations for the nanofluid shear stress-strain characteristics. Future work will explore non-Newtonian nanofluids (e.g., power-law) and microstructural Eringen models[29-30], which are more representative of certain linctus solutions, medical creams and ophthalmic agents and work in this direction is in progress.

    Acknowledgement

    The authors are grateful to the reviewers for their comments which have served to improve the present work.

    黄色 视频免费看| 欧美黑人精品巨大| 午夜免费成人在线视频| 久久久久久久大尺度免费视频| 动漫黄色视频在线观看| 激情视频va一区二区三区| 国产成人欧美| 嫩草影视91久久| 丝瓜视频免费看黄片| 日本91视频免费播放| 午夜免费观看性视频| 美女高潮喷水抽搐中文字幕| 久久久水蜜桃国产精品网| www.999成人在线观看| 俄罗斯特黄特色一大片| 日韩制服骚丝袜av| 搡老乐熟女国产| 美女福利国产在线| 超碰成人久久| 亚洲欧美精品综合一区二区三区| 少妇 在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一av免费看| 18禁国产床啪视频网站| 女性生殖器流出的白浆| 日韩欧美免费精品| 国产三级黄色录像| 男女之事视频高清在线观看| 18在线观看网站| 如日韩欧美国产精品一区二区三区| 性少妇av在线| 成人三级做爰电影| 日韩中文字幕视频在线看片| 日本猛色少妇xxxxx猛交久久| 91大片在线观看| 丁香六月欧美| 亚洲专区字幕在线| 国产老妇伦熟女老妇高清| 午夜两性在线视频| 男人舔女人的私密视频| 欧美精品高潮呻吟av久久| 少妇被粗大的猛进出69影院| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久网色| 国产真人三级小视频在线观看| 亚洲九九香蕉| 欧美一级毛片孕妇| av免费在线观看网站| 少妇精品久久久久久久| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 超碰成人久久| 少妇被粗大的猛进出69影院| 欧美日韩视频精品一区| 一级毛片精品| 99久久人妻综合| 久久女婷五月综合色啪小说| av片东京热男人的天堂| 男人爽女人下面视频在线观看| 午夜影院在线不卡| 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 成年人午夜在线观看视频| 国产精品久久久av美女十八| 久久免费观看电影| 50天的宝宝边吃奶边哭怎么回事| 天堂俺去俺来也www色官网| kizo精华| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 18在线观看网站| av一本久久久久| 久久久久国产精品人妻一区二区| 宅男免费午夜| 中文字幕人妻熟女乱码| 国产在视频线精品| 国产在线观看jvid| 国产精品.久久久| 黑丝袜美女国产一区| 欧美日韩亚洲高清精品| 男人舔女人的私密视频| 国产av一区二区精品久久| 女性生殖器流出的白浆| 日韩大码丰满熟妇| 老司机福利观看| 老司机午夜十八禁免费视频| 人人妻人人添人人爽欧美一区卜| 欧美 亚洲 国产 日韩一| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 久久亚洲精品不卡| 久久女婷五月综合色啪小说| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 菩萨蛮人人尽说江南好唐韦庄| 成人影院久久| 国产精品久久久久成人av| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 亚洲黑人精品在线| 久久香蕉激情| 欧美国产精品一级二级三级| 大片免费播放器 马上看| 动漫黄色视频在线观看| 美女中出高潮动态图| 欧美日韩中文字幕国产精品一区二区三区 | av电影中文网址| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 免费人妻精品一区二区三区视频| 少妇的丰满在线观看| 国精品久久久久久国模美| 久久国产精品影院| av在线老鸭窝| 女人久久www免费人成看片| 在线观看免费日韩欧美大片| 老司机福利观看| 欧美乱码精品一区二区三区| 国产精品久久久久久精品古装| 国产淫语在线视频| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区| www.精华液| 久久精品国产综合久久久| 婷婷成人精品国产| 精品人妻在线不人妻| 成年美女黄网站色视频大全免费| 热99re8久久精品国产| 久久久精品94久久精品| 一本综合久久免费| 自线自在国产av| 国产在线视频一区二区| 18在线观看网站| 午夜久久久在线观看| 在线观看舔阴道视频| 欧美 日韩 精品 国产| 久久天堂一区二区三区四区| 大型av网站在线播放| 夜夜夜夜夜久久久久| 一级毛片女人18水好多| 久久国产精品影院| 久久狼人影院| 国产有黄有色有爽视频| 日本撒尿小便嘘嘘汇集6| 国产99久久九九免费精品| 狂野欧美激情性bbbbbb| 黄色 视频免费看| a级片在线免费高清观看视频| 久久精品人人爽人人爽视色| 超色免费av| 精品欧美一区二区三区在线| 热re99久久国产66热| 成人av一区二区三区在线看 | 久久久久久亚洲精品国产蜜桃av| av天堂久久9| 五月天丁香电影| 日本五十路高清| 大陆偷拍与自拍| 成人国产av品久久久| 2018国产大陆天天弄谢| 一级毛片电影观看| 久久99一区二区三区| 三级毛片av免费| 9色porny在线观看| a 毛片基地| 99久久人妻综合| 一本一本久久a久久精品综合妖精| cao死你这个sao货| 成人国产av品久久久| 在线av久久热| 一本综合久久免费| 97在线人人人人妻| 色94色欧美一区二区| 国产福利在线免费观看视频| 精品免费久久久久久久清纯 | 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 国产精品1区2区在线观看. | 国产成人影院久久av| 老司机福利观看| 久久青草综合色| 777久久人妻少妇嫩草av网站| 国产在线观看jvid| 叶爱在线成人免费视频播放| 国产国语露脸激情在线看| 一级毛片女人18水好多| 在线观看www视频免费| av视频免费观看在线观看| 69av精品久久久久久 | 久久ye,这里只有精品| 老司机在亚洲福利影院| 男女无遮挡免费网站观看| 香蕉丝袜av| 各种免费的搞黄视频| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲| 亚洲精品久久久久久婷婷小说| 99国产精品99久久久久| 亚洲,欧美精品.| 欧美黄色淫秽网站| 久久久久久人人人人人| 桃红色精品国产亚洲av| 欧美性长视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产激情久久老熟女| 悠悠久久av| 日本a在线网址| 亚洲精品乱久久久久久| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 80岁老熟妇乱子伦牲交| 黄频高清免费视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人一区二区三| 国产一级毛片在线| 欧美日本中文国产一区发布| 亚洲精品久久久久久婷婷小说| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 日韩欧美一区视频在线观看| 在线看a的网站| 日本猛色少妇xxxxx猛交久久| 色老头精品视频在线观看| av在线老鸭窝| 久久99一区二区三区| 一级片'在线观看视频| 在线 av 中文字幕| 午夜福利一区二区在线看| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 一边摸一边做爽爽视频免费| 美女高潮喷水抽搐中文字幕| 欧美日韩一级在线毛片| 亚洲色图综合在线观看| 少妇粗大呻吟视频| 黄色视频不卡| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 伊人久久大香线蕉亚洲五| 大香蕉久久网| 国产av又大| 啦啦啦中文免费视频观看日本| 成人av一区二区三区在线看 | 成人18禁高潮啪啪吃奶动态图| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美精品济南到| 精品少妇久久久久久888优播| 成人av一区二区三区在线看 | 制服人妻中文乱码| 亚洲全国av大片| 纵有疾风起免费观看全集完整版| 人人澡人人妻人| 亚洲精品一区蜜桃| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 可以免费在线观看a视频的电影网站| 婷婷成人精品国产| 中亚洲国语对白在线视频| 精品少妇久久久久久888优播| 在线观看人妻少妇| 久久精品国产亚洲av高清一级| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| av有码第一页| 亚洲国产av影院在线观看| 老司机深夜福利视频在线观看 | 国产一区二区在线观看av| 精品国产国语对白av| 丝袜喷水一区| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 日韩视频一区二区在线观看| 大片电影免费在线观看免费| 国产日韩欧美视频二区| 国产精品九九99| 在线av久久热| a 毛片基地| 国产一区有黄有色的免费视频| 一个人免费在线观看的高清视频 | 亚洲精品国产一区二区精华液| 久热爱精品视频在线9| 99国产精品免费福利视频| 在线观看免费日韩欧美大片| 色播在线永久视频| 男女无遮挡免费网站观看| 99久久精品国产亚洲精品| 欧美 日韩 精品 国产| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 欧美精品av麻豆av| 精品一品国产午夜福利视频| 大片电影免费在线观看免费| 精品国产一区二区三区四区第35| 婷婷丁香在线五月| 日韩视频在线欧美| 一级片'在线观看视频| 日本91视频免费播放| 久久久精品国产亚洲av高清涩受| 久久人人97超碰香蕉20202| 超色免费av| 日韩 亚洲 欧美在线| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 十八禁网站免费在线| 一级毛片电影观看| 在线观看免费视频网站a站| 在线av久久热| 嫩草影视91久久| 中文欧美无线码| 秋霞在线观看毛片| 免费高清在线观看视频在线观看| 国产视频一区二区在线看| 69av精品久久久久久 | 午夜福利视频在线观看免费| 国产麻豆69| 亚洲精品国产av蜜桃| 久久精品亚洲av国产电影网| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 久久精品亚洲熟妇少妇任你| 成年美女黄网站色视频大全免费| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 亚洲一区中文字幕在线| 国产福利在线免费观看视频| 欧美日韩精品网址| 亚洲精品自拍成人| 侵犯人妻中文字幕一二三四区| 亚洲av欧美aⅴ国产| 欧美精品啪啪一区二区三区 | 窝窝影院91人妻| 99精品欧美一区二区三区四区| 青春草亚洲视频在线观看| av欧美777| 人妻久久中文字幕网| 搡老岳熟女国产| 99热网站在线观看| av在线老鸭窝| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 国产片内射在线| 日韩电影二区| www.熟女人妻精品国产| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| 精品一品国产午夜福利视频| 男女国产视频网站| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 亚洲久久久国产精品| 人人澡人人妻人| 高清视频免费观看一区二区| xxxhd国产人妻xxx| 欧美日韩中文字幕国产精品一区二区三区 | 老司机午夜福利在线观看视频 | 久久天堂一区二区三区四区| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 精品国产乱子伦一区二区三区 | 又黄又粗又硬又大视频| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 国产精品成人在线| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线| 久久精品国产a三级三级三级| 久久这里只有精品19| 久久人人97超碰香蕉20202| 99久久国产精品久久久| 新久久久久国产一级毛片| 成人国产av品久久久| 日韩三级视频一区二区三区| 中文字幕高清在线视频| 精品国产一区二区三区久久久樱花| 国产亚洲精品一区二区www | 99精国产麻豆久久婷婷| 欧美性长视频在线观看| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 汤姆久久久久久久影院中文字幕| 热re99久久精品国产66热6| 国产一区二区三区av在线| 12—13女人毛片做爰片一| 一区二区三区精品91| 动漫黄色视频在线观看| 国产极品粉嫩免费观看在线| 国产亚洲av片在线观看秒播厂| 欧美黄色淫秽网站| h视频一区二区三区| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 亚洲九九香蕉| 脱女人内裤的视频| 日韩电影二区| 日韩制服骚丝袜av| 国产成人欧美| 狠狠婷婷综合久久久久久88av| 在线精品无人区一区二区三| 中文字幕人妻熟女乱码| 又黄又粗又硬又大视频| 日本五十路高清| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| svipshipincom国产片| 91成人精品电影| 69精品国产乱码久久久| 老司机在亚洲福利影院| 成人免费观看视频高清| 大片电影免费在线观看免费| 飞空精品影院首页| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久 | 久久久久国内视频| www日本在线高清视频| 黄色视频不卡| 中国国产av一级| 久久精品熟女亚洲av麻豆精品| 午夜老司机福利片| 悠悠久久av| 欧美精品一区二区免费开放| 国产精品熟女久久久久浪| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 欧美在线一区亚洲| 我要看黄色一级片免费的| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 成人av一区二区三区在线看 | 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 午夜激情久久久久久久| av线在线观看网站| 亚洲天堂av无毛| 亚洲熟女毛片儿| 一级片免费观看大全| 久久久久网色| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区久久| 五月开心婷婷网| 人人妻人人添人人爽欧美一区卜| 国产不卡av网站在线观看| 777米奇影视久久| 久久人人爽人人片av| 老鸭窝网址在线观看| 色婷婷久久久亚洲欧美| 久久人妻福利社区极品人妻图片| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 久久热在线av| 国产免费av片在线观看野外av| 午夜激情久久久久久久| 国产精品久久久av美女十八| 国产97色在线日韩免费| 国产精品影院久久| 一区二区av电影网| 美女高潮到喷水免费观看| 久久热在线av| 久久亚洲国产成人精品v| 夫妻午夜视频| 男女无遮挡免费网站观看| 777米奇影视久久| 国产成人系列免费观看| 亚洲精品乱久久久久久| 在线观看人妻少妇| 夜夜夜夜夜久久久久| 亚洲伊人色综图| 视频区图区小说| 亚洲全国av大片| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 国产av又大| 热re99久久精品国产66热6| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 超色免费av| 日韩中文字幕欧美一区二区| 汤姆久久久久久久影院中文字幕| 97精品久久久久久久久久精品| 亚洲国产欧美一区二区综合| 9热在线视频观看99| av网站免费在线观看视频| 美女国产高潮福利片在线看| 少妇裸体淫交视频免费看高清 | 亚洲精品乱久久久久久| 涩涩av久久男人的天堂| 日韩大片免费观看网站| 在线观看人妻少妇| 少妇的丰满在线观看| 免费少妇av软件| 欧美中文综合在线视频| 美女中出高潮动态图| 男女高潮啪啪啪动态图| 美女中出高潮动态图| 欧美一级毛片孕妇| 日本欧美视频一区| 一级片'在线观看视频| 成年动漫av网址| av网站在线播放免费| 一区二区日韩欧美中文字幕| 国产男女内射视频| h视频一区二区三区| 精品一区在线观看国产| 日韩欧美一区二区三区在线观看 | 久久国产精品男人的天堂亚洲| 少妇的丰满在线观看| 搡老岳熟女国产| 精品欧美一区二区三区在线| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 亚洲 国产 在线| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成国产av| 精品欧美一区二区三区在线| 青春草视频在线免费观看| 亚洲综合色网址| 搡老岳熟女国产| www.精华液| 亚洲精品一二三| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 久久精品人人爽人人爽视色| netflix在线观看网站| 美女脱内裤让男人舔精品视频| 亚洲专区字幕在线| av网站免费在线观看视频| 久久国产精品影院| 久久精品亚洲av国产电影网| 黄色 视频免费看| 伊人亚洲综合成人网| 国产视频一区二区在线看| 制服诱惑二区| 乱人伦中国视频| 亚洲免费av在线视频| 精品视频人人做人人爽| 一级毛片电影观看| 欧美黄色片欧美黄色片| av在线播放精品| 免费高清在线观看日韩| 热99国产精品久久久久久7| 欧美在线一区亚洲| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 美女视频免费永久观看网站| 热99re8久久精品国产| 日本91视频免费播放| 2018国产大陆天天弄谢| 蜜桃在线观看..| av国产精品久久久久影院| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 69av精品久久久久久 | 久久国产精品影院| 国产欧美日韩一区二区精品| 老熟女久久久| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 一区二区三区四区激情视频| 老司机影院毛片| 五月天丁香电影| 亚洲精华国产精华精| 国产无遮挡羞羞视频在线观看| 久久香蕉激情| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 国产一卡二卡三卡精品| 人人妻人人添人人爽欧美一区卜| 天天添夜夜摸| 手机成人av网站| 亚洲美女黄色视频免费看| 好男人电影高清在线观看| 精品久久蜜臀av无| 亚洲视频免费观看视频| 高潮久久久久久久久久久不卡| 免费高清在线观看日韩| 一边摸一边抽搐一进一出视频| 超色免费av| 韩国精品一区二区三区| 狂野欧美激情性xxxx| kizo精华| 久久国产精品人妻蜜桃| 国产精品一区二区在线观看99| 女性被躁到高潮视频| 在线观看免费日韩欧美大片| www.自偷自拍.com| 大码成人一级视频| 国产av一区二区精品久久| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 久久久久国产精品人妻一区二区| 国产熟女午夜一区二区三区| 久久久国产欧美日韩av| 国产精品 欧美亚洲|