• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The”Hot Spots”Conjecture on Homogeneous Hierarchical Gaskets

    2019-01-05 02:35:24XiaofenQiu
    Analysis in Theory and Applications 2018年4期

    Xiaofen Qiu

    Division of Fundamental Education,Shanghai Industry and Commerce Foreign Language College,Shanghai 201399,China and School of Mathematical Science,Zhejiang University,Hangzhou 310027,Zhejiang,China

    Abstract.In this paper,using spectral decimation,we prove that the”hot spots”conjecture holds on a class of homogeneous hierarchical gaskets introduced by Hambly,i.e.,every eigenfunction of the second-smallest eigenvalue of the Neumann Laplacian(introduced by Kigami)attains its maximum and minimum on the boundary.

    Key Words:Neumann Laplacian,”hot spots”conjecture,homogeneous hierarchical gasket,spectral decimation,analysis on fractals.

    1 Introduction

    The”hot spots”conjecture was posed by J.Rauch at a conference in 1974. Informally speaking,it was stated in[3]as follows:Suppose that D is an open connected bounded subset of Rdand u(t,x)is the solution of the heat equation in D with the Neumann boundary condition.Then for”most”initial conditions,if ztis a point at which the function x→u(t,x)attains its maximum,then the distance from ztto the boundary of D tends to zero as t tends to ∞. In other words,the”hot spots”move towards the boundary.Formally,there are several versions of the hot spots conjecture. See[3]for details. In this paper,we will use the following version:every eigenfunction of the second-smallest eigenvalue of the Neumann Laplacian attains its maximum and minimum on the boundary.

    The”hot spots”conjecture holds in many typical domains in Euclidean space,especially for certain convex planar domains and lip domains.For examples,please see[1,3,11].On the other hand,Burdzy and Werner[5]and Burdzy[4]constructed interesting planar domains such that the”hot spots”conjecture fails.

    Figure 1:HH(b),where b=(2,3,3,2,···).

    The underlying spaces in above works are domains in Euclidean space. Since we can do analysis on fractals(see[12,13,21]),it is natural to ask whether the conjecture holds for p.c.f.fractals.Recently,there are some works on this topic.On the one hand,Ruan[17],Ruan and Zheng[18],Li and Ruan[15]proved that the conjecture hold on the Sierpinski gasket(SG2for short),the level-3 Sierpinski gasket(SG3for short)and higher dimensional Sierpinski gaskets.On the other hand,Lau,Li and Ruan[14]proved that the conjecture does not hold on the hexagasket.The basic tool used in these paper is spectral decimation.

    The above fractals studied are all p.c.f. self-similar. Thus it is interesting to ask whether the conjecture holds for non p.c.f. self-similar fractals. In this paper,we will consider homogeneous hierarchical gaskets,which were introduced by Hambly[8,9].These gaskets are non p.c.f..Fortunately,they admit spectral decimation so that we can use similar method to prove that the conjecture holds on these gaskets.

    Roughly speaking,the subdivision scheme for homogeneous hierarchical gaskets is a variant of the one for the usual Sierpinski gasket and constructed level by level.Each cell of level m is contained in a triangle,and that triangle is split into triangles of sides 1/bm+1times the side of the original triangle,where bm+1∈{2,3,···}.If bm+1=2,we will have the cell of level m+1 as the same construction of SG2,if bm+1=3,we will have the cell of level m+1 as the same construction as SG3.The resulting gasket is denoted by HH(b)for b=(b1,b2,···).In this paper,we will restrict that bmequals 2 or 3 for each m.See Fig.1 for an example.

    Notice that SG2and SG3are typical p.c.f.self-similar sets,while generally HH(b)is not a self-similar set.Meanwhile,the Dirichlet Laplacian and the Neumann Laplacian of these gaskets have already been discussed by Drenning and Strichartz[6].Thus,it is natural to ask whether the hot spots conjecture holds on certain homogeneous hierarchical gaskets.

    The rest of the paper is organized as follows.Basic concepts are recalled in Section 2.Spectral decimation on HH(b)are described in Section 3.In Section 4,we prove that the”hot spots”conjecture holds on HH(b).

    2 Preliminaries

    In this section,we recall some basic notations in[6,13,21].

    Let qi,i=1,2,3,be non-collinear points in R2.Define functions Si,i=1,···,3,on R2as follows:

    The Sierpinski gasket is the attractor of the iterated function system.

    Let qi,i=1,2,3,be non-collinear points in R2.Define functions Fi,i=1,···,6,on R2as follows:

    The level-3 Sierpinski gasket is the attractor of the iterated function system

    First we define a sequence of graphswith verticesand V?=The initial graph Γ0is just the complete graph onthe vertices of a triangle which is considered as the boundary of HH(b).At stage m of the construction of HH(b),all the cells of level m?1 lie in triangles whose vertices make up Vm?1.If bm=2,then each cell of level m?1 splits into three cells of level m,adding three new vertices to Vm,connected exactly as in the SG2construction.If bm=3,then each cell splits into six cells of level m,adding seven vertices in Vm,connected exactly as in the SG3construction.See Fig.2.For x,y∈Vm,we useto denote that x and y is connected in Γm.

    Figure 2:Building block for SG2 and SG3.

    Definition 2.1.For any continuous function u on HH(b),we define the graph Laplacian?mfor positive integers m by

    where degx is the cardinality of the setLet f be a continuous function on HH(b).We say that u∈dom?with ?u=f if

    converges uniformly to f on V?V0as m goes to infinity,where m=m2+m3and m2is the cardinality of the set{j≤m:bj=2}and m3is the cardinality of the set{j≤m:bj=3}.

    Definition 2.2.The normal derivative at p∈V0of a function u on HH(b)is defined to be

    if the limit exists,where m2and m3are defined as in Definition 2.1.

    Definition 2.3.A function u ∈dom?is called an eigenfunction of Neumann Laplacian with eigenvalue λ if

    For simplicity,we call λ an N-eigenvalue and u an N-eigenfunction if(2.4)holds.

    3 Spectral decimation on HH(b)

    The main tool to prove the hot spots conjecture on p.c.f.self-similar fractals is the spectral decimation,which was studied in[7,16,19,20].Drenning and Strichartz[6]pointed out that we can also use this method to analyze all Neumann(or Dirichlet)eigenvalues and eigenfunctions.Relative discussions on Laplacian and spectral decimation on SG3can also be found in[2]and[10].

    Let m be a nonnegative integer and uma function on Vmand λma real number.We call uma discrete N-eigenfunction and λma discrete N-eigenvalue on Vmif

    We denote by Λmthe set of all discrete N-eigenvalue of ?m.

    Define

    Theorem 3.1(Spectral decimation theorem I,see[6,20]).Let m>0,we assume that λm?1=andif bm=2,andif bm=3.(i).If u is a discrete N-eigenfunction of ?m?1with eigenvalue λm?1,then there exists a unique extensionon Vmsuch thatis a discrete N-eigenfunction of ?mwith eigenvalue λm.Furthermore,take values on Vmin one Vm?1cell shown in Fig.3 with

    and similarly for the other vertices if bm=2,and

    and similarly for the other vertices if bm=3.

    (ii).Conversely,if u is a discrete N-eigenfunction of ?mwith eigenvalue λm,thenis a discrete N-eigenfunction of ?m?1with eigenvalue λm?1.

    (iii).If λm∈Λm,then the multiplicity of λmon ?mequals that of λm?1on ?m?1.

    Theorem 3.2(Spectral decimation theorem II,[6,20]).(i).Let m0≥0,let u be a discrete Neigenfunction of ?m0with eigenvalue λm0.Assume that{λm}m≥m0is an infinite sequence related bywith all but a finite number ofIf we define

    and extend u to V?by successively using(3.4)and(3.5),then u is an N-eigenfunction of ?with eigenvalue λ.

    (ii). Every N-eigenvalue and its corresponding N-eigenfunctions of ?can be obtained by the process described in(i).

    Figure 3:The functionon one cell of Vm

    Define

    For each m≥2,we inductively define

    Using the similar method and results in[17,18],it is easy to see that 0<λm<1 for all m≥2,and for all positive integer m,we have

    Theorem 3.3.Letbe defined as in(3.7)and(3.8).DefineThen λ is the second-smallest N-eigenvalue of ?.Furthermore,the multiplicity of λ of ?equals 2.

    Proof.It is clear that 0 is the smallest N-eigenvalues of ?with multiplicity 1.Thus,in order to prove the lemma,it suffices to prove that λmdefined in the lemma is the smallest element in Λm{0}for all m≥1.We will show this by induction.

    In case that m=1 and b1=2,we can directly compute all N-eigenvaluesof ?1from(3.1).We can obtain that Λ1={6,3,0,6,3,6}. Furthermore,the multiplicities for eigenvalues 0,3,6 are 1,2,3,respectively.Thus 3 is the second-smallest N-eigenvalues of ?1,while the multiplicity of 3 is 2.

    Assume that λkis the second-smallest N-eigenvalues of ?kfor some positive integer k.Set m=k+1.Let τ0 is an N-eigenvalues of ?k+1.In case thatwe havefrom(3.9).In case thatfrom Spectral decimation theorem,there existsand i∈{2,3}such thatFrom the inductive assumption,we haveSince Ri(where i∈{2,3})is strictly increasing in(0,1],we know that.Thusis the second-smallest N-eigenvalue of ?k+1.

    By induction,λ is the second-smallest N-eigenvalues of ?.Since the multiplicity of λ1of ?1equals 2,we obtain from the Spectral decimation theorem that the multiplicity of λ of ?is also 2.

    4 Proof of the main result

    In this section,we always assume that λ and{λm}m≥1are defined as in(3.7),(3.8)and Theorem 3.3.

    Let EF2be the set of all N-eigenfunctions on HH(b)corresponding to the eigenvalue λ of ?.In case that b1=2(or b1=3),we define u1and u2to be functions in EF2such thatandare functions as in Fig.4(or Fig.5).It is easy to check thatandare N-eigenfunctions corresponding to the eigenvalue λ1of ?1.Thus u1and u2are well-defined by Spectral decimation theorem.Furthermore,it is easy to see that u1and u2are linearly independent,and so{u1,u2}is a base of EF2.In the sequel of the paper,we will always use u1and u2to refer to these functions.

    In the sequel,we define

    for all m≥1,where functions ζ,η,α,β,γ are defined by(3.3a)and(3.3b).

    Recall that 0<λm<1 for all m≥2.From above equalities,ζm>ηmfor all m≥2.

    Figure 4:The functions u1 and u2 on V1 in case that b1=2.

    Lemma 4.1.Defineinductively as follows:,and for m≥1,

    Then

    Figure 5:The functions u1 and u2 on V1 in case that b1=3.

    Proof.We will prove the lemma by induction.It is easy to check that the lemma holds for m=1.

    Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1.In case that bk+1=2,by inductive assumption,we have

    In case that bk+1=3,we have

    By induction,the lemma holds for m≥1.

    Let{zm}m≥1be the sequence defined as in Lemma 4.1.Then for all m≥1,we have

    Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1.In case that bk+1=2,from(4.2),(4.4a),(4.4b)and using inductive assumption,we have

    In case that bk+1=3,we have

    Thus 2xk+1+zk+1=?(2yk+1+zk+1).From(4.1)and using inductive assumption,we have

    By induction,the lemma holds for m≥1.

    Lemma 4.3.Let{xm,ym,zm}m≥1be defined as in Lemmas 4.1,4.2,andbe defined as(2.1),(2.2).Defineifif bm=3,Then for all m≥1,

    Proof.We will prove the lemma by induction. From Figs.4 and 5,we know that the lemma holds for m=1.

    Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1 and bk+1=2.From Spectral decimation theorem and inductive assumption,we have

    In the case that bk+1=3,we have

    Similarly,we can prove that other equalities in(4.6a)and(4.6b)also hold for m=k+1.

    By definition of x1and y1,we know that(4.6c)holds for m=1.Thus it suffices to show that(4.6c)holds for m≥2.

    Let{zm}m≥1be defined as in Lemma 4.1.From Lemma 4.2,we haveSubstituting zmbyand noticing that 0<λm<1 for m≥2,we obtain that

    The following lemma plays an essential role in our proof.

    Lemma 4.4.Let{xm,ym,zm}m≥1be defined as in Lemmas 4.1 and 4.2.Let p1,p2,p3be three distinct vertices of one cell of Vmwhere m≥1.Assume that u1(p1)≤u1(p2)≤u1(p3).Then

    Proof.We will prove the lemma by induction. From Figs.4 and 5,we know that the lemma holds for m=1.

    Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1 and p1,p2,p3be three distinct vertices of one cell C of Vk+1.Then there exists a unique cell C'of Vkwhich contains C.Letbe three distinct vertices of C'.

    In case that bk+1=2,from Fig.3,we know that there exists a permutation(i1,i2,i3)of(1,2,3)such thatwhile

    By inductive assumption,we have

    Without loss of generality,we assume that u1(pi2)≤u1(pi3).By Spectral decimation theorem,

    where(j1,j2,j3)and(1,2,3)are two distinct permutations of(1,2,3).Notice that ζm>ηmfor all m≥2 andfor all m≥1.By inductive assumption,

    Combining this with(4.8a),we know that(4.7a)holds for m=k+1.

    Combining this with(4.8b)and(4.9),we know that(4.7b)holds for m=k+1.

    In case that bk+1=3,we know from the proof of Lemma 4.4 in[18]that(4.7a)and(4.7b)also holds for m=k+1.

    It directly follows from the above lemma that we have:

    Theorem 4.1.u1attains its maximum and minimum on V0.

    Define

    Noticing that u2is a rotation of u1,and ?(u1+u2)is a symmetry of u1,we know that u2and ?(u1+u2)also attains its maximum and minimum on V0.Clearly,0≤f,g,h≤1.

    Now we can show that the”hot spots”conjecture holds on HH(b).

    Theorem 4.2.Every eigenfunction of the second-smallest eigenvalue of Neumann Laplacian on HH(b)attains its maximum and minimum on the boundary V0.

    Proof.Let u be an N-eigenfunctions with respect to the second-smallest N-eigenvalue of?.Since{u1,u2}is a base of EF2,there exist constants c1,c2such that u=c1u1+c2u2.By(4.10),we have f+g+h=1 so thatandIt follows that

    Notice that 0≤f,g,h≤1,f+g+h=1 andHence,

    for all x∈HH(b).

    Acknowledgements

    The work is supported in part by NSFC grants Nos.11271327,11771391. The author wishes to thank Professor Huojun Ruan for his helpful suggestions.

    亚洲精品国产成人久久av| 欧洲精品卡2卡3卡4卡5卡区| 精品少妇黑人巨大在线播放 | 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 色尼玛亚洲综合影院| kizo精华| 国产精品福利在线免费观看| 综合色丁香网| 亚洲av不卡在线观看| 国产在线男女| 亚洲精品亚洲一区二区| 日韩强制内射视频| 国产精品一区www在线观看| 观看免费一级毛片| 日韩成人伦理影院| 久久久久国产网址| 国产精品野战在线观看| 99热精品在线国产| 高清在线视频一区二区三区 | 女人被狂操c到高潮| 成人漫画全彩无遮挡| АⅤ资源中文在线天堂| 久久久成人免费电影| 日本免费一区二区三区高清不卡| 全区人妻精品视频| 亚洲国产日韩欧美精品在线观看| 亚洲av成人精品一区久久| 久久久精品大字幕| 不卡视频在线观看欧美| 你懂的网址亚洲精品在线观看 | 成人永久免费在线观看视频| 国产成人a区在线观看| 国产在线精品亚洲第一网站| 99热精品在线国产| 日韩一区二区视频免费看| 日韩成人伦理影院| 国产精品麻豆人妻色哟哟久久 | av在线天堂中文字幕| 国产黄片视频在线免费观看| 一个人观看的视频www高清免费观看| 亚洲高清免费不卡视频| 三级毛片av免费| 九九爱精品视频在线观看| av在线老鸭窝| 中文字幕久久专区| 伦理电影大哥的女人| 不卡视频在线观看欧美| 国产精品一区二区性色av| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 在现免费观看毛片| 又爽又黄无遮挡网站| 一本精品99久久精品77| 小说图片视频综合网站| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 青春草视频在线免费观看| av在线蜜桃| 色吧在线观看| 免费大片18禁| 成人无遮挡网站| 国产国拍精品亚洲av在线观看| 久久久久久伊人网av| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 免费黄网站久久成人精品| 又黄又爽又刺激的免费视频.| 又爽又黄a免费视频| 中出人妻视频一区二区| 久久精品国产鲁丝片午夜精品| 国内精品久久久久精免费| 国产午夜精品一二区理论片| 久久久久国产网址| 亚洲中文字幕日韩| ponron亚洲| 精华霜和精华液先用哪个| 我的女老师完整版在线观看| 五月玫瑰六月丁香| 少妇裸体淫交视频免费看高清| 久久久久网色| 高清在线视频一区二区三区 | 一级毛片我不卡| 精品人妻熟女av久视频| 内地一区二区视频在线| 午夜视频国产福利| 日本熟妇午夜| 黄色一级大片看看| 白带黄色成豆腐渣| 久久久欧美国产精品| 国产午夜精品论理片| 99视频精品全部免费 在线| 欧美+亚洲+日韩+国产| 免费观看a级毛片全部| av免费在线看不卡| 超碰av人人做人人爽久久| 91精品国产九色| 99久久九九国产精品国产免费| 久久精品夜夜夜夜夜久久蜜豆| 性插视频无遮挡在线免费观看| 日本在线视频免费播放| 波野结衣二区三区在线| 色吧在线观看| 久久精品国产亚洲网站| 亚洲在久久综合| 在线观看一区二区三区| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 国产高潮美女av| 99在线人妻在线中文字幕| 亚洲国产精品成人综合色| 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| eeuss影院久久| 一区二区三区免费毛片| 天堂影院成人在线观看| 人体艺术视频欧美日本| 亚洲18禁久久av| 午夜爱爱视频在线播放| 国内精品久久久久精免费| 91午夜精品亚洲一区二区三区| 国产精品精品国产色婷婷| 欧美成人免费av一区二区三区| 黄色日韩在线| 爱豆传媒免费全集在线观看| 国产真实乱freesex| kizo精华| 看非洲黑人一级黄片| 国产精品久久视频播放| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频 | 97超碰精品成人国产| 免费观看在线日韩| 一级毛片电影观看 | 直男gayav资源| 全区人妻精品视频| 国产蜜桃级精品一区二区三区| 久久韩国三级中文字幕| 国产精品久久久久久精品电影小说 | 深爱激情五月婷婷| 亚洲精品色激情综合| 我要搜黄色片| 99国产精品一区二区蜜桃av| 一级二级三级毛片免费看| a级毛片a级免费在线| 日韩成人av中文字幕在线观看| videossex国产| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| 国产精品综合久久久久久久免费| 波多野结衣高清无吗| 国产不卡一卡二| 免费观看人在逋| 免费看av在线观看网站| 色5月婷婷丁香| 此物有八面人人有两片| 少妇的逼好多水| 久久九九热精品免费| 国产 一区 欧美 日韩| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 免费电影在线观看免费观看| 99久久无色码亚洲精品果冻| 国产一级毛片在线| 大香蕉久久网| 亚洲精品自拍成人| 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| 日本欧美国产在线视频| 国产久久久一区二区三区| 黄色欧美视频在线观看| 亚洲色图av天堂| 波多野结衣高清作品| 国产视频内射| 日本黄色视频三级网站网址| 69人妻影院| 日本一本二区三区精品| 欧美又色又爽又黄视频| 毛片一级片免费看久久久久| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 简卡轻食公司| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| av在线蜜桃| 一个人免费在线观看电影| 中文在线观看免费www的网站| 大型黄色视频在线免费观看| 性色avwww在线观看| 成人午夜精彩视频在线观看| 亚洲综合色惰| 欧美色欧美亚洲另类二区| 变态另类成人亚洲欧美熟女| 免费看美女性在线毛片视频| 国产精品麻豆人妻色哟哟久久 | 人妻制服诱惑在线中文字幕| av免费在线看不卡| a级毛色黄片| 网址你懂的国产日韩在线| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 国产免费一级a男人的天堂| 日本免费a在线| 国产色爽女视频免费观看| 国产av在哪里看| 少妇猛男粗大的猛烈进出视频 | 嫩草影院精品99| 日本在线视频免费播放| 天天躁夜夜躁狠狠久久av| 99国产精品一区二区蜜桃av| 亚洲国产精品久久男人天堂| 三级经典国产精品| 免费看a级黄色片| av又黄又爽大尺度在线免费看 | 国产一区二区三区av在线 | 校园春色视频在线观看| 赤兔流量卡办理| 亚洲成人av在线免费| 中文欧美无线码| АⅤ资源中文在线天堂| 亚洲婷婷狠狠爱综合网| 欧美xxxx性猛交bbbb| 国产91av在线免费观看| 在线国产一区二区在线| 国产一级毛片七仙女欲春2| 欧美又色又爽又黄视频| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 国产精品一二三区在线看| 麻豆一二三区av精品| 日本五十路高清| 午夜亚洲福利在线播放| 老司机福利观看| 国产精品人妻久久久久久| 亚洲在久久综合| 天堂中文最新版在线下载 | 国产成人精品一,二区 | 欧美日韩乱码在线| 国产精品一二三区在线看| 看黄色毛片网站| 三级国产精品欧美在线观看| 日韩精品有码人妻一区| 欧美zozozo另类| 特级一级黄色大片| 97人妻精品一区二区三区麻豆| 好男人在线观看高清免费视频| www.av在线官网国产| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 一本久久中文字幕| 日本熟妇午夜| 偷拍熟女少妇极品色| 黄色欧美视频在线观看| eeuss影院久久| 欧美xxxx性猛交bbbb| 欧美日韩综合久久久久久| 超碰av人人做人人爽久久| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 韩国av在线不卡| 中文亚洲av片在线观看爽| 69人妻影院| 久久这里有精品视频免费| 久久精品国产亚洲av香蕉五月| 青春草国产在线视频 | 搡老妇女老女人老熟妇| 麻豆一二三区av精品| 只有这里有精品99| 免费人成视频x8x8入口观看| 国产探花极品一区二区| 国国产精品蜜臀av免费| 丝袜喷水一区| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 18+在线观看网站| 亚洲精品色激情综合| 欧美成人免费av一区二区三区| 日韩一本色道免费dvd| 午夜福利在线观看吧| 内射极品少妇av片p| 麻豆国产97在线/欧美| 午夜久久久久精精品| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 熟女电影av网| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 国产一区二区激情短视频| 日韩欧美国产在线观看| 97人妻精品一区二区三区麻豆| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 免费看美女性在线毛片视频| 久久亚洲国产成人精品v| 天堂√8在线中文| 精品久久久久久久久久久久久| 国产精品综合久久久久久久免费| 国产黄片视频在线免费观看| 精品久久久久久久久久久久久| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 日日摸夜夜添夜夜爱| 在线免费十八禁| 国产午夜精品一二区理论片| 久久热精品热| 成年女人永久免费观看视频| 丝袜美腿在线中文| 内地一区二区视频在线| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 12—13女人毛片做爰片一| 一级毛片久久久久久久久女| 久久久久久久久久久丰满| 欧美精品一区二区大全| 国产视频首页在线观看| 亚洲久久久久久中文字幕| 精品无人区乱码1区二区| 91狼人影院| 国产成年人精品一区二区| 极品教师在线视频| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频 | 国产精品久久久久久亚洲av鲁大| videossex国产| 91狼人影院| 少妇的逼好多水| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 校园人妻丝袜中文字幕| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 99在线视频只有这里精品首页| 人人妻人人澡人人爽人人夜夜 | 99久久精品一区二区三区| 精品久久久久久久久亚洲| 久久久色成人| 熟妇人妻久久中文字幕3abv| 国产高清视频在线观看网站| 色视频www国产| 国产在线男女| www日本黄色视频网| 午夜免费激情av| 国产午夜精品一二区理论片| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| 国产熟女欧美一区二区| 精品午夜福利在线看| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 丰满乱子伦码专区| 亚洲av不卡在线观看| 久久精品人妻少妇| 亚洲av第一区精品v没综合| 99热这里只有是精品50| 深夜a级毛片| 老司机影院成人| 赤兔流量卡办理| 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 欧美日本视频| 国产真实伦视频高清在线观看| 一本久久精品| 免费一级毛片在线播放高清视频| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 精品少妇黑人巨大在线播放 | 亚洲人与动物交配视频| 中文字幕av成人在线电影| 亚洲高清免费不卡视频| 天堂av国产一区二区熟女人妻| 最好的美女福利视频网| 久久久久九九精品影院| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩无卡精品| 六月丁香七月| 国产欧美日韩精品一区二区| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 99久久成人亚洲精品观看| 日韩一本色道免费dvd| 久久午夜福利片| 欧美不卡视频在线免费观看| 久久精品国产亚洲av香蕉五月| 韩国av在线不卡| 国产精品一区二区在线观看99 | 久久九九热精品免费| 中文资源天堂在线| 亚洲欧美成人综合另类久久久 | 亚洲欧美中文字幕日韩二区| 在线观看66精品国产| 一夜夜www| 亚洲精华国产精华液的使用体验 | 亚洲天堂国产精品一区在线| 91av网一区二区| 免费在线观看成人毛片| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 亚洲人成网站在线观看播放| 国产一区二区三区av在线 | 久久久午夜欧美精品| 一本久久精品| kizo精华| 久久精品国产清高在天天线| 欧美丝袜亚洲另类| 免费av不卡在线播放| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 99久久精品热视频| 内地一区二区视频在线| av免费观看日本| 极品教师在线视频| 亚洲乱码一区二区免费版| 能在线免费观看的黄片| 欧美不卡视频在线免费观看| 亚洲av第一区精品v没综合| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 免费观看精品视频网站| 男女做爰动态图高潮gif福利片| 夜夜夜夜夜久久久久| 永久网站在线| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 我的老师免费观看完整版| 99riav亚洲国产免费| 国产精品国产高清国产av| 18禁在线播放成人免费| 成人一区二区视频在线观看| 国产精品免费一区二区三区在线| 欧美激情在线99| 午夜福利在线在线| 一本久久中文字幕| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 亚洲av第一区精品v没综合| 日韩成人av中文字幕在线观看| www.色视频.com| av福利片在线观看| 精品久久久久久久久亚洲| 日本在线视频免费播放| 不卡视频在线观看欧美| 日本黄大片高清| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 12—13女人毛片做爰片一| 少妇猛男粗大的猛烈进出视频 | 欧美一级a爱片免费观看看| 少妇丰满av| 男女视频在线观看网站免费| 亚洲国产日韩欧美精品在线观看| 亚洲内射少妇av| 高清毛片免费看| 国产 一区精品| 韩国av在线不卡| 两个人的视频大全免费| 亚洲精品国产av成人精品| 麻豆成人av视频| 亚洲无线在线观看| 国产色婷婷99| 国产精品免费一区二区三区在线| 精品99又大又爽又粗少妇毛片| 精华霜和精华液先用哪个| 国产黄色视频一区二区在线观看 | 久久人妻av系列| 婷婷六月久久综合丁香| 嘟嘟电影网在线观看| 精品欧美国产一区二区三| 日韩国内少妇激情av| 久久国产乱子免费精品| 国产日本99.免费观看| 18禁黄网站禁片免费观看直播| 亚洲不卡免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 变态另类成人亚洲欧美熟女| 午夜a级毛片| 最近2019中文字幕mv第一页| 国产极品精品免费视频能看的| 亚洲最大成人av| 国内精品久久久久精免费| 欧美bdsm另类| 午夜精品在线福利| 人体艺术视频欧美日本| 久久精品夜色国产| 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全电影3| 精品久久久久久久久av| 亚洲在久久综合| 欧美在线一区亚洲| 1000部很黄的大片| 如何舔出高潮| 国产高清视频在线观看网站| 亚洲性久久影院| 一区二区三区免费毛片| 成人毛片a级毛片在线播放| 麻豆av噜噜一区二区三区| 搡女人真爽免费视频火全软件| 午夜精品一区二区三区免费看| 国产一区二区三区在线臀色熟女| 婷婷精品国产亚洲av| 国产片特级美女逼逼视频| 欧美日本亚洲视频在线播放| 精品人妻一区二区三区麻豆| 成人特级av手机在线观看| 久久久久国产网址| 好男人在线观看高清免费视频| 国产精品福利在线免费观看| 日韩欧美国产在线观看| 乱人视频在线观看| 免费av不卡在线播放| 国产成人aa在线观看| 3wmmmm亚洲av在线观看| 亚洲在线观看片| 18禁在线播放成人免费| 国产老妇女一区| 国产中年淑女户外野战色| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| 校园人妻丝袜中文字幕| 欧美日韩一区二区视频在线观看视频在线 | www日本黄色视频网| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx性猛交bbbb| avwww免费| 可以在线观看毛片的网站| 日日干狠狠操夜夜爽| 悠悠久久av| 欧美成人免费av一区二区三区| 国产一区亚洲一区在线观看| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久 | 国产一区二区激情短视频| 少妇熟女aⅴ在线视频| 男人和女人高潮做爰伦理| 欧美日韩在线观看h| 久久久久久久亚洲中文字幕| 日本爱情动作片www.在线观看| 精品熟女少妇av免费看| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 在线免费十八禁| 日韩中字成人| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区成人| 国产女主播在线喷水免费视频网站 | 午夜亚洲福利在线播放| 麻豆久久精品国产亚洲av| 国产精品蜜桃在线观看 | 又爽又黄a免费视频| 久久久久久久午夜电影| 天堂网av新在线| 亚洲精品色激情综合| 国产 一区 欧美 日韩| 欧美性猛交╳xxx乱大交人| 亚洲电影在线观看av| 又爽又黄无遮挡网站| 日韩三级伦理在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲四区av| 婷婷色综合大香蕉| 国产精品电影一区二区三区| 亚洲婷婷狠狠爱综合网| 蜜臀久久99精品久久宅男| 国产色爽女视频免费观看| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 亚洲第一电影网av| 黄色视频,在线免费观看| 高清午夜精品一区二区三区 | 你懂的网址亚洲精品在线观看 | 男插女下体视频免费在线播放| 在线天堂最新版资源| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 国产真实乱freesex| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 国产成人91sexporn| 国产成人一区二区在线| av女优亚洲男人天堂| 精品国产三级普通话版| 国产伦理片在线播放av一区 | 婷婷精品国产亚洲av| 成年免费大片在线观看| 国产精品人妻久久久影院| 岛国毛片在线播放| 国产麻豆成人av免费视频| 91麻豆精品激情在线观看国产| 伦精品一区二区三区| 久久久国产成人免费| 亚洲欧洲国产日韩| 国产精品不卡视频一区二区| 午夜福利视频1000在线观看| 3wmmmm亚洲av在线观看| 中文在线观看免费www的网站|