• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature selection in super-resolution onself-learning neighbor embedding

    2018-12-26 09:11:40XUJianXINGJunFANJiulun
    西安郵電大學學報 2018年5期

    XU Jian,XING Jun,FAN Jiulun

    (1. Key Laboratory of Electronic Information Application Technology for Scene Investigation,Ministry of Public Security, Xi’an 710121, China;2. International Joint Research Center for Wireless Communication and Information Processing, Xi’an 710121, China;3. School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China)

    Abstract:Several feature extraction methods are proposed to extract patch features in low-resolution (LR) space, and their abilities in selecting high-resolution (HR) patches are tested. As neighbor embedding (NE) is highly related to the training sets, the self-learning method is employed to produce the training sets. It can be found that some LR features can obtain higher-quality HR patches which are very similar with the desired HR patches. Experimental results on self-learning show that the proposed methods provide different HR results, some of them have good effect and high efficiency. The obtained features can be used for NE based super resolution (SR) algorithm and can well remit one-to-many ill-posed problems.

    Keywords:self-learning, feature extraction, super-resolution algorithm

    Single image SR is an image processing technique that can convert a LR image into a HR image[1]. The learning-based SR algorithms are greatly developed in recent years[2-4]. These algorithms train machine learning models by a set of training samples containing HR-LR patch pairs[5]. In the training process, it is not popular to directly use pixel values, but features are always extracted from HR-LR patch pairs (such as gradient[6], midfrequency feature[7], et. al). From experimental results of these algorithms, we can observe that different image features lead to different outputs.

    The requirement of feature extraction in single image SR is different from other image processing areas, such as image registration[8-10]. It needs to extract features in LR space and finds the candidates in HR space. Since LR patch has much less pixel numbers than its corresponding HR patch, the problem is under-determined. One LR image patch may correspond to many HR image patches (which is called one-to-many problem) , so the mis-selection is not avoidable. Different image features result in different mis-selection. Although most of the image features have no capability to find the real corresponding HR patches, some features can find HR patches that are similar with real corresponding HR patches.

    We try to analyze the performance of different features in SR area. There are three factors that can effect the performance: (1) The topic of training set. The training set which belongs to the same topic with the test set will get a better HR result[11]. (2) The feature extraction methods which extract features from LR patches. (3) The model of machine learning. We only want to observe the effect of feature extraction. To avoid the effects of machine learning models, we find LR patches by using different features and then compare the corresponding HR patches with the desired HR patches. This process avoids choosing weights of overlapping patches and only assesses the quality of patch matching. To avoid an impact on the training sets, we use self-learning method to generate training sets[2,12-13].

    Our contributions can be summarized as: (1) We propose several feature extraction methods which can be utilized as candidates in SR methods. (2) We test the features’ capabilities of selecting HR patches. These experimental results show different phenomena of one-to-many problems. (3) We utilize these features on the self-learning algorithm. Experimental results show that some features can improve effect and efficiency of self-learning algorithm.

    The rest of this paper is organized as follows. Section 1 describes the process of building two pyramids and four data sets in detail. Section 2 presents different feature extraction methods. The experimental results are described in Section 3. Section 4 concludes this paper.

    1 Data generation based on self-learning

    1.1 Generating pyramids

    The data pyramid is generated by the method proposed by Zhang et. al[2](as Fig.1 shown). Denote the HR test image asX, and its size isM×N. Down sampleXto get imageX(-1), its scale issM×sN, where,s(0

    Φ={X(0),X(-1),…,X(-(L-1))}.

    Then, a LR pyramidΨis generated byΦ. Up sampleX(-κ)to get imageY(-(κ-1))asκth level image ofΨ, where,κ=1,2,…,L. The up sampling factor is 1/s.

    1.2 Building data sets

    Fig.1 The flowchart of feature extraction methods

    2 Feature extraction methods

    2.1 Gray pixel value

    The gray pixel value which is easily extracted is widely used in image processing as intuitive image information. Though this feature is not innovation, we aim to describe the details of the feature matching process in this section. The first method uses gray pixel value to do the patch matching. Fig.2 shows the process of generating grayscale features.

    Fig.2 The gray pixel value extraction method

    Euclidean distance betweenα(j)andβ(i)is calculated by the following formula:

    (1)

    Finally, the mean square errorDbetween the selected HR training patches and the corresponding HR test patches should be calculated to assess selection quality. The mean square errorDis expressed as follows:

    (2)

    In the following, we only describe the feature extraction process in details. The method to assess selection quality is the same as the method described in this section.

    2.2 Principal component analysis (PCA) method

    The PCA method is commonly used in dimensional reduction. It preserves the main data while reducing the dimension of data. In image processing, it can reduce the image feature redundancy and noise, and also is helpful to reduce time cost. Fig.3 shows the process of generating the PCA feature vectors.

    Fig.3 Gray feature + PCA method

    2.3 Gradient

    The gradient contains the pixel value variety information of an image. Many existing algorithms have used gradient to recover missing details in HR images[6,14]. Fig.4 shows the process of generating gradient features. Firstly, we produce the gradient maps (contain horizontal gradient maps and vertical gradient maps) of the LR pyramid by the following formulas:

    Gv=[-1, 0, 1]T*X,

    (3)

    Gh=[-1, 0, 1]*X,

    (4)

    where,Gvis the vertical gradient map of the imageX,Ghis the horizontal gradient map of the imageX, [-1, 0, 1]Tis the one-dimensional gradient operator in the vertical direction, [-1, 0, 1] is the one-dimensional gradient operator in the horizontal direction, and “*” is convolution.

    (5)

    Fig.4 The gradient feature extraction method

    2.4 Gradient angle

    The gradient angle represents the statistics of the gradient direction. The patches which have the similar gradient angle can be considered as the texture with the similar direction. Besides, compared with the method described in Section 2.3, the gradient angle has lower dimension. Fig.5 shows the process of generating gradient angle features. The gradient angleθexpression formula is as follows:

    (6)

    (7)

    The LR test set can be expressed as:

    H=[e(1),e(2), …,e(N)].

    (8)

    Fig.5 The gradient angle feature extraction method

    2.5 Gradient amplitude

    Gradient amplitude shows whether the patch is a smooth patch or a texture patch. The gradient amplitudeGexpression formula is:

    (9)

    Fig.6 shows the process of generating gradient amplitude features. The horizontal and the vertical gradient map are obtained by the method described in Section 2.3. The gradient amplitude mapGmis obtained by using the formula (9). We useGmto get the LR test set by the method described in Section 2.1. Thejth feature vector of LR test set is regarded asq(j). TheNfeature vectors in the LR test set form matrixQ=[q(1),q(2), …,q(N)].

    Fig.6 The gradient amplitude feature extraction method

    2.6 Gaussian smooth

    Some LR images contain noise which greatly disturbs the patch matching accuracy. Therefore, we use the Gaussian filter to reduce noise. The Gaussian smooth imageXFis obtained by the following formula:

    XF=F*X,

    (10)

    Firstly, the Gaussian smooth feature mapXFis produced by formula (10). We useXFto get feature vectors of the LR test set by the method described in Section 2.1. Thejth feature vector of LR test patch is regarded asu(j). The feature vectors in the LR test set form matrixU=[u(1),u(2), …,u(N)].

    Fig.7 The Gaussian smooth feature extraction method

    2.7 PCA of Gaussian smooth feature

    We also use PCA to reduce dimension of the Gaussian smooth image, which can further avoid the effects of noise on image processing, and reduce computation time complexity. Fig.8 shows the process of generating PCA of Gaussian smooth feature vectors. The PCA project matrixψis produced by the method described in Section 2.2. Thejth Gaussian smooth patch of PCA feature vectorv(j)is produced by the following formula:

    v(j)=ψu(j).

    (11)

    The feature vectors in the LR test set form matrixV=[v(1),v(2), …,v(N)].

    Fig.8 Gaussian smooth feature + PCA method

    2.8 Midfrequency (MF) feature

    The MF components contain basic edge structures of the image[7]. The MF feature mapXDis as feature map, which is obtained by the following formula:

    XD=X-XF.

    (12)

    Fig.9 shows the process of generating MF features. We obtain the Gaussian smooth mapXFby the method proposed in Section 2.6, and use formula (12) to get MF mapXD. Then, we useXDto get feature vectors of the LR test set by the method described in Section 2.1. Thejth feature vector of LR test set is regarded asw(j). TheNfeature vectors in the LR test set form matrixW=[w(1),w(2), …,w(N)].

    Fig.9 MF feature extraction method

    2.9 Enhanced texture

    We found that the LR image contains main step edges of the HR image, but they are not as sharp as HR image. We consider that if we can enhance the step edges before patch matching, the matching quality may be better. Since the absolute value of MF component can show step-edge positions[7], we utilize them to produce features. The enhanced imageXDEis obtained by the following formula:

    XDE=X·|XD|

    (13)

    where,XDis produced by the method described in Section 2.8. Fig.10 shows the process of generating enhanced texture features.

    Firstly, we obtain the MF feature mapXDand use formula (13) to get the enhanced texture map. Then, we use the map to get feature vectors of the LR test set by the method described in Section 2.1. Thejth feature vector of LR test set is regarded asν(j). TheNfeature vectors in the LR test set form matrixΝ=[ν(1),ν(2), …,ν(N)].

    Fig.10 Enhanced texture feature extraction method

    3 Experimental results

    We use Set5, Set14, and Urban100 as HR test images which are obtained from the code package of[15]. Since Urban100 only contains buildings, we only use the first 20 images in Urban100 for testing. The magnification factor is set as 4. Bicubic-interpolation method is employed to up sample or down sample in feature extraction process. The patch size is 5. The dimension of PCA feature vector is 10.

    We use the peak signal to noise ratio (PSNR) to measure the quality of output images. We did two types of experiments. The first one is to assess the quality of patch matching. The details of process are described in Section 2. The second one is to test these features on self-learning algorithm based on NE[16-17].

    Tab.1 showsDvalues of the first experiment, the PSNR values and the time cost of the second experiment. From the table, we can see that PCA dimension reduction method can improve the accuracy of patch matching. However, since the dimension reduction process takes time, the operating speed is not improved.

    Tab.1 The cost(s) and average error values for matching of different features and the average PSNR(dB) of Set5, Set14, Urban100

    Fig.11-Fig.14 show the visual quality. The topic of these images includes face, building, chips and license plate. From these figures, we see that method described in Section 2.6 and method described in Section 2.7 both use the Gaussian filter to remove noise, and employ the Gaussian smooth feature or its dimensional reduction version to reconstruct the HR image. The result images of two methods are clearer than others.

    We can see that method described in Section 2.3 and method described in Section 2.5 bring artifacts in smooth areas. This indicates that gradient is not a proper feature for patch matching, no matter using gradient or its amplitude.

    Although we consider that two images which have similar gradient angle may be similar, method described in Section 2.4 has more artifacts than method described in Section 2.3, which shows that the gradient angle is not suitable for patch matching.

    It is obvious that MF feature extracted by method described in Section 2.8 and its enhanced version calculated by method described in Section 2.9 are unsuitable for patch matching. Method described in Section 2.1 and method described in Section 2.2 both use gray value feature or its dimensional reduction version, the quality of the result images using these two methods are slightly worse than that obtained with Gaussian smooth features.

    We can see that the quality of outputs of the Set5 and Set14 data sets is not affected after using the PCA method to reduce the dimension, but in Urban100, the quality of images obtained by using PCA dimension reduction features is worse than that obtained by directly using features. This may be due to the fact that using the PCA method does not obtain better matching patches for the image with highly repetitive structure.

    Fig.11 The baby image results obtained by extracting different image features

    Fig.12 The building image building results obtained by extracting different image features

    Fig.13 The chip image results obtained by extracting different image features

    Fig.14 The plate number image results obtained by extracting different image features

    4 Conclusion

    This paper proposes some feature extraction methods on self-learning SR based on NE. Some of methods aim at reducing noise, such as method described in Section 2.2 and method described in Section 2.7, some focus on enhancing step edges, such as method described in Section 2.3, method described in Section 2.4 and method described in 2.5, and some try to generate nonlinear feature by using linear feature. Experimental results show that different features can produce different SR outputs. According to comparison, PCA of Gaussian smooth feature has the best SR result in Set5 and Set14. In Urban100, Gaussian smooth feature obtains the best SR result. Although we have proposed several novel feature extraction methods, they still have limitation of solving one-to-many problems. With the development of SR research, we will propose more and more feature extraction methods to get better SR results.

    午夜视频国产福利| 熟女电影av网| 亚洲美女视频黄频| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| 日韩中字成人| 欧美性猛交╳xxx乱大交人| av女优亚洲男人天堂| 九九爱精品视频在线观看| 男女下面进入的视频免费午夜| 亚洲国产欧洲综合997久久,| 亚洲国产精品成人久久小说 | 国产黄色视频一区二区在线观看 | 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 国产毛片a区久久久久| 午夜福利18| a级毛片免费高清观看在线播放| 一本久久中文字幕| 干丝袜人妻中文字幕| 国产欧美日韩一区二区精品| 丝袜喷水一区| 身体一侧抽搐| 久久久久久国产a免费观看| 免费观看的影片在线观看| 久久久久精品国产欧美久久久| 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 亚洲婷婷狠狠爱综合网| 国产aⅴ精品一区二区三区波| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 国产精品久久久久久av不卡| 国产在视频线在精品| 人人妻人人澡人人爽人人夜夜 | a级毛色黄片| 成人综合一区亚洲| 欧美+亚洲+日韩+国产| 色哟哟·www| 人妻少妇偷人精品九色| 亚洲在线自拍视频| 午夜福利在线观看免费完整高清在 | 一级a爱片免费观看的视频| 九九热线精品视视频播放| 可以在线观看的亚洲视频| 国产欧美日韩精品一区二区| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 日韩中字成人| 久久久久九九精品影院| 黄色欧美视频在线观看| 久久精品人妻少妇| 亚洲熟妇中文字幕五十中出| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 国产亚洲精品av在线| 波多野结衣高清无吗| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 亚洲av成人精品一区久久| av.在线天堂| 亚洲精品色激情综合| 给我免费播放毛片高清在线观看| 久久精品国产鲁丝片午夜精品| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影| 美女内射精品一级片tv| 亚洲欧美日韩高清在线视频| 又粗又爽又猛毛片免费看| a级毛片a级免费在线| 亚洲成人久久爱视频| 日韩欧美在线乱码| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 十八禁国产超污无遮挡网站| 亚洲激情五月婷婷啪啪| 搡老妇女老女人老熟妇| 国产大屁股一区二区在线视频| 插逼视频在线观看| 国产精品三级大全| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 国产成人91sexporn| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 一区福利在线观看| 老司机影院成人| 国产av麻豆久久久久久久| 日韩一本色道免费dvd| 嫩草影院精品99| 成年免费大片在线观看| 色综合色国产| 久久久成人免费电影| 国产成人影院久久av| 精品一区二区三区av网在线观看| av中文乱码字幕在线| 精品免费久久久久久久清纯| 国产又黄又爽又无遮挡在线| 国产乱人视频| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 国产极品精品免费视频能看的| 变态另类丝袜制服| 一级av片app| 精品福利观看| 美女黄网站色视频| 在线看三级毛片| 久久鲁丝午夜福利片| 成人国产麻豆网| 俺也久久电影网| 联通29元200g的流量卡| 日本五十路高清| 最近中文字幕高清免费大全6| 成年av动漫网址| 中文亚洲av片在线观看爽| 深夜精品福利| 成人鲁丝片一二三区免费| 成年版毛片免费区| 九色成人免费人妻av| aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产成年人精品一区二区| 人妻少妇偷人精品九色| 色综合色国产| 亚洲熟妇熟女久久| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 免费不卡的大黄色大毛片视频在线观看 | 搞女人的毛片| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 小说图片视频综合网站| 九九热线精品视视频播放| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| a级毛片a级免费在线| 色av中文字幕| 久久久久久九九精品二区国产| 我要看日韩黄色一级片| 丝袜喷水一区| 日韩欧美精品v在线| 国产成人a∨麻豆精品| 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 精品一区二区三区视频在线| av在线亚洲专区| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 日韩欧美一区二区三区在线观看| 国产精品一二三区在线看| 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 91午夜精品亚洲一区二区三区| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 日韩av不卡免费在线播放| 成人午夜高清在线视频| 国产激情偷乱视频一区二区| 精品人妻视频免费看| videossex国产| 亚洲三级黄色毛片| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 亚洲av五月六月丁香网| 嫩草影院精品99| 国产精品永久免费网站| av中文乱码字幕在线| 亚洲五月天丁香| 免费人成在线观看视频色| 国产真实伦视频高清在线观看| 一区二区三区免费毛片| 伦精品一区二区三区| 亚洲综合色惰| 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 国产高清有码在线观看视频| 看黄色毛片网站| 国产不卡一卡二| 毛片女人毛片| 大香蕉久久网| 亚洲性夜色夜夜综合| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 一本久久中文字幕| 大香蕉久久网| 床上黄色一级片| 老司机福利观看| 悠悠久久av| av在线播放精品| 99热精品在线国产| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 老司机午夜福利在线观看视频| .国产精品久久| 成人特级av手机在线观看| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 伦精品一区二区三区| 亚洲av美国av| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩在线观看h| 高清毛片免费观看视频网站| 天天一区二区日本电影三级| 男人舔女人下体高潮全视频| 简卡轻食公司| 欧美不卡视频在线免费观看| 亚洲无线在线观看| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 99久国产av精品国产电影| 国产精品亚洲美女久久久| 黑人高潮一二区| 国产精品伦人一区二区| 嫩草影视91久久| 久久久久国内视频| 色5月婷婷丁香| 亚洲av美国av| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 久久久久九九精品影院| h日本视频在线播放| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 我的女老师完整版在线观看| 久久草成人影院| 悠悠久久av| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 亚洲精品日韩在线中文字幕 | 男女那种视频在线观看| 精品国产三级普通话版| 国产精品久久久久久久久免| 国产三级中文精品| 久久久色成人| 夜夜看夜夜爽夜夜摸| 日本爱情动作片www.在线观看 | 狠狠狠狠99中文字幕| 国产精品野战在线观看| 国产精品人妻久久久影院| 精品日产1卡2卡| 午夜福利高清视频| 一级毛片我不卡| 国产精品亚洲美女久久久| 天堂√8在线中文| 欧美极品一区二区三区四区| 少妇人妻一区二区三区视频| 99在线视频只有这里精品首页| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 国产又黄又爽又无遮挡在线| www.色视频.com| 日本黄色片子视频| 大型黄色视频在线免费观看| 亚洲高清免费不卡视频| 伦理电影大哥的女人| 九九热线精品视视频播放| 丝袜喷水一区| 99久久中文字幕三级久久日本| 性欧美人与动物交配| 麻豆久久精品国产亚洲av| 嫩草影院入口| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 天堂网av新在线| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 日本与韩国留学比较| 国产淫片久久久久久久久| 亚洲成人av在线免费| 亚洲七黄色美女视频| 国产精品人妻久久久久久| 亚洲精品色激情综合| 亚洲美女搞黄在线观看 | 国产在视频线在精品| 五月伊人婷婷丁香| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 国产精品一区www在线观看| 亚洲成人av在线免费| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 精品久久久噜噜| 精品国产三级普通话版| 亚洲人成网站在线播| 午夜影院日韩av| 乱系列少妇在线播放| 成年女人看的毛片在线观看| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| av视频在线观看入口| 中国美白少妇内射xxxbb| 国产一区二区激情短视频| 99热这里只有是精品50| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 午夜精品国产一区二区电影 | 久久久久久伊人网av| 欧美极品一区二区三区四区| 少妇丰满av| 一级av片app| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 亚洲一区二区三区色噜噜| 性色avwww在线观看| 一个人看的www免费观看视频| 亚洲七黄色美女视频| 91狼人影院| 久久久久久大精品| 亚洲欧美成人精品一区二区| av在线天堂中文字幕| 少妇的逼水好多| 长腿黑丝高跟| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 国产男人的电影天堂91| 精品久久久噜噜| 日韩欧美三级三区| 国产在视频线在精品| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免| 国产一区二区在线观看日韩| 精品99又大又爽又粗少妇毛片| 美女免费视频网站| 女人被狂操c到高潮| 最好的美女福利视频网| 麻豆av噜噜一区二区三区| 两个人的视频大全免费| 简卡轻食公司| 嫩草影视91久久| 亚洲人与动物交配视频| 日日啪夜夜撸| 麻豆av噜噜一区二区三区| av中文乱码字幕在线| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 少妇人妻精品综合一区二区 | 少妇被粗大猛烈的视频| 高清毛片免费看| 久久亚洲精品不卡| 又爽又黄a免费视频| 亚洲国产精品合色在线| 天美传媒精品一区二区| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 网址你懂的国产日韩在线| 少妇猛男粗大的猛烈进出视频 | 成人毛片a级毛片在线播放| 给我免费播放毛片高清在线观看| 悠悠久久av| 在线免费十八禁| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 久久精品人妻少妇| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 桃色一区二区三区在线观看| 日本色播在线视频| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 国产乱人偷精品视频| 久久精品国产清高在天天线| 精品一区二区三区av网在线观看| 精品久久国产蜜桃| 久久亚洲国产成人精品v| 偷拍熟女少妇极品色| 搞女人的毛片| 毛片一级片免费看久久久久| 你懂的网址亚洲精品在线观看 | 亚洲婷婷狠狠爱综合网| 成人特级黄色片久久久久久久| 高清毛片免费观看视频网站| 悠悠久久av| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| 亚洲国产精品久久男人天堂| 91麻豆精品激情在线观看国产| 十八禁国产超污无遮挡网站| 男女边吃奶边做爰视频| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 日韩av在线大香蕉| 精品不卡国产一区二区三区| 国产淫片久久久久久久久| 日韩人妻高清精品专区| 麻豆av噜噜一区二区三区| 一级a爱片免费观看的视频| 精品久久久久久成人av| av免费在线看不卡| 美女被艹到高潮喷水动态| 91麻豆精品激情在线观看国产| 色av中文字幕| av在线观看视频网站免费| av视频在线观看入口| 日本免费a在线| 亚洲精品影视一区二区三区av| 99久久九九国产精品国产免费| av视频在线观看入口| 成人欧美大片| 国产亚洲91精品色在线| 人妻丰满熟妇av一区二区三区| 亚州av有码| 亚洲av成人精品一区久久| 亚洲av.av天堂| 亚洲人成网站在线播| 国产 一区精品| 中文字幕精品亚洲无线码一区| 国产女主播在线喷水免费视频网站 | 亚洲av熟女| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| av专区在线播放| 国产一区亚洲一区在线观看| 国产在线精品亚洲第一网站| 色综合亚洲欧美另类图片| 亚洲久久久久久中文字幕| 亚洲真实伦在线观看| 在线看三级毛片| 国产男靠女视频免费网站| 在线看三级毛片| 1000部很黄的大片| 久99久视频精品免费| 国产免费一级a男人的天堂| 国产片特级美女逼逼视频| 国产成人精品久久久久久| 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜 | 毛片女人毛片| 免费观看在线日韩| 亚洲精品国产av成人精品 | 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 伦理电影大哥的女人| 精品免费久久久久久久清纯| 18+在线观看网站| 色哟哟·www| 免费观看精品视频网站| 久久中文看片网| 色尼玛亚洲综合影院| 欧美日韩精品成人综合77777| 韩国av在线不卡| 国产爱豆传媒在线观看| 最近手机中文字幕大全| 日本成人三级电影网站| 插阴视频在线观看视频| 男人舔奶头视频| 国产精品伦人一区二区| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 国产黄色视频一区二区在线观看 | 波多野结衣高清无吗| 特大巨黑吊av在线直播| 国产精品,欧美在线| 日韩一区二区视频免费看| 综合色丁香网| 成人特级黄色片久久久久久久| 少妇人妻精品综合一区二区 | 国产av不卡久久| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 此物有八面人人有两片| 亚洲久久久久久中文字幕| 十八禁网站免费在线| 亚洲成av人片在线播放无| 99久久无色码亚洲精品果冻| 麻豆久久精品国产亚洲av| 成人鲁丝片一二三区免费| 久久久久久久久大av| 波多野结衣巨乳人妻| 69人妻影院| 午夜福利在线观看免费完整高清在 | 如何舔出高潮| 波多野结衣高清作品| 亚洲无线观看免费| 性色avwww在线观看| 男人舔奶头视频| 亚洲美女搞黄在线观看 | 日韩,欧美,国产一区二区三区 | 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 亚洲美女搞黄在线观看 | 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 午夜福利在线在线| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 国产毛片a区久久久久| 麻豆国产av国片精品| 一级a爱片免费观看的视频| 久久久久久久亚洲中文字幕| 综合色丁香网| 不卡一级毛片| 成人二区视频| 亚洲国产欧洲综合997久久,| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 夜夜看夜夜爽夜夜摸| 麻豆av噜噜一区二区三区| 我的女老师完整版在线观看| av在线亚洲专区| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区 | 三级经典国产精品| 最近2019中文字幕mv第一页| 婷婷六月久久综合丁香| 在线国产一区二区在线| 久久久久国内视频| 自拍偷自拍亚洲精品老妇| 国产又黄又爽又无遮挡在线| 日韩欧美免费精品| 亚洲第一区二区三区不卡| 一级av片app| 国产男人的电影天堂91| 亚洲欧美日韩东京热| 麻豆国产av国片精品| 看非洲黑人一级黄片| 可以在线观看毛片的网站| 色播亚洲综合网| 国产精品综合久久久久久久免费| 色av中文字幕| 久久精品综合一区二区三区| 黄色日韩在线| 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 国产精品亚洲美女久久久| 日本欧美国产在线视频| 搡老岳熟女国产| 一级毛片aaaaaa免费看小| 夜夜爽天天搞| 嫩草影视91久久| 日韩欧美国产在线观看| 一级毛片久久久久久久久女| 精品一区二区三区人妻视频| 校园春色视频在线观看| a级毛片免费高清观看在线播放| 三级男女做爰猛烈吃奶摸视频| 国产视频内射| 亚洲精品色激情综合| 人妻制服诱惑在线中文字幕| 国产美女午夜福利| 久久久久久久久大av| 欧美激情国产日韩精品一区| 亚洲国产精品成人久久小说 | 一级毛片我不卡| 日韩欧美精品v在线| 精品国内亚洲2022精品成人| av卡一久久| av中文乱码字幕在线| 亚洲在线自拍视频| 91久久精品国产一区二区成人| 天天躁夜夜躁狠狠久久av| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 在线观看av片永久免费下载| 中文在线观看免费www的网站| 亚洲av一区综合| 一区二区三区高清视频在线| 免费黄网站久久成人精品| 国产一区二区三区在线臀色熟女| 成人特级黄色片久久久久久久| 亚洲欧美精品综合久久99| 久久久久久久午夜电影| 国产视频一区二区在线看| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 一级黄色大片毛片| 一级av片app| 国产精品日韩av在线免费观看| 在线观看免费视频日本深夜| 国产精品久久久久久久久免| 国产精品日韩av在线免费观看| 在线天堂最新版资源| 人妻久久中文字幕网| 嫩草影院精品99| 免费在线观看影片大全网站| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看 | 欧美另类亚洲清纯唯美| 亚洲精品国产成人久久av| av.在线天堂| 国产精品久久电影中文字幕| 99九九线精品视频在线观看视频| 国产一级毛片七仙女欲春2| 中文字幕免费在线视频6| 我要看日韩黄色一级片| 99久久久亚洲精品蜜臀av| 日韩欧美国产在线观看|