• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and comparison of solid-state lasers and fiberlasers on the coupling of rod-type photonic crystal fiber

    2018-12-13 08:24:02LITianqiMAOXiaojieLEIJianBIGuojiangJIANGDongsheng
    中國(guó)光學(xué) 2018年6期
    關(guān)鍵詞:光束透鏡激光器

    LI Tian-qi, MAO Xiao-jie, LEI Jian, BI Guo-jiang, JIANG Dong-sheng

    (Science and Technology on Solid-State Laser Laboratory,North ChinaResearch Institute of Electro-Optics,Beijing 100015,China)

    Abstract: The high or low coupling efficiency and the good or bad coupling facula directly affect the amplification effect of the Rod-type photonic crystal fiber. Therefore, it is necessary to research the coupling effect of seed light and choose a suitable laser as a seed source. In this paper, the coupling efficiency of Rod-type photonic crystal fibers in a solid-state laser and a fiber laser was theoretically analyzed. The changing regulation of the coupling efficiency and the effect of the alignment error on the coupling efficiency were calculated with two different lasers. A suitable lens or group of lenses were selected and an experiment was conducted to couple the solid-state laser beam and the fiber laser beam to the Rod-type photonic crystal fiber. Compared with the coupling effect of the two kinds of lasers, the maximum coupling efficiency of the solid laser is only 62.4%, while the coupling efficiency of the fiber laser is more than 80%. In the case of fiber laser coupling, the coupling efficiency at different power injection and the coupling facula were analyzed. The experimental results will guide the amplification experiment of the Rod-type photonic crystal fiber.

    Key words: rod-type photonic crystal fiber;solid-state laser;fiber laser;coupling efficiency

    1 Introduction

    引 言

    Rod-type photonic crystal fibers(ROD-PCF), hereinafter referred to as ROD Fiber for their large area, single mode and high gain, are very suitable for ultrashort pulse amplification[1-2]. At present, countries abroad have successfully developed crystal core picosecond pulse laser systems that can have a maximum average output power of up to 2 kW[3]. However, domestic research on optical fibers is rare, where most current research in this field occurs at the Shanghai Institute of Optics and Mechanics, CAS[1,4]. Optical fibers are also a form of photonic crystal fiber, which have a wide range of industrial applications. They might be used in medical fields, scientific research,etc.[5-8].

    光子晶體光纖棒(Rod-type photonic crystal fiber,ROD-PCF)下文簡(jiǎn)稱(chēng)光纖棒(ROD Fiber)因其具有模場(chǎng)面積大、無(wú)截止單模、高增益的特點(diǎn),十分適合于超短脈沖放大[1-2]。目前國(guó)外研制成功的光纖棒皮秒脈沖激光系統(tǒng)最大平均輸出功率可以高達(dá)2 kW[3]。但是國(guó)內(nèi)對(duì)光纖棒的研究報(bào)道較少見(jiàn),目前在該領(lǐng)域研究較多的是中科院上海光機(jī)所[1,4]。光纖棒也是一種光子晶體光纖,其在工業(yè)、醫(yī)療、科研等方面有著廣泛的應(yīng)用[5-8]。

    A key issue in the experimentation of ROD Fiber ultrashort pulse amplification systems is the method used to efficiently couple seed light into the core of a ROD Fiber. Coupling effect of seed light with ROD Fiber is important as effective coupling can cause seed light to be amplified more powerfully and the ROD Fiber can consequently receive light of higher quality.

    在進(jìn)行光纖棒超短脈沖放大系統(tǒng)的實(shí)驗(yàn)中一個(gè)十分關(guān)鍵問(wèn)題就是如何高效地將種子光耦合進(jìn)入光纖棒的纖芯。種子光與光纖棒之間的耦合效果十分重要,良好的耦合可以使種子光功率在光纖棒中得到充分的放大,并且可以得到高光束質(zhì)量的信號(hào)光。

    Since the used fiber is a photonic crystal fiber and has a large mode field area, it has a large diameter and a regular air hole microstructure[9-10]. If the fiber is welded, its air holes collapse. For this reason, the ROD Fiber is usually fitted with end caps at either end and free-space lens is used to couple the seed light with the pump light[11]. Lens coupling is very demanding on the position and focal length of lenses. It requires complex calculations, simulation and practice to obtain a suitable lens focal length[12]. Lens coupling systems have difficulty performing adjustments. They require adjustments in multiple dimensions for a single lens and require adjustment of multiple lenses for best results[13].

    由于光纖棒是大模場(chǎng)面積的光子晶體光纖,因此其直徑較大,而且具有規(guī)則的空氣孔微結(jié)構(gòu)[9-10],如果對(duì)其進(jìn)行光纖熔接會(huì)造成空氣孔的塌陷,因此光纖棒通常都是在端面接有端帽,并使用自由空間透鏡對(duì)種子光和泵浦光進(jìn)行耦合[11]。透鏡耦合對(duì)透鏡的位置、焦距等要求非??量蹋枰?jīng)過(guò)較為復(fù)雜的計(jì)算、仿真與實(shí)踐才能獲得合適的透鏡焦距[12]。透鏡耦合系統(tǒng)在調(diào)整的時(shí)候具有不小的難度,需要對(duì)單個(gè)透鏡的多個(gè)維度進(jìn)行調(diào)整,以及對(duì)多個(gè)透鏡進(jìn)行配合調(diào)整才能達(dá)到最好的效果[13]。

    The beam generated by the seed source can be approximated as a Gaussian beam. The basic principle of Gaussian beams in regards to fiber coupling is pattern matching the Gaussian beam mode field with the fiber mode field[14-15]. In the following experiment, photonic crystal fiber is coupled to a solid laser with a larger facula using single lens coupling and the relationship between coupling efficiency, lens position and focal length are calculated. A fiber laser with a smaller facula is then coupled to the photonic crystal fiber with expanding bean coupling and the relationship between coupling efficiency and beam expansion ratio are calculated. A solid-state laser with an output beam waist diameter of 800 μm and a fiber laser with output beam waist diameter of 25 μm(both with a beam quality ofM2≤1.2) were used as seed lasers with a wavelength ofλ=1 030 nm. Experiments were performed by coupling then with a rod-shaped photonic crystal fiber that has a core diameter ofD=85 μm(mode field diameter ofDMF=65 μm).

    種子源產(chǎn)生的光束可以近似為高斯光束,高斯光束到光纖耦合的基本原理就是高斯光束模場(chǎng)與光纖模場(chǎng)的模式匹配[14-15]。本文模擬計(jì)算了光斑較大的固體激光器在單透鏡耦合情況下,耦合效率與透鏡位置和焦距的關(guān)系,以及光斑較小的光纖激光器在擴(kuò)束透鏡組耦合情況下,耦合效率與擴(kuò)束倍率的關(guān)系。利用λ=1 030 nm輸出束腰直徑分別為800 μm和25 μm的固體激光器與光纖激光器作為種子源(光束質(zhì)量均為M2≤1.2),對(duì)芯徑D=85 μm(模場(chǎng)直徑為DMF=65 μm)的棒狀光子晶體光纖進(jìn)行了耦合實(shí)驗(yàn)。

    2 Analysis of Solid-state Laser Single Lens Coupling

    固體激光器單透鏡耦合分析

    The schematic diagram of the single lens coupling system is shown in Fig.1.

    單透鏡耦合系統(tǒng)的原理圖如圖1所示。

    Fig.1 Diagram of the single-lens coupling system 圖1 單透鏡耦合原理圖

    The beam is theoretically an ideal fundamental Gaussian distribution, where the lens in the optical system is an ideal lens,M2=1.Lis the distance between the incident beam waist and the end of the fiber,l1is the distance between the incident beam waist and the lens,lis the distance between the lens and the end of the ROD Fiber,ω0is the radius of the incident beam waist, andωis the radius of the spot on the end face of the ROD Fiber. Using what is already known, the following can be obtained that:

    理論推導(dǎo)中的光束為理想基模高斯光束即M2=1,光學(xué)系統(tǒng)中的透鏡為理想透鏡。L是入射光束束腰與光纖端面之間的距離,l1為入射光束束腰與透鏡的距離,l為透鏡與光纖棒端面之間的距離,ω0為入射光束腰半徑,ω為光纖棒端面上的光斑半徑。由已知可以得到:

    L=l1+l, (1)

    Let the lens focal length beF, allowing the propagation matrix of the system to become:

    設(shè)透鏡焦距為F,則該系統(tǒng)的傳播矩陣為:

    (2)

    Using the known incident beams, confocal parameters become:

    由已知入射光束的共焦參數(shù)為:

    (3)

    Then theqparameter at the waist of the incident beam is:

    則入射光束束腰處的q參數(shù)為:

    qin=jf, (4)

    Theqparameter on the lens plane after transformation by the system is:

    通過(guò)該系統(tǒng)變換后透鏡平面上的q參數(shù)為:

    (5)

    Then the distance between the output beam waist and the focusing mirror is:

    則輸出光束束腰與聚焦鏡的距離為:

    l2=-Re(qout) , (6)

    The confocal parameters of the output beam are:

    輸出光束的共焦參數(shù)為:

    f1=Im(qout) (7)

    The radius of the waist of the output beam is:

    輸出光束的束腰半徑為:

    (8)

    Theqparameter of the output beam on the fiber end face is:

    輸出光束在光纖端面上的q參數(shù)為:

    q=jf1+(l-l2) , (9)

    The spot radius of the output beam on the face of the fiber′s end is:

    輸出光束在光纖端面上的光斑半徑為:

    (10)

    For the fundamentally Gaussian beam that is transformed by the system, the mode field distribution on the fiber end face can be expressed as[16]:

    對(duì)于經(jīng)過(guò)系統(tǒng)變換后的基模高斯光束,其在光纖端面上的模場(chǎng)分布可以表示為[16]:

    WhereU0is the mode field amplitude of the Gaussian beam, and the wave numberkis:

    其中,U0為高斯光束的模場(chǎng)振幅,波數(shù)k為:

    k=2π/λ, (12)

    For the ROD Fiber, the end mode field distribution can be approximated as a Gaussian distribution[17-18]:

    對(duì)于光纖棒,其端面模場(chǎng)分布為可以近似為高斯分布[17-18]:

    WhereUR0andDMFare the mode field amplitude and mode field diameter of the ROD Fiber, respectively.

    其中,UR0與DMF分別為光纖棒的模場(chǎng)振幅和模場(chǎng)直徑。

    The ideal coupling efficiency is given by[18]:

    則理想的耦合效率為[18]:

    (14)

    Combining equations (1)-(14) yields the coupling efficiency as a function of the lens position when the focal length of the lens and the distance between the incident beam waist and the end face of the fiber are fixed. It also yields the relationship between the coupling efficiency and the focal length when the distance between the lens and the fiber′s end face as well as the distance between the incident beam waist and the fiber′s end face are held constant. For the fiber end face, when the beam is incident and conducts through the fiber, Fresnel reflection loss occurs at the front and rear ends of the fiber. Generally, the Fresnel reflection loss of a single end face is approximated to 3.5%~4%. The total Fresnel reflection loss of the front and rear end faces of the fiber is approximately 8%[17]. When loss from misalignment of the Gaussian beam coupled to the fiber is ignored, coupling efficiency in the first two cases is shown in Fig.2 and Fig.3. The parameters used in the simulation calculation are:the wavelength of the incident lightλis 1 030 nm,DMF=65 μm,ω0=0.4 mm,L=885 mm. In the first case,F=103.26 mm and in the second case,l=120 mm.

    結(jié)合式(1)~(14)分別計(jì)算出當(dāng)透鏡焦距、入射光束束腰與光纖端面的距離一定時(shí),耦合效率隨透鏡位置的變化關(guān)系以及當(dāng)透鏡與光纖端面的距離、入射光束束腰與光纖端面的距離一定時(shí),耦合效率隨透鏡焦距的變化關(guān)系。對(duì)于光纖端面而言,當(dāng)光束入射并且通過(guò)光纖傳導(dǎo)輸出時(shí),在光纖的前后兩個(gè)端面會(huì)存在菲涅爾反射損耗。一般來(lái)說(shuō)單獨(dú)一個(gè)端面的菲涅爾反射損耗約為3.5%~4%,光纖的前后兩個(gè)端面的總的菲涅爾反射損耗約為8%左右[17]。當(dāng)忽略高斯光束與光纖耦合的失準(zhǔn)損耗時(shí),前兩種情況下的耦合效率如圖2與圖3所示。模擬計(jì)算所用的參數(shù)為:入射光波長(zhǎng)λ=1 030 nm,DMF=65 μm,ω0=0.4 mm,L=885 mm,第一種情況所用F=103.26 mm,第二種情況所用l=120 mm。

    Fig.2 Relationship between coupling efficiency and lens position 圖2 耦合效率與透鏡位置的關(guān)系

    Fig.3 Relationship between coupling efficiency and focal length of the lens 圖3 耦合效率與透鏡焦距的關(guān)系

    It can be seen from Fig.2 that when the distance between the incident beam waist and the end face of the fiber and the focal length of the lens are all constant, the coupling efficiency increases and then decreases as the distance between the lens and the end face of the fiber increases. It can be seen from Fig.3 that when the distance between the incident beam waist and the end of the fiber, and the distance between the lens and the end face of the fiber are constant, the coupling efficiency increases and then decreases as the focal length of the lens increases. In both cases, the maximum coupling efficiency can surpass 80%.

    從圖2可以看出,當(dāng)入射光束束腰與光纖端面的距離以及透鏡的焦距一定時(shí),耦合效率隨著透鏡與光纖端面的距離增大而先增大后減小。從圖3可以看出,當(dāng)入射光束束腰與光纖端面的距離以及透鏡與光纖端面距離一定時(shí),耦合效率隨著透鏡焦距增大而先增大后減小。兩種情況下最大耦合效率均可達(dá)到80%以上。

    As can be seen from Fig.2, the coupling efficiency changes drastically when the focal length of the lens is 103.26 mm and the distance from the end face is between 90 mm and 150 mm. As can be seen from Fig.3, when the lens is fixed at a distance of 120 mm from the end face of the fiber, the coupling efficiency changes drastically when the focal length of the lens is between 80 mm and 140 mm.

    從圖2中可以看到,當(dāng)透鏡焦距為103.26 mm,且與端面的距離在90~150 mm之間時(shí)耦合效率會(huì)急劇地變化。從圖3中可以看到,當(dāng)透鏡固定在距離端面120 mm處時(shí),透鏡的焦距在80~140 mm之間時(shí)耦合效率會(huì)急劇地變化。

    3 Analysis of Fiber Laser Beam Expander Lens Group Coupling

    光纖激光器擴(kuò)束透鏡組耦合分析

    The schematic diagram of the beam expander lens group coupling system is shown in Fig.4.

    擴(kuò)束透鏡組耦合系統(tǒng)的原理圖如圖4所示。

    Fig.4 Diagram of the beam expanding lens group coupling system 圖4 擴(kuò)束透鏡組耦合原理圖

    Since the fiber adjustment is relatively simple, it is easy to move the pigtail or the beam expander lens group position so that the beam waist is at the end face of the fiber after the beam expansion. And if the magnification of the beam expander lens group is constant, the size of the waist is also constant regardless of how the beam expander lens group is expanded. When the beam expansion ratio isn,n∈(0,∞), the beam waist mode after beam expansion is:

    由于光纖調(diào)整較為簡(jiǎn)單,因此很容易通過(guò)移動(dòng)尾纖或者擴(kuò)束透鏡組位置,使得擴(kuò)束后的束腰在光纖端面處,而且只要擴(kuò)束透鏡組倍率一定,無(wú)論怎么移動(dòng)擴(kuò)束透鏡組,擴(kuò)束后的束腰大小都是不變的。擴(kuò)束倍率為n,n∈(0,∞),則擴(kuò)束后的束腰模場(chǎng)為:

    (15)

    The mode field distribution of the ROD Fiber end face is given in equation (13). The ideal coupling efficiency is given by:

    而光纖棒端面模場(chǎng)分布在式(13)已經(jīng)給出。則理想的耦合效率為:

    (16)

    The position of the lens group and the position of the fiber pigtail can be changed with some flexibility during the experiment so that the beam waist after the expansion can be found easily, and so that the plane of the beam waist coincides with the plane of the end face of the fiber. Therefore, the magnification of the beam expander will become the main factor affecting coupling efficiency. The relationship between the expansion ratio and the coupling efficiency is simulated below.

    實(shí)驗(yàn)中的透鏡組位置與光纖尾纖位置可以靈活變化,因此可以很容易找到擴(kuò)束后的束腰,并讓束腰所在平面恰好與光纖端面所在平面重合。所以擴(kuò)束鏡的倍率將成為影響耦合效率的主要因素。下面將對(duì)擴(kuò)束倍率與耦合效率的關(guān)系進(jìn)行仿真。

    Combine the equations (13), (15), and (16) to calculate the relationship between the expansion ratio and the coupling efficiency, and consider the Fresnel loss around the two end faces of the fiber is 8%. When neglecting the loss due to misalignment of the Gaussian beam coupled to the fiber, the beam expansion ratio and coupling efficiency are shown in Fig.5. The parameters used in the simulation calculation are:λ=1 030 nm,DMF=65 μm,ω0=0.02 mm, the usednvaries between 0xand 70x, and the plane where the beam is located coincides with the end face of the fiber after the beam is expanded.

    結(jié)合式(13)、(15)、(16)分別計(jì)算出擴(kuò)束倍率與耦合效率的關(guān)系,并考慮光纖兩個(gè)端面8%左右的菲涅爾損耗。當(dāng)忽略高斯光束與光纖耦合的失準(zhǔn)損耗時(shí),擴(kuò)束倍率與耦合效率如圖5所示。模擬計(jì)算所用的參數(shù)為:λ=1 030 nm,DMF=65 μm,ω0=0.02 mm,所使用的n在0x~70x之間變化,擴(kuò)束后束腰所在的平面與光纖端面重合。

    Fig.5 Relationship between the coupling efficiency and magnification of the beam expander 圖5 耦合效率與擴(kuò)束倍率的關(guān)系

    It can be seen from Fig.5 that the coupling efficiency increases rapidly with an increase in the expansion ratio and then decreases slowly thereafter. In this case, this is because two kinds of losses dominate: Diffraction loss and Numerical aperture mismatch loss. Before the coupling reaches maximum efficiency, as the beam expansion ratio increases, the numerical aperture mismatch loss decreases rapidly as the diffraction loss increases slowly, causing the coupling efficiency to increase rapidly within this range. After the coupling reaches the maximum efficiency, the numerical aperture mismatch loss is negligibly small and the diffraction loss is still slowly increasing. This causes the coupling efficiency to slowly decrease within this range.

    從圖5可以看到,耦合效率隨著擴(kuò)束倍率的增加先迅速增大隨后緩慢減小,這是因?yàn)樵谶@種情況下有兩種損耗起主導(dǎo)作用,這兩種損耗分別為衍射損耗與數(shù)值孔徑失配損耗。在耦合效率達(dá)到最大值前,隨著擴(kuò)束倍率的增加,數(shù)值孔徑失配損耗迅速減小,衍射損耗緩慢增大,因此,耦合效率在此范圍內(nèi)迅速增加;在耦合效率達(dá)到最大值后,數(shù)值孔徑失配損耗已經(jīng)小到可以忽略不計(jì),而衍射損耗依舊緩慢增加,因此,耦合效率在此范圍內(nèi)緩慢下降。

    The maximum point is the point at which the beam waist mode field after beam expansion completely matches the mode field of the ROD Fiber. Usually, obtaining a suitable lens group such as this is difficult. Therefore, in the experiment, we can use this curve as a guide and select the proper coupling lens groups that can best improve coupling efficiency.

    最大值點(diǎn)是擴(kuò)束后的束腰模場(chǎng)與光纖棒的模場(chǎng)完全匹配的那一點(diǎn),通常不易得到這樣合適的透鏡組,因此,在實(shí)驗(yàn)中可以此曲線(xiàn)作為指導(dǎo),選擇盡量合適的耦合透鏡組,以提高耦合效率。

    4 Influence of misalignment loss on coupling efficiency

    失準(zhǔn)損耗對(duì)耦合效率的影響

    Here are three types of misalignment loss in the process of coupling free-space Gaussian beams with fibers. They are longitudinal misalignment loss, lateral misalignment loss, and angular misalignment loss. A brief analysis of the effects of these three types of loss on coupling efficiency is given below.

    在自由空間高斯光束與光纖耦合的過(guò)程中存在3類(lèi)失準(zhǔn)損耗,它們分別是:縱向失準(zhǔn)損耗、橫向失準(zhǔn)損耗、角度失準(zhǔn)損耗。下面將對(duì)這3類(lèi)損耗對(duì)耦合效率的影響做出簡(jiǎn)要分析。

    The schematic diagram of longitudinal misalignment loss is shown in Fig.6.

    縱向失準(zhǔn)損耗示意圖如圖6所示。

    Fig.6 Diagram of longitudinal misalignment loss 圖6 縱向失準(zhǔn)損耗示意圖

    As shown in the above figure, during the adjustment process, the beam waist cannot completely coincide with the fiber end face in the longitudinal direction. This form of loss is called the longitudinal misalignment loss. The relationship between coupling efficiency and longitudinal misalignment loss is[17,19]:

    正如圖6所示,在實(shí)際調(diào)整的過(guò)程中,光束束腰在縱向上不能完全與光纖端面重合,這樣引入的損耗稱(chēng)為縱向失準(zhǔn)損耗。耦合效率與縱向失準(zhǔn)損耗的關(guān)系式為[17,19]:

    (17)

    WhereU1is the distribution of the incident beam waist mode field,U2is the position mode field distribution from the incident beam waists,S1is the plane of the beam waist, andS2is the plane from the position of the incident beam waists

    式中,U1為入射光束束腰模場(chǎng)分布,U2為距離入射光束束腰為s位置的模場(chǎng)分布,S1為光束束腰的平面,S2為距離入射光束束腰為s的位置所在的平面。

    Assuming thatω0=32.5 μm,DMF=65 μm, andλ=1 030 nm in Formula (17), the relationship between the normalized coupling efficiency and the longitudinal offset can be obtained as shown in Fig.7.

    假設(shè)ω0=32.5 μm,DMF=65 μm,λ=1 030 nm,根據(jù)式(17)可以得到歸一化耦合效率與縱向偏移量的關(guān)系如圖7所示。

    Fig.7 Influence of longitudinal error on coupling efficiency 圖7 縱向誤差對(duì)耦合效率的影響

    It can be seen from Fig.7 that coupling efficiency is sensitive to the longitudinal error. When the longitudinal offset is gradually increased from 0 mm to 5 mm, the normalized coupling efficiency reduced by more than 50%. When the longitudinal offset exceeded 13 mm, the normalized coupling efficiency dropped below 10%.

    由圖7可知,耦合效率對(duì)縱向誤差極其敏感,當(dāng)縱向偏移量由0 mm逐漸增大到5 mm的過(guò)程中歸一化耦合效率降低了50%以上,當(dāng)縱向偏移量超過(guò)13 mm歸一化耦合效率就降到了10%以下。

    The schematic diagram of lateral misalignment loss is shown in Fig.8.

    橫向失準(zhǔn)損耗示意圖如圖8所示。

    Fig.8 Diagram of lateral misalignment loss 圖8 橫向失準(zhǔn)損耗示意圖

    As shown in the above figure, during the adjustment process, the beam cannot completely coincide with the end face of the fiber in the lateral direction. This form of loss is called the lateral misalignment loss. The relationship between coupling efficiency and lateral misalignment loss is[17,19]:

    正如圖8所示,在實(shí)際調(diào)整的過(guò)程中,光束在橫向上不能完全與光纖端面重合,這樣引入的損耗稱(chēng)為橫向失準(zhǔn)損耗。耦合效率與橫向失準(zhǔn)損耗的關(guān)系式為[17,19]:

    (18)

    WhereDMF/2 is the mode field radius of the ROD Fiber, andω0is the incident beam waist radius. Assume that:

    式中,DMF/2為光纖棒模場(chǎng)半徑,ω0為入射光束束腰半徑。設(shè):

    αc=arccos(d/DMF) , (19)

    Then, when 0<α<αc,

    則有當(dāng)0<α<αc時(shí),

    rb=DMF/2 (20)

    Whenαc<α<π,

    當(dāng)αc<α<π時(shí),

    rb=dcosα+[(DMF/2)2-d2sin2α]1/2, (21)

    Assume thatω0=32.5 μm,DMF=65 μm, andλ=1 030 nm. According to the equations (18)-(21), the relationship between the normalized coupling efficiency and the lateral offset can be obtained as shown in Fig.9:

    假設(shè)ω0=32.5 μm,DMF=65 μm,λ=1 030 nm,根據(jù)式(18)~(21)可以得到歸一化耦合效率與橫向偏移量的關(guān)系如圖9所示。

    Fig.9 Influence of transverse error on coupling efficiency 圖9 橫向誤差對(duì)耦合效率的影響

    It can be seen from Fig.9 that the coupling efficiency is sensitive to the transverse error. When the lateral offset is gradually increased from 0 μm to 30μm, the normalized coupling efficiency is reduced by about 50%. When the lateral offset exceeds 50 μm, the normalization coupling efficiency dropped below 10%.

    由圖9可知,耦合效率對(duì)角度誤差極其敏感,當(dāng)橫向偏移量由0 μm逐漸增大到30 μm的過(guò)程中,歸一化耦合效率降低了約50%,當(dāng)橫向偏移量超過(guò)50 μm時(shí)歸一化耦合效率降到了10%以下。

    The angular misalignment loss diagram is shown in Fig.10.

    角度失準(zhǔn)損耗示意圖如圖10所示。

    Fig.10 Diagram of transverse misalignment loss 圖10 角度失準(zhǔn)損耗示意圖

    As shown in the above figure, during the adjustment process, the beam cannot be incident with the fiber in parallel. This form of loss is called the angular misalignment loss. The relationship between coupling efficiency and angular misalignment loss is[19-20]:

    正如圖10所示,在實(shí)際調(diào)整的過(guò)程中,光束無(wú)法于光纖平行入射,這樣引入的損耗稱(chēng)為角度失準(zhǔn)損耗。耦合效率與角度失準(zhǔn)損耗的關(guān)系式為[19-20]:

    (22)

    Wheren2is the refractive index of the inner cladding of the rod-shaped photonic crystal fiber.

    式中,n2為棒狀光子晶體光纖內(nèi)包層折射率。

    Assuming the inner cladding refractive indexn2=1.4, the incident beam waist radiusω0=32.5 μm, andλ=1 030 nm, according to the equation (22), the relationship between the normalized coupling efficiency and the angular offset can be obtained as shown in Fig.11.

    假設(shè)內(nèi)包層折射率n2=1.4,入射光束束腰半徑ω0=32.5 μm,λ=1 030 nm,根據(jù)式(22)可以得到歸一化耦合效率與角度偏移量的關(guān)系如圖11所示。

    Fig.11 Influence of transverse error on coupling efficiency 圖11 角度誤差對(duì)耦合效率的影響

    It can be seen from Fig.11 that the coupling efficiency is sensitive to the angular error. When the angular offset is gradually increased from 0 mrad to 6 mrad, the normalized coupling efficiency is reduced by about 50%. When the angular offset exceeds 15 mrad normalized coupling efficiency is roughly 0.

    由圖11可知,耦合效率對(duì)角度誤差及其敏感,當(dāng)角度偏移量由0 mrad逐漸增大到6 mrad的過(guò)程中歸一化耦合效率降低了約50%,當(dāng)角度偏移量超過(guò)15 mrad,歸一化耦合效率基本為0。

    According to the above analysis of the three misalignment conditions, the coupling efficiency is very sensitive to various misalignment errors, wherein the magnitude of the longitudinal misalignment error and the angular misalignment error are a millimeter and a milliradian, respectively, and the tranverse misalignment error′s magnitude is on the order of microns. During adjustment, in order to minimize the influence of misalignment error on the coupling efficiency, an adjustment frame with high accuracy and reliability should be selected and the operator should be both careful and meticulous.

    根據(jù)上文對(duì)3種失準(zhǔn)情況的分析可知,耦合效率對(duì)各種失準(zhǔn)誤差非常敏感,其中縱向失準(zhǔn)誤差和角度失準(zhǔn)誤差的量級(jí)分別為毫米級(jí)和毫弧度級(jí),而橫向失準(zhǔn)誤差的量級(jí)在微米級(jí)。在實(shí)際調(diào)整中為了盡量減少失準(zhǔn)誤差對(duì)耦合效率的影響,應(yīng)選用精度和可靠性較高的調(diào)整架,并且操作時(shí)應(yīng)認(rèn)真細(xì)致。

    5 ROD Fiber Coupling Experiment Analysis

    光纖棒耦合實(shí)驗(yàn)分析

    The basic parameters required by the laser experiments used in the experiment are shown in Tab.1 and Tab.2.

    實(shí)驗(yàn)所用兩種激光器實(shí)驗(yàn)所需基本參數(shù)如表1與表2所示。

    Tab.1 Basic parameters of the solid-state laser

    Tab.2 Basic parameters of fiber laser

    The photonic crystal ROD Fiber used is aeroGAIN-ROD-PM85, produced by NKT. The core diameter isD=85 μm, the mode field diameterDMF=65 μm, and the core numerical apertureNA=0.015. In order to avoid high Fresnel reflection loss, both ends of the fiber are plated with antireflection film.

    所用光子晶體光纖棒為NKT公司生產(chǎn)的aeroGAIN-ROD-PM85,纖芯直徑為D=85 μm、模場(chǎng)直徑DMF=65 μm、纖芯數(shù)值孔徑NA=0.015,為了避免較高的菲涅爾反射損耗,光纖兩端面均鍍有增透膜。

    The coupling experimental optical path of a solid-state laser is shown in Fig.12.

    固體激光器的耦合實(shí)驗(yàn)光路如圖12所示。

    Fig.12 Diagram of solid-state laser coupling 圖12 固體激光器耦合實(shí)驗(yàn)光路圖

    The lenses used are total reflection mirrors whereF=103.26 mm andM1-M4are 45°. In order to prevent back light interference or damage to the laser, an isolator is added to the experiment′s optical path.

    所使用的透鏡F=103.26 mm,M1-M4為45°全反射鏡,為了防止回光干擾或損傷激光器,實(shí)驗(yàn)光路中加入了隔離器。

    The coupling experimental optical path of the fiber laser is shown in Fig.13.

    光纖激光器的耦合實(shí)驗(yàn)光路如圖13所示。

    Fig.13 Diagram of fiber laser coupling 圖13 光纖激光器耦合實(shí)驗(yàn)光路圖

    Among the used lenses,F1=30 mm andF2=77 mm, and the both are respectively collimated and focused. These two lenses can be regarded as a lens

    group that expands the waist of the output beam of the fiber pigtail by a certain magnification. Also, a total reflection mirror is used whereM1-M4is 45° . In order to prevent back light interference or damage to the laser, an isolator is also added to the experiment′s optical path.

    所使用的兩個(gè)透鏡分別為F1=30 mm、F2=77 mm,兩個(gè)透鏡的作用分別為準(zhǔn)直和聚焦,這兩個(gè)透鏡可以看作是一個(gè)將光纖尾纖輸出束腰擴(kuò)束一定倍率的透鏡組,M1-M4為45°全反射鏡,為了防止回光干擾或損傷激光器,實(shí)驗(yàn)光路中同樣加入了隔離器。

    The coupling efficiencies of the two lasers at low power and medium power were tested as shown in tables 3 and 4.

    實(shí)驗(yàn)中分別測(cè)試了兩種激光器在低功率和中等功率時(shí)的耦合效率,如表3和表4所示。

    Tab.3 Comparison of coupling efficiency under low power conditions

    Tab.4 Comparison of coupling efficiency under medium power conditions

    Since the stable output power of the fiber laser can only be set to 1 000 mW, the injected power in the low power test is significantly different from that of the solid state laser.

    由于光纖激光器的穩(wěn)定輸出功率最低只能設(shè)定為1 000 mW,因此,低功率測(cè)試時(shí)的注入功率與固體相差較多。

    By comparing the data of the solid-state laser to the fiber laser, it can be known that at low power, the coupling efficiency of the solid-state laser is only 42.4%, and that the coupling efficiency of the fiber laser is higher at 60.0%. When using medium power, the injection power is also 4 W. The coupling of the solid-state laser had an efficiency of only 62.4%, while that of the fiber laser exceeded 80%. Fiber lasers have higher coupling efficiencies than solid-state lasers in both low-power and medium-power conditions. The reason for this may be that the beam quality of the fiber laser is higher than that of the solid laser and that the coupled spot energy is more concentrated, which would theoretically cause the coupling efficiency of the fiber laser to be higher than that of the solid laser.

    通過(guò)對(duì)比固體激光器與光纖激光器的數(shù)據(jù)可以得知,在低功率下,固體激光器的耦合效率只有42.2%,而光纖激光器的耦合效率可達(dá)60.0%;在中等功率下,注入功率同樣為4 W,固體激光器的耦合效率只有62.4%,而光纖激光器的耦合效率已經(jīng)達(dá)到了80.5%。無(wú)論是低功率情況下還是中等功率情況下,光纖激光器的耦合效率均比固體激光器高。分析其原因可能是,光纖激光器的光束質(zhì)量高于固體激光器,耦合后的光斑能量更加集中,因此,光纖激光器的耦合效率要高于固體激光器。

    When comparing the data of the same laser at different output powers, the solid-state laser has a coupling efficiency of only 42.4% at low injection power, and a higher coupling efficiency of 62.4% at 4 W medium power. The same phenomenon occurs during the fiber laser coupling experiment. The fiber laser has a coupling efficiency of only 60.0% at low power, which increases to 80.5% at 4 W medium power. In other words, the coupling efficiency is low at low power, while the coupling efficiency is increased at medium power. The reason for this result may be that the core absorbs light at 1 030 nm. At low power, the light absorption in the core is significant due to lower injection power causing the CCR(cladding core power ratio) to be low. Therefore, in the case of medium power, since the injection power is large, the core absorption accounts for a small portion of the overall power, the CCR increases causing the coupling efficiency to also increase.

    通過(guò)對(duì)比相同激光器在不同輸出功率下的數(shù)據(jù)可知,固體激光器在低功率下耦合效率只有42.4%,在中等功率下注入功率為4 W,耦合效率為62.4%,比低功率下有所增長(zhǎng);同樣的現(xiàn)象也發(fā)生在光纖激光器的耦合實(shí)驗(yàn)中,光纖激光器在低功率下耦合效率只有60.0%,在中等功率下注入4 W,耦合效率增長(zhǎng)到了為80.5%。也就是說(shuō)在低功率下耦合效率較低,而在中等功率下耦合效率有所增長(zhǎng)。分析其原因可能是,纖芯對(duì)1 030 nm的激光有所吸收。在低功率下,由于注入功率較小,所以纖芯吸收所占比例較大,CCR(包層纖芯功率比)較低,因此耦合效率較低;在中等功率情況下,由于注入功率較大,纖芯吸收所占比例小,CCR增加,因此耦合效率增加。

    In order to verify whether the spot energy after fiber laser coupling is better than the concentration of the solid laser and the shape of the spot after coupling, the coupled spot is observed by CCD in the experiment. The observation result is shown in Fig.14.

    為了驗(yàn)證光纖激光器耦合后的光斑能量是否比固體激光器的集中,以及耦合后的光斑形狀是否更好,實(shí)驗(yàn)中利用CCD對(duì)耦合后的光斑進(jìn)行了觀察,觀察結(jié)果如圖14所示。

    Fig.14 Solid-state laser(left) and fiber laser(right) coupling facula 圖14 固體激光器(左)與光纖激光器(右)耦合后光斑對(duì)比圖

    It can be clearly seen when comparing the above two facula patterns that there is stray light that escapes in the cladding surrounding the coupling of the solid laser, and the stray light that escapes into the cladding around the coupling facula of the fiber laser is dim. From the shape of the spot, it is obvious that the coupling spot of the fiber laser is smaller than the coupling spot of the solid laser.

    通過(guò)兩幅光斑圖的對(duì)比可以看出,固體激光器的耦合光斑周?chē)忻黠@的逸散在包層中的雜散光,而光纖激光器的耦合光斑周?chē)萆⒌桨鼘又械碾s散光十分暗淡。從光斑的形狀來(lái)看光纖激光器的耦合光斑比固體激光器的耦合光斑圓。

    In order to verify that the coupling efficiency increases with an increase in power, the injected power is gradually increased from 1 W to 6 W to determine the coupling efficiency of the experiment.

    為了驗(yàn)證功率逐漸增加的過(guò)程中耦合效率是否會(huì)逐漸增大,實(shí)驗(yàn)中測(cè)定了光纖激光器耦合情況下,注入功率由1 W逐漸增加到6 W時(shí)耦合效率的變化情況。

    Tab.5 Transmission power and couplingefficiency vary with injection power

    Fig.15 Relationship between the coupling efficiency and injected power 圖15 耦合效率隨注入功率的變化情況

    It can be seen from Tab.5 and Fig.15 that in all cases, the coupling efficiency increased gradually with increases in the injected power. Moreover, the changes in the fiber laser′s facula after coupling were also monitored as the injected power was gradually increased from 1 W to 6 W.

    從表5和圖15可以看出,其它情況一定時(shí),耦合效率的確是隨著注入功率的增加而逐漸增大。而且在實(shí)驗(yàn)中,還觀察了光纖激光器耦合情況下,注入功率由1 W逐漸增加到6 W時(shí)耦合后光斑的變化情況。

    It can be seen from Fig.16 that the coupled facula tends to gradually concentrate as the injection power increases. The reason for this may be that the core′s power absorption ratio gradually decreases as the power increases. Moreover, the beam quality of the fiber laser is also gradually increasing, meaning that the beam mode field passing through the coupled system matches more closely with the mode field of the ROD Fiber itself. This causes the coupled energy to be more concentrated to the core.

    從圖16可以看出,隨著注入功率的增加,耦合后的光斑能量有逐漸集中的趨勢(shì),原因可能是,隨著功率的增加纖芯對(duì)功率的吸收比例逐漸減小,而且光纖激光器本身的光束質(zhì)量在逐漸增加,使得經(jīng)過(guò)耦合系統(tǒng)的光束模場(chǎng)與光纖棒本身的模場(chǎng)更加匹配,致使耦合后的能量向纖芯集中。

    Fig.16 Changing law of coupling facula when injection power growing from 1 W to 6 W 圖16 注入功率1 W到6 W的情況下耦合光斑的變化規(guī)律

    According to the experimental results, although the coupling effect of the fiber laser is much better than that of the solid-state laser, there is still a gap between it and the ideal coupling efficiency demonstrated by calculations. The main reasons for this may be as follows:

    根據(jù)實(shí)驗(yàn)情況來(lái)看,雖然光纖激光器的耦合效果比固體激光器好很多,但是,仍與模擬計(jì)算所得的理想耦合效率有所差距,造成這種差距的主要原因可能有以下幾點(diǎn):

    First, the beam quality of the fiber laser isM2~1.1 and not a fundamental Gaussian beam in the ideal state used in the simulation. The non-ideal beam quality will create loss in coupling efficiency.

    第一,光纖激光器的光束質(zhì)量是M2~1.1,不是仿真中所用的理想狀態(tài)下的基模高斯光束,非理想的光束質(zhì)量將帶來(lái)一定的耦合效率損失。

    Second, the beam′s output from the fiber laser passes through three mirrors, an isolator, and two lenses. The surface of these optical devices may have defects and those defects would cause distortion, which may also reduce coupling efficiency.

    第二,光纖激光器輸出的光束在光路中經(jīng)過(guò)3個(gè)反射鏡、一個(gè)隔離器和兩個(gè)透鏡,這些光學(xué)器件的表面可能存在缺陷,缺陷造成光束的畸變,這也可能使耦合效率降低。

    Third, the accuracy of the coupling lens adjustment is not high enough to cause completely remove errors in alignment. Because the fiber is very sensitive to various alignment errors, the coupling efficiency would decrease.

    第三,耦合透鏡調(diào)整的精度不夠高造成了各種對(duì)準(zhǔn)誤差的出現(xiàn),由于光纖對(duì)各種對(duì)準(zhǔn)誤差十分敏感,因此造成了耦合效率的降低。

    Fourth, since the rod-shaped photonic crystal fiber is a gain fiber, the fiber is doped with Yb3+ions, and the 1 030 nm wavelength of the Yb3+ion pair in the fiber has an absorption effect[21], and this absorption is unavoidable in the measurement process. Once again, this would also reduce coupling efficiency.

    第四,由于棒狀光子晶體光纖為增益光纖,光纖中摻雜有Yb3+離子,而光纖中的Yb3+離子對(duì)1 030 nm的波段有一定的吸收作用[21],這種吸收在測(cè)定過(guò)程中是無(wú)法避免的,因此會(huì)造成耦合效率的下降。

    6 Conclusion

    結(jié) 論

    The quality of a laser′s beam has a large influence on coupling efficiency. A fiber laser with high beam quality and a solid laser with poor beam quality can have a difference in coupling efficiency of nearly 20% under the same circumstances. When the power injected into the fiber laser is gradually increased, the coupling efficiency also gradually increases. This is because, as the injection power increases, the portion of power that is absorbed by the core decreases. Also, as the quality of the injected beam increases, the CCR increases as well. During experimentation, the maximum coupling efficiency obtained by using the fiber laser was slightly lower than simulated coupling efficiency obtained through calculation. Regardless, results were marginally close to the expected target. The coupling experiment has guiding significance for subsequent ROD Fiber amplification experiments. Higher coupling efficiency can allow more seed light to enter a ROD Fiber core which can effectively suppress ASE(spontaneous radiation amplification) and increase its gain. A good coupling facula can also improve quality in the amplified laser beams.

    光束質(zhì)量的好壞對(duì)耦合效率的影響十分大,光束質(zhì)量較好的光纖激光器和光束質(zhì)量較差的固體激光器在相同注入功率下,其對(duì)光纖棒的耦合效率可以相差近20%。當(dāng)注入光纖的功率逐漸增加時(shí),耦合效率也會(huì)逐漸增大,這是由于隨著注入功率的增加,纖芯吸收的功率所占比例越來(lái)越低,注入光束的光束質(zhì)量逐漸變好,使得CCR逐漸增大。在耦合實(shí)驗(yàn)中,使用光纖激光器所得到的最大耦合效率雖然略低于仿真所得到的耦合效率,但是已經(jīng)十分接近,達(dá)到了所預(yù)期的目標(biāo)。整個(gè)耦合實(shí)驗(yàn)對(duì)后續(xù)光纖棒放大實(shí)驗(yàn)具有指導(dǎo)意義,較高的耦合效率可以使更多的種子光進(jìn)入光纖棒纖芯,從而可以有效的抑制ASE(自發(fā)輻射放大),使得光纖棒獲得更高的增益,而良好的耦合光斑也可以有效改善放大后的光束質(zhì)量。

    猜你喜歡
    光束透鏡激光器
    2維Airy光束陣列強(qiáng)度的調(diào)控技術(shù)研究
    肥皂泡制成微小激光器?
    軍事文摘(2024年4期)2024-03-19 09:40:02
    “透鏡及其應(yīng)用”知識(shí)延伸
    “透鏡”知識(shí)鞏固
    “透鏡及其應(yīng)用”知識(shí)拓展
    “透鏡”知識(shí)鞏固
    詭異的UFO光束
    奧秘(2021年3期)2021-04-12 15:10:26
    激光器發(fā)明60周年
    科學(xué)(2020年6期)2020-02-06 09:00:06
    激光共焦顯微光束的偏轉(zhuǎn)掃描
    一體化半導(dǎo)體激光器的ANSYS熱仿真及結(jié)構(gòu)設(shè)計(jì)
    在现免费观看毛片| 在线亚洲精品国产二区图片欧美| 国产成人91sexporn| 看非洲黑人一级黄片| 香蕉国产在线看| 欧美亚洲 丝袜 人妻 在线| 欧美精品人与动牲交sv欧美| 日韩av在线免费看完整版不卡| 亚洲av国产av综合av卡| 国产成人精品无人区| 制服丝袜香蕉在线| av在线app专区| 如何舔出高潮| 国产日韩欧美视频二区| 在线免费观看不下载黄p国产| 国产片特级美女逼逼视频| 免费黄色在线免费观看| 国产黄色视频一区二区在线观看| 久久久久网色| 99久久精品国产国产毛片| 午夜老司机福利剧场| a级毛片黄视频| 亚洲五月色婷婷综合| 热re99久久精品国产66热6| 国产欧美日韩一区二区三区在线| 国产亚洲精品第一综合不卡| 国产亚洲av片在线观看秒播厂| 国产免费又黄又爽又色| 免费少妇av软件| 久久久欧美国产精品| 99re6热这里在线精品视频| 精品酒店卫生间| 熟女电影av网| 国产成人精品久久二区二区91 | 赤兔流量卡办理| 国产伦理片在线播放av一区| 亚洲精品美女久久久久99蜜臀 | 亚洲国产最新在线播放| 一本大道久久a久久精品| 一二三四在线观看免费中文在| 久久久久久免费高清国产稀缺| 如何舔出高潮| 久久精品国产鲁丝片午夜精品| 精品卡一卡二卡四卡免费| 免费观看性生交大片5| 一区二区三区乱码不卡18| 九色亚洲精品在线播放| 在线亚洲精品国产二区图片欧美| 伊人久久国产一区二区| 精品一品国产午夜福利视频| 高清视频免费观看一区二区| 夫妻性生交免费视频一级片| 交换朋友夫妻互换小说| 街头女战士在线观看网站| 久久久精品国产亚洲av高清涩受| 国产一区亚洲一区在线观看| 两个人看的免费小视频| xxxhd国产人妻xxx| 久久国内精品自在自线图片| 色婷婷久久久亚洲欧美| 激情视频va一区二区三区| 久久久久久人妻| 男女午夜视频在线观看| 80岁老熟妇乱子伦牲交| 国产不卡av网站在线观看| 九草在线视频观看| 捣出白浆h1v1| 狠狠婷婷综合久久久久久88av| av.在线天堂| 久久99蜜桃精品久久| av在线观看视频网站免费| 最新中文字幕久久久久| av免费在线看不卡| 亚洲国产精品一区三区| 久久国产亚洲av麻豆专区| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 老熟女久久久| 伦精品一区二区三区| 成年美女黄网站色视频大全免费| 永久免费av网站大全| 超色免费av| 成人国产av品久久久| 欧美精品av麻豆av| 丰满乱子伦码专区| 日本av手机在线免费观看| 日韩免费高清中文字幕av| av女优亚洲男人天堂| 美女视频免费永久观看网站| 男人舔女人的私密视频| 伊人久久国产一区二区| 日韩欧美一区视频在线观看| 国产毛片在线视频| 国产高清不卡午夜福利| 日韩人妻精品一区2区三区| 在线观看免费日韩欧美大片| 桃花免费在线播放| 国产高清国产精品国产三级| 大片免费播放器 马上看| 高清欧美精品videossex| 老汉色∧v一级毛片| 国产又爽黄色视频| 亚洲人成网站在线观看播放| 成人午夜精彩视频在线观看| 欧美人与善性xxx| 亚洲精品aⅴ在线观看| 日本午夜av视频| 国产97色在线日韩免费| 中文字幕最新亚洲高清| 午夜老司机福利剧场| 妹子高潮喷水视频| 伊人久久大香线蕉亚洲五| 久久鲁丝午夜福利片| 丝袜美腿诱惑在线| 一级片免费观看大全| 两性夫妻黄色片| 18禁裸乳无遮挡动漫免费视频| 久久人人爽av亚洲精品天堂| av国产久精品久网站免费入址| 人妻少妇偷人精品九色| 丝瓜视频免费看黄片| 久久久精品免费免费高清| 女人久久www免费人成看片| 亚洲一码二码三码区别大吗| 国产精品一国产av| 日韩av免费高清视频| 精品少妇久久久久久888优播| 女性被躁到高潮视频| 中文字幕亚洲精品专区| 97在线人人人人妻| 欧美人与善性xxx| 欧美日韩综合久久久久久| 1024视频免费在线观看| 精品一区二区三区四区五区乱码 | 国产精品免费视频内射| 久热久热在线精品观看| 女人高潮潮喷娇喘18禁视频| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 欧美日韩成人在线一区二区| 国产成人精品婷婷| 日本av手机在线免费观看| 成人18禁高潮啪啪吃奶动态图| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 婷婷成人精品国产| 999久久久国产精品视频| 国产淫语在线视频| freevideosex欧美| 2022亚洲国产成人精品| 女人精品久久久久毛片| 啦啦啦在线免费观看视频4| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| av视频免费观看在线观看| 亚洲视频免费观看视频| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区精品91| 日韩中文字幕视频在线看片| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 人妻 亚洲 视频| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 啦啦啦在线免费观看视频4| 另类精品久久| h视频一区二区三区| 香蕉丝袜av| 观看av在线不卡| 久久影院123| 欧美日韩精品网址| 丝袜喷水一区| 五月开心婷婷网| 最新的欧美精品一区二区| 国产男女内射视频| av国产久精品久网站免费入址| 久久久久久人人人人人| 久久久精品免费免费高清| 久久人妻熟女aⅴ| 亚洲国产av新网站| av在线播放精品| 天堂俺去俺来也www色官网| 日韩视频在线欧美| 亚洲第一区二区三区不卡| 国产麻豆69| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| 日韩一区二区视频免费看| 精品国产露脸久久av麻豆| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 亚洲av男天堂| 男男h啪啪无遮挡| 国产日韩欧美视频二区| 免费看不卡的av| 日韩人妻精品一区2区三区| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 电影成人av| 伦理电影免费视频| av女优亚洲男人天堂| 久热这里只有精品99| 视频在线观看一区二区三区| 国产亚洲最大av| 精品少妇一区二区三区视频日本电影 | 午夜福利,免费看| 最新的欧美精品一区二区| 国产亚洲最大av| 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 国产有黄有色有爽视频| 成人国产av品久久久| 久久久亚洲精品成人影院| 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| 最近手机中文字幕大全| 伊人久久大香线蕉亚洲五| 黄色一级大片看看| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 激情视频va一区二区三区| 亚洲国产精品999| 国产精品成人在线| 久久热在线av| 国产亚洲一区二区精品| 国产成人一区二区在线| 91国产中文字幕| av国产精品久久久久影院| 麻豆精品久久久久久蜜桃| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 亚洲av福利一区| 久久国内精品自在自线图片| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| 一级毛片 在线播放| 性色avwww在线观看| 国产一区有黄有色的免费视频| 日本免费在线观看一区| 菩萨蛮人人尽说江南好唐韦庄| 黄色毛片三级朝国网站| 老汉色∧v一级毛片| 考比视频在线观看| 人成视频在线观看免费观看| 国产激情久久老熟女| 亚洲国产色片| 人妻 亚洲 视频| 男的添女的下面高潮视频| 国产精品三级大全| 亚洲精品第二区| 亚洲精品一二三| 一区二区三区精品91| 青青草视频在线视频观看| 一级黄片播放器| 亚洲国产精品999| 日本午夜av视频| 国产成人免费无遮挡视频| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 777米奇影视久久| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 日日撸夜夜添| 春色校园在线视频观看| 男女午夜视频在线观看| 香蕉丝袜av| 在线观看三级黄色| 亚洲国产精品成人久久小说| 国产精品香港三级国产av潘金莲 | 精品少妇一区二区三区视频日本电影 | 国产男女内射视频| 午夜激情av网站| 精品人妻在线不人妻| 两性夫妻黄色片| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线| 日韩熟女老妇一区二区性免费视频| 26uuu在线亚洲综合色| 高清不卡的av网站| 狠狠精品人妻久久久久久综合| 美女高潮到喷水免费观看| 日韩大片免费观看网站| 成年人午夜在线观看视频| 日韩一区二区视频免费看| 亚洲精品,欧美精品| 啦啦啦中文免费视频观看日本| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 久久久久国产一级毛片高清牌| av女优亚洲男人天堂| 国产不卡av网站在线观看| av免费观看日本| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 叶爱在线成人免费视频播放| 国产成人免费观看mmmm| 在现免费观看毛片| 赤兔流量卡办理| 日韩中字成人| 人妻人人澡人人爽人人| av在线app专区| 日本-黄色视频高清免费观看| 多毛熟女@视频| 久久精品久久久久久久性| 精品酒店卫生间| 国产精品亚洲av一区麻豆 | 99久久综合免费| 国产精品麻豆人妻色哟哟久久| 久久久欧美国产精品| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 丝袜在线中文字幕| 男人添女人高潮全过程视频| 肉色欧美久久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 午夜久久久在线观看| 丝袜在线中文字幕| 亚洲成色77777| 777米奇影视久久| 亚洲av综合色区一区| 在线天堂最新版资源| 国产片内射在线| 超碰97精品在线观看| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 丝袜在线中文字幕| 美女脱内裤让男人舔精品视频| 欧美中文综合在线视频| 亚洲国产成人一精品久久久| 永久网站在线| 搡老乐熟女国产| 乱人伦中国视频| 亚洲av中文av极速乱| 国精品久久久久久国模美| 亚洲第一av免费看| 亚洲av中文av极速乱| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 中文欧美无线码| 久久精品国产综合久久久| 日韩欧美一区视频在线观看| av免费观看日本| 老司机亚洲免费影院| 国产欧美日韩一区二区三区在线| 美女高潮到喷水免费观看| 国产精品免费大片| 午夜精品国产一区二区电影| 中文字幕人妻丝袜制服| 观看美女的网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久久久久婷婷小说| 男男h啪啪无遮挡| 天天影视国产精品| 日本av免费视频播放| 午夜福利视频精品| 美女午夜性视频免费| 大香蕉久久成人网| 亚洲欧美一区二区三区久久| 热99久久久久精品小说推荐| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 亚洲第一青青草原| 视频区图区小说| 亚洲精品日本国产第一区| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 久久精品久久久久久久性| 国产成人精品久久久久久| 观看美女的网站| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 丝袜脚勾引网站| 90打野战视频偷拍视频| 国产视频首页在线观看| videos熟女内射| 青草久久国产| 不卡av一区二区三区| 老汉色av国产亚洲站长工具| 又粗又硬又长又爽又黄的视频| 18禁动态无遮挡网站| 亚洲国产精品一区二区三区在线| av在线播放精品| 午夜免费观看性视频| 久久久精品国产亚洲av高清涩受| 精品少妇一区二区三区视频日本电影 | 黄色怎么调成土黄色| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 夫妻午夜视频| 精品亚洲成a人片在线观看| 国产精品无大码| 男人爽女人下面视频在线观看| 人妻 亚洲 视频| 国产精品偷伦视频观看了| 亚洲综合精品二区| 在线天堂中文资源库| 有码 亚洲区| www.自偷自拍.com| 欧美日韩成人在线一区二区| 99久久精品国产国产毛片| 黄色一级大片看看| 成人影院久久| 女人高潮潮喷娇喘18禁视频| 黄片无遮挡物在线观看| 99热全是精品| 黄频高清免费视频| 免费观看无遮挡的男女| 男女无遮挡免费网站观看| 精品一区二区三区四区五区乱码 | 一级毛片黄色毛片免费观看视频| 久久久久久久久免费视频了| 久久婷婷青草| 七月丁香在线播放| 国产成人欧美| 汤姆久久久久久久影院中文字幕| 一本大道久久a久久精品| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 18禁动态无遮挡网站| 这个男人来自地球电影免费观看 | 女性被躁到高潮视频| 岛国毛片在线播放| 久久影院123| 日韩电影二区| 国产成人91sexporn| 久久久久久人人人人人| 天天躁夜夜躁狠狠久久av| av不卡在线播放| videosex国产| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| 日本wwww免费看| 一区二区三区激情视频| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| 人妻一区二区av| 一级毛片电影观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧洲国产日韩| 在线观看www视频免费| 日韩人妻精品一区2区三区| 2021少妇久久久久久久久久久| 久久女婷五月综合色啪小说| 91在线精品国自产拍蜜月| 久久精品aⅴ一区二区三区四区 | 国产精品嫩草影院av在线观看| 精品酒店卫生间| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| 可以免费在线观看a视频的电影网站 | 卡戴珊不雅视频在线播放| 人妻一区二区av| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| 久久国产精品大桥未久av| 男的添女的下面高潮视频| 午夜老司机福利剧场| 亚洲国产日韩一区二区| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 日韩大片免费观看网站| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 国产乱来视频区| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 五月开心婷婷网| 观看美女的网站| 国产不卡av网站在线观看| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 国产成人91sexporn| 久久精品国产亚洲av天美| 国产欧美日韩综合在线一区二区| 国产亚洲一区二区精品| 国产黄色免费在线视频| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 九九爱精品视频在线观看| 91国产中文字幕| 人妻系列 视频| 男的添女的下面高潮视频| 亚洲av免费高清在线观看| 欧美激情高清一区二区三区 | av卡一久久| 亚洲精品美女久久av网站| 欧美日韩视频高清一区二区三区二| 18+在线观看网站| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡 | 国产精品 国内视频| 美女国产高潮福利片在线看| 寂寞人妻少妇视频99o| 精品久久久精品久久久| 国产免费现黄频在线看| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 男女高潮啪啪啪动态图| 国产淫语在线视频| 欧美中文综合在线视频| 日韩电影二区| 日韩av免费高清视频| 日韩电影二区| 国产精品免费大片| 美女中出高潮动态图| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 国产精品秋霞免费鲁丝片| 女的被弄到高潮叫床怎么办| 成人黄色视频免费在线看| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 成人手机av| 国产精品久久久久久精品古装| 男人操女人黄网站| 久久久久久人人人人人| 国产 一区精品| 亚洲av综合色区一区| 国产精品国产三级专区第一集| 午夜老司机福利剧场| 99re6热这里在线精品视频| 校园人妻丝袜中文字幕| 在线精品无人区一区二区三| av国产精品久久久久影院| 国产在线免费精品| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 不卡av一区二区三区| 满18在线观看网站| a级毛片黄视频| 精品国产乱码久久久久久男人| 免费观看无遮挡的男女| 国产在线免费精品| 美女福利国产在线| 色网站视频免费| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 欧美日韩精品网址| 汤姆久久久久久久影院中文字幕| 久久精品久久久久久久性| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 色婷婷av一区二区三区视频| 国产xxxxx性猛交| √禁漫天堂资源中文www| 亚洲,欧美精品.| av在线播放精品| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 免费黄色在线免费观看| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 欧美bdsm另类| 97在线人人人人妻| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 天堂8中文在线网| 伦理电影大哥的女人| 国产在视频线精品| 久久精品国产亚洲av高清一级| 丝袜脚勾引网站| 91aial.com中文字幕在线观看| 女的被弄到高潮叫床怎么办| 日韩一卡2卡3卡4卡2021年| 欧美精品高潮呻吟av久久| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀 | 成人毛片a级毛片在线播放| 国产日韩欧美视频二区| 国产极品粉嫩免费观看在线| 丝袜喷水一区| 一级毛片电影观看| 深夜精品福利| videossex国产| 高清黄色对白视频在线免费看| 青春草国产在线视频| 欧美bdsm另类| 午夜福利视频在线观看免费| 日韩av免费高清视频| 亚洲,欧美精品.| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 一二三四在线观看免费中文在| 久久精品亚洲av国产电影网| av线在线观看网站| 在线观看三级黄色| tube8黄色片| 欧美少妇被猛烈插入视频| 日韩,欧美,国产一区二区三区| 精品卡一卡二卡四卡免费| 国产成人精品久久久久久| 国产日韩欧美视频二区| 搡女人真爽免费视频火全软件| 国产色婷婷99| 午夜免费鲁丝| 丝袜美腿诱惑在线|