• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Multipopulation Cellular Genetic Algorithm and Its Performance

    2014-05-05 22:55:42LiMing黎明LuYuming魯宇明JieLilin揭麗琳
    關(guān)鍵詞:黎明

    Li Ming(黎明),Lu Yuming(魯宇明)*,Jie Lilin(揭麗琳)

    1.Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang,330063,P.R.China;2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China

    1 Introduction

    Intelligent algorithms proposed in recent years are grounded in various biological phenomena and laws.These intelligent algorithms are widely used to solve optimization problems in science and engineering.In practice,however,these optimization problems by themselves are inadequate for solving complex problems,and the results are often deficient.Therefore hybrid algorithms,which combine the desirable features of different algorithms,have attracted much interest.

    The cellular genetic algorithm (CGA)is a type of decentralized GA in which each individual is fixed in a tutorial grid,usually of dimension 2,regardless of parallel execution.Genetic operators are applied locally to the neighborhood of each individual,which enables slow diffusion of favorable individuals.While CGA encourages diversity in the population,it can delay the convergence speed of the algorithm.The CGA exhibits higher global exportation ability than GA,but converges more slowly.

    Particle swarm optimization(PSO),an optimized algorithm based on swarm intelligence,simulates the social behavior of cooperative groups such as ants,fishes and birds.The swarm develops a collective intelligence that facilitates its search for a global optimum.Desirable features of the PSO algorithm are simple rules,few parameters and rapid convergence speed.However,global search ability of the algorithm is poor.

    The evolutionary rules of cellular automata have been extensively documented[1-2].An extension of cellular automata,namely,genetic algorithms with evolutionary rules can improve population diversity.Li,et al[3]analyzed the convergence rate of canonical CGA using absorbing-state Markov chain.Many widely-used neighbor structures have been analyzed and researched in detail[4-6].Spatial states with a cell having four different types of neighbors were simulated and the effects of each neighbor were analyzed[7].Some algorithms introduced disastrous events into CGA[8-10]and proposed a hierarchical CGA,while a hybrid CGA/distribution estimation algorithm was proposed in Ref.[11].Hybrid algorithms combining GA with local searching proved effective in solving multi-objective optimization problems[12-13].From the above citations,it is apparent that improving the local search ability and convergence speed of CGA was neglected.

    The GA is based on the tradeoff between global exploration and local exploitation,which reflects selection pressure.Refs.[14-16]investigated the selection pressure of CGA on neighborhood structure,breeding strategies and selecting operation.The selection pressure imposed by CGA with disaster on size and period of disasters is also investigated[17].Selection pressure was found to be lower following a large disaster,and to occur over a shorter time period.Ref.[18]proposed a new adaptive algorithm that aims to dynamically control the exploration/exploitation trade-off,based on three-dimensional CGAs.According to their results,selection pressure varied if certain parameters were varied.This finding provides valuable insights into the tradeoff between global exploration and local exploitation.

    Recognizing that PSO possesses strong local searching ability,this paper proposes a hybrid multipopulation cellular genetic algorithm (HCGA)that combines GA with PSO.The perform-ance of the algorithm is evaluated on four typical test functions.Selection pressure and population diversity are assessed by varying the population size and the number of subpopulations.We demonstrate the superiority of HCGA in terms of global convergence rate and convergence speed.The algorithm operates most effectively when the number of subpopulation is n=2m(m=3).

    2 Description of Cellular Genetic Algorithm and Particle Swarm Optimization

    2.1 Cellular genetic algorithm description

    In CGAs,individuals are placed on a toroidal d-dimensional grid (the algorithm is usually implemented in two dimensions).Each occupied grid element(or cell)contains a single individual.Genetic reproduction and crossover can occur only between an individual and its nearest neighbors(see Fig.1).

    Fig.1 Structure of a neighborhood

    We adopt the CGA presented in Ref.[2].In the CGA,individuals are randomly classified as“active”or “inactive”(see Fig.2).Under an evaluative rule,all individuals simultaneously change state.An“active”cell is the one that can interact with its neighborhood to select and crossover.

    Fig.2 Distribution of individuals in CGA

    The pseudo-code of the CGA algorithm is provided below:

    Step 1 To classify an individual as living or dead on the L×Lgrid at random.

    Step 2 To set the stop condition.

    Step 3 To calculate fitness of individuals.

    Step 4 To select the living individual and obtain its neighborhood as parents.

    Step 5 To implement parents’recombination.

    Step 6 To evaluate fitness and replace existing individual if fitness is improved.

    Step 7 To implement individual mutation.

    Step 8 To update states synchronously according to evolution rule.

    Step 9 When the stop condition is satisfied,end.

    In the above algorithm,the current population is replaced after synchronously applying crossover and mutation to all individuals.

    2.2 Particle swarm optimization description

    The PSO searches a global optimum by simulating movement and interaction of swarming particles.A population of particles is initialized with random position and velocities.The position of a particle corresponds to one possible solution of the problem.The objective value of each particle is computed by an objective function.In the next iteration,the position and velocity of each particle is updated through tracking its own experience and that of other particles.

    3 Hybrid Multipopulation Cellular Genetic Algorithm

    3.1 Population division and immigration of individuals

    Population diversity can be maintained by dividing the population into several equally-proportioned subpopulations that do not depend on each other.Each subpopulation evolves independently,i.e.,genetic operations cannot occur between subpopulations.

    Population division usually causes isolated islands that cannot interact with other islands.To enable information exchange between subpopulations,one or a few reproductive individuals in a subpopulation are allowed to immigrate to another island according to the immigration rate when the interval generationΔT meets a specified value.Here in this paper,ΔTis 20.

    3.2 Construction of new operations

    The existing CGA imposes random mutations that are irrelevant to past and present individual states,thereby ignoring the distance between each individual and the fittest individual.Furthermore,excessively high mutation rates will destroy favorable genes,while low rates will reduce the search speed.Very low rates will stagnate the evolutionary process.In addition,since mutation is directional,the probability of low fitness will be increased.

    In this study,mutation in CGA (Step 7)is replaced by a new operation based on neighboring structures in PSO.Following the operation,the individual in the next iteration is calculated as

    where t is the generation,nthe population size,i the position order of the individual in the cell space,and xitthe gene of the ith individual.The population is denoted as Qt={x1t,x2t,…,xit,…,xnt}(1≤i≤n),and vi(t+1)is calculated as

    where wis the inertia coefficient,the fittest gene acquired by an individual,andthe fittest neighboring gene identified by the individual.r1and r2are the uniformly distributed random numbers in the interval[0,1].c1,c2are the cognitive and social learning factors,respectively.vitis the mutating velocity at generation t,calculated as

    Since Eq.(2)uses amplitude and directional information to forecast mutation of an individual,it improves the local searching ability,and eliminates the indiscriminate mutating operations that occur in CGA.

    4 Computational Experiments

    4.1 Test problems

    The algorithm is evaluated on four test functions,as summarized below:

    (1)F1Schaffer′s f6function

    Eq.(4)has a single maximum at 1.This global optimum is surrounded by a few local optima,including one at 0.990 284and another at 0.962 776.Implemented on F1,most algorithms easily reach a local optimum from which they cannot escape.

    (2)F2Needle function

    Function F2is similar to F1.One of its local maxima(at 1.128 4)is extremely close to the global maximum (at 1.151 1).Most algorithms reach the local optimum at 1.128 4.

    (3)F3Griewank′s function

    This paper adopts 30-d.Function F3,which is a multimodal function with a single global optimum surrounded by many nearby local optima.

    (4)F4Sphere function

    F4is a unimodal function with a minimum of 0at(0,0,…,0).Its dimension is the same as F3.High-dimensional versions of this function are more difficult to solve because of the strong constraints between variables.

    4.2 Parameter setting

    The parameters are as follows:number of runs is 100,cellular space size 20×20,population size 400,crossing rate 0.8,mutation 0.05.In HCGA,learning factors c1and c2are both set to be 2.Immigration rate is 0.2and the inertial weight is 1.

    5 Experimental Results

    5.1 Analysis of selection pressure

    To some extent,selection pressure represents the balance between exploration and exploitation.Selection pressure is measured by the takeover time[3],defined as the required time for a single (best)individual to occupy the entire population using the selection operator only,and ignoring crossovers and mutation.The shorter the takeover time,the higher the selection pressure.

    Fig.3plots the proportion of the best individual in the population as a function of time in CGA.Fig.4is an equivalent plot generated by HCGA,but varying the subpopulation number and population size.

    Fig.3 Growth curve of the best individual(CGA)

    In Fig.3,the curve gradually ascends to 1 and remains constant thereafter.When the proportion of the best individual reaches 1,information of the best individual cannot be spread.Then the selection pressure demonstrates the saturated condition.

    The curve of Fig.4similarly ascends but less smoothly.The proportion of the best individuals firstly gradually ascends to 1/n before 10generations,then stays stable for a period of time and goes up after 20generations.Furthermore,the similar curve jump can be observed in the later evolution,such as 40generations.The jumps are observed whenΔT=20.The phenomenon is caused by individual migration strategy,which provides potential for the best individual information in a subpopulation exchanging into other subpopulations.Information is thus disseminated between subpopulations.In this way,a fit individual can spread its genes into other subpopulations,and thereby spread more widely.But when the proportion of the best individuals is 1,the best individual cannot spread.

    Fig.4 Growth curve of the best individual(HCGA)

    Varying subpopulation numbers The population size is retained at 20×20and the subpopulation number is set to 2,4,8and 16.The resulting selection pressure is displayed in Fig.4(a).In Fig.4(a),the proportion of best individuals in the population increases more slowly when more subpopulations exist.Namely,the proportion of fittest individuals decreases as subpopulation number increases;equivalently,the selection pressure decreases as the number of subpopulations increases.

    Varying population size Retaining the sub-population number at 8,the population size is set to 200,400,800and 1 600,respectively.The results are plotted in Fig.4(b).From Fig.4(b),we observe that selection pressure decreases as population size increases,up to the 10th generation.Between generations 10and 20,it is relatively constant,because the fittest individual is not spread until the conditions favor migration.Beyond the 20th generation,selection pressure again increases with population size.

    The above analysis reveals that by segmenting the population,HCGA reduces the selection pressure relative to CGA,and improves the global convergence of the algorithm.

    5.2 Performance of HCGA and CGA

    HCGA is compared with CGA with respect to global convergence rate(P),average convergence generation(G),average run time(T),and the average and standard deviation(STD)of the best value.

    The results implemented on F1—F4are shown in Table 1.The global convergence of HCGA on F1and F2is 100%and the algorithm never becomes trapped in local optima.The convergence generation of HCGA is lower than CGA and the algorithm converges more quickly.Especially on F2,CGA converges to the global optimum in only 17%of trials,and its convergence speed is three times slower than that of HCGA.On F3,CGA never converges to the global optimum,while HCGA converges in 100%of trials.On F4,although both algorithms converge 100%of the time,the convergence speed of HCGA far exceeds that of CGA.The convergence rate of HCGA is attributed to the population segmentation and individual migration,which reduces selection pressure,slows down information dissemination and avoids premature convergence.Moveover,the new operation is directional,and the convergence speed is thus improved.

    5.3 Performance under varying population segment number

    The number of subpopulations is an impor-tant parameter in HCGA.This section compares the algorithm performance for different subpopulations n,where n=2m(m=1,2,3,4).Population size is retained constant at 400.The other parameters are as specified in Section 4.2.

    Table 2compares the global convergence rate(P),average convergence generation (G),average run time(t),and average and the standard deviation(STD)of the best value.

    The larger the number of subpopulations,the lower the selection pressure (see Fig.4).Hence,on each of the four test functions,the global convergence rate increases as the number of subpopulations increases.Initially,the spending time decreases as the number of subpopulations increases and later increases,except on F1.When the number of subpopulations is too large,the selection pressure will be too low.It is unfavorable for information dissemination,which can reduce the performance of HPCGA.The STD of the fittest individual is also improved as subpopulation increases,and later decreases.

    Table 1 Comparison of performance in terms of HCGA and CGA

    Table 2 Comparisons of performance of different numbers with sub-population

    5.4 Diversity performance

    Population diversity is crucial in evolutionary algorithms.Only in a diverse population can the algorithm seek a global optimum.Therefore,maintaining population diversity is guaranteed to improve algorithm performance.This section investigates changes in diversity over time,while varying the number of subpopulations.Diversity is measured as the ratio of population entropy to the maximum of population entropy[17].

    The CGA and HCGA algorithms are implemented 100times on F1and F3.Figs.5,6plot the evolution of diversity calculated by CGA and HCGA,respectively,for the four population segmentation numbers.The population diversity drops dramatically with the increasing generation in CGA.On F1and F4,population diversity is very low at generations 500and 1 000,respectively.However,in HCGA,the population diversity declines slowly and maintains high over a long period.Most importantly,population diversity is strengthened as subpopulation number increases,up to m=3.When m=3and 4,the algorithm can keep population diversity better than that of the case with m=1or 2.

    Fig.5 Diversity change of F1on HCGA with different subpopulation numbers

    Fig.6 Diversity change of F4on HCGA with different subpopulation numbers

    6 Conclusions

    The HCGA is proposed,in which GA is combined with a new operation inspired by PSO.The new operation replaces mutation in standard CGA,and enables population segmentation and genetic migration.By enhancing population diversity and reducing selection pressure,HCGA achieves a favorable global exploration/local exploitation balance.It improves not only the convergence rate and speed of conventional CGA,but also its stability.This paper also investigates the effect of subpopulation number on HCGA performance.The algorithm performs most effectively at a critical number of subpopulations.The result demonstrates that HGCA performance can be optimized by selecting an appropriate number of subpopulations.On each of the four test functions,the algorithm performance is optimized at the population segmentation number of 8(m=3).

    [1] Billings S A,Yang Y.Identification of the neighborhood and CA rules from station-temporal CA patterns[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2003,33(2):332-339.

    [2] Lu Y M,Li M,Li L.The cellular genetic algorithm with evolutionary rule[J].Acta Electronica Sinica,2010,38(7):1603-1607.(in Chinese)

    [3] Li J H,Li M.Convergence analysis and convergence rate estimate of cellular genetic algorithms [J].Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence,2012,25(5):874-878.(in Chinese)

    [4] Alba E,Dorronsoro B.Cellular genetic algorithms[M].USA:Springer Science and Business Media,LLC,2008,21-34.

    [5] Ishibuchi H,Sakane Y,Tsukamoto N,NojimaA Y.Implementation of cellular genetic algorithms with two neighborhood structures for single-objective and multi-objective optimization[J].Soft Computing,2011,15(9):1749-1767.

    [6] Alba E,Dorronsoro B.The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(2):126-142.

    [7] Billings S,Yang Y.Identification of probabilistic cellular automata[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2003,33(2):225-236.

    [8] Kirley M.A cellular genetic algorithm with disturbance:optimization using dynamic spatial interactions[J].Journal of Heuristics,2002,8(3):321-342.

    [9] Lu Y,Li M,Li L.Improved genetic algorithm based on migration differential individuals [J].Systems Engineering and Electronics,2011,33(3):1-4.(in Chinese)

    [10]Liu Nan,Huang Jinquan.Performance seeking of turbo-shaft engines based on improved particle swarm optimization algorithm[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(3),303-308.

    [11]Keedwele E,Khu S T.A hybrid genetic algorithm for the design of water distribution networks [J].Engineering Applications of Artificial Intelligence,2005,18(4):461-472.

    [12]Jiang Yu,Yang Yingbao,Zhou Hang.Innovative predatory search algorithm for aircraft arrival sequencing and scheduling problems[J].Transactions of Nanjing University of Aeronautics and Astronautics,2010,27(4):361-364.

    [13]Rezaeian J,Javadian N,Tavakkoli M R,Jolai F.A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system[J].Applied Soft Computing Journal,2011,11(6):4195-4202.

    [14]Jiradej V,Nasimul N,Hitoshi I.Polynomial selection:A new way to tune selective pressure[C]∥Proceedings of The 2nd World Congress on Nature and Biologically Inspired Computing.Fukuoka,Japan:IEEE,2010,597-602.

    [15]Kaveh A,SHahrouzi M.Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization[J].International Journal for Numerical Methods in Engineering,2008,73(4):544-563.

    [16]Camargo G,Camargo J,Naufal J,Matiussi G.Definition of selective pressure control methods for optimization of genetic algorithms in air traffic control[C]∥Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Soft Computing.[S.l.].ASC,2006,304-311.

    [17]Chen S,Lu Y,Yang H,et al.Selection pressure study of cellular genetic with disturbances[J].Computer Engineering and Applications,2011,47(27):32-35.(in Chinese)

    [18]Asmaa Al-Naqi,Erdogan A T,Arslan T.Adaptive three-dimensional cellular genetic algorithm for balancing exploration and exploitation processes[J].Soft Computing,2013,17(4):1-13.

    猜你喜歡
    黎明
    風(fēng)云三號(hào)E星——黎明星
    黎明之光
    黎明之子
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥(niǎo)兒啄出
    誰(shuí)家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號(hào)
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來(lái)新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    日韩熟女老妇一区二区性免费视频| 中文字幕最新亚洲高清| 天天躁日日躁夜夜躁夜夜| 亚洲精品在线美女| 人妻一区二区av| 亚洲一码二码三码区别大吗| 久久久久久亚洲精品国产蜜桃av| 天天躁日日躁夜夜躁夜夜| 成年av动漫网址| 高清视频免费观看一区二区| 视频在线观看一区二区三区| 青春草亚洲视频在线观看| 精品国产国语对白av| 亚洲国产欧美日韩在线播放| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 欧美另类一区| 97精品久久久久久久久久精品| 免费少妇av软件| 视频区欧美日本亚洲| 亚洲熟女精品中文字幕| 国产精品一区二区免费欧美 | 日韩欧美一区视频在线观看| 亚洲av欧美aⅴ国产| 国产极品粉嫩免费观看在线| 99久久综合免费| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 成人av一区二区三区在线看 | 丝袜美足系列| 欧美+亚洲+日韩+国产| 国产在线视频一区二区| 黄色片一级片一级黄色片| 91老司机精品| 在线亚洲精品国产二区图片欧美| 国产免费现黄频在线看| 两人在一起打扑克的视频| 在线观看免费高清a一片| 婷婷成人精品国产| 亚洲中文av在线| 国产极品粉嫩免费观看在线| 国产在视频线精品| 精品一区二区三卡| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 久久国产精品影院| 深夜精品福利| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 99九九在线精品视频| 91字幕亚洲| 国产一区二区激情短视频 | 国产在线观看jvid| 肉色欧美久久久久久久蜜桃| 婷婷丁香在线五月| 亚洲五月色婷婷综合| 国产淫语在线视频| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 中文字幕制服av| 日本黄色日本黄色录像| 男人操女人黄网站| 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 亚洲成av片中文字幕在线观看| 亚洲五月婷婷丁香| 久久久久久久精品精品| 日韩制服丝袜自拍偷拍| 国产免费福利视频在线观看| 国产精品 欧美亚洲| 一级a爱视频在线免费观看| 国产主播在线观看一区二区| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 国产一级毛片在线| 99精国产麻豆久久婷婷| 桃花免费在线播放| a 毛片基地| 少妇被粗大的猛进出69影院| 成人手机av| 欧美久久黑人一区二区| 18禁观看日本| 久久女婷五月综合色啪小说| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 亚洲天堂av无毛| 久久青草综合色| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 免费不卡黄色视频| 制服人妻中文乱码| 中文字幕av电影在线播放| 热99国产精品久久久久久7| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 久久性视频一级片| 国产1区2区3区精品| 欧美+亚洲+日韩+国产| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 欧美成人午夜精品| 性高湖久久久久久久久免费观看| 国产精品亚洲av一区麻豆| 热99国产精品久久久久久7| 欧美黑人精品巨大| 久9热在线精品视频| 日日爽夜夜爽网站| 丝袜喷水一区| 欧美在线一区亚洲| 精品国内亚洲2022精品成人 | 9191精品国产免费久久| 成年动漫av网址| 中国美女看黄片| 人人澡人人妻人| 成人av一区二区三区在线看 | 国产精品1区2区在线观看. | 欧美 日韩 精品 国产| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 免费在线观看影片大全网站| 狠狠婷婷综合久久久久久88av| 老司机福利观看| 黄色视频在线播放观看不卡| 国产欧美日韩精品亚洲av| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 亚洲国产看品久久| 亚洲精华国产精华精| 黄色a级毛片大全视频| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 一级片'在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久久国产一区二区| 久久国产精品影院| 老汉色av国产亚洲站长工具| 爱豆传媒免费全集在线观看| 欧美成人午夜精品| 最近中文字幕2019免费版| 欧美一级毛片孕妇| 另类精品久久| 叶爱在线成人免费视频播放| 久久综合国产亚洲精品| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 亚洲欧美一区二区三区黑人| 久久热在线av| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看 | 国产日韩欧美在线精品| 两性夫妻黄色片| 在线观看免费高清a一片| 亚洲第一av免费看| 一区二区三区精品91| 日日夜夜操网爽| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 午夜福利影视在线免费观看| 黄片小视频在线播放| 免费在线观看黄色视频的| 国产成+人综合+亚洲专区| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 国产老妇伦熟女老妇高清| 18禁国产床啪视频网站| 一本色道久久久久久精品综合| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 久久久精品94久久精品| 亚洲精品国产区一区二| 最近中文字幕2019免费版| svipshipincom国产片| 亚洲中文字幕日韩| 国产亚洲精品久久久久5区| 男女高潮啪啪啪动态图| www.自偷自拍.com| 欧美日韩成人在线一区二区| 亚洲av电影在线观看一区二区三区| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 在线天堂中文资源库| 极品人妻少妇av视频| 一级a爱视频在线免费观看| 国产在线免费精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区中文字幕在线| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久小说| 岛国在线观看网站| 久久久水蜜桃国产精品网| 亚洲免费av在线视频| 亚洲三区欧美一区| av网站免费在线观看视频| 高潮久久久久久久久久久不卡| 午夜福利视频在线观看免费| 久久久国产成人免费| 在线 av 中文字幕| 19禁男女啪啪无遮挡网站| 2018国产大陆天天弄谢| 91字幕亚洲| 男女边摸边吃奶| 日日夜夜操网爽| av欧美777| 午夜老司机福利片| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 午夜成年电影在线免费观看| 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 精品少妇黑人巨大在线播放| 午夜激情久久久久久久| 免费在线观看影片大全网站| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 成年动漫av网址| 视频区图区小说| 一级黄色大片毛片| 在线看a的网站| 久久青草综合色| 午夜福利乱码中文字幕| av片东京热男人的天堂| 999精品在线视频| 69av精品久久久久久 | 妹子高潮喷水视频| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 蜜桃在线观看..| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 久久人妻福利社区极品人妻图片| 啦啦啦中文免费视频观看日本| 午夜福利乱码中文字幕| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 两性夫妻黄色片| a级毛片黄视频| 久久女婷五月综合色啪小说| 一级毛片精品| 热99久久久久精品小说推荐| 亚洲成国产人片在线观看| 悠悠久久av| 久久精品国产亚洲av高清一级| 真人做人爱边吃奶动态| 国产精品二区激情视频| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 操出白浆在线播放| 韩国高清视频一区二区三区| 一级片免费观看大全| 女人爽到高潮嗷嗷叫在线视频| 99re6热这里在线精品视频| 日韩中文字幕视频在线看片| videos熟女内射| 美女主播在线视频| 婷婷成人精品国产| 国产色视频综合| a 毛片基地| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 日本欧美视频一区| 亚洲免费av在线视频| 12—13女人毛片做爰片一| av网站免费在线观看视频| 一区二区三区乱码不卡18| 十八禁网站免费在线| 一级毛片电影观看| 日韩欧美一区视频在线观看| 老司机福利观看| 97在线人人人人妻| 18禁黄网站禁片午夜丰满| 久久久精品区二区三区| 丝袜人妻中文字幕| 亚洲欧美日韩另类电影网站| 男女下面插进去视频免费观看| 99九九在线精品视频| 黄色视频不卡| 高潮久久久久久久久久久不卡| 欧美变态另类bdsm刘玥| 国产精品欧美亚洲77777| 在线观看人妻少妇| 欧美日韩福利视频一区二区| 蜜桃国产av成人99| 国产av又大| 亚洲一区中文字幕在线| 国产福利在线免费观看视频| 王馨瑶露胸无遮挡在线观看| www.av在线官网国产| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 亚洲avbb在线观看| 国产又爽黄色视频| 成人三级做爰电影| 午夜影院在线不卡| 亚洲第一欧美日韩一区二区三区 | 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 免费不卡黄色视频| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 欧美 日韩 精品 国产| 91国产中文字幕| 9热在线视频观看99| 国产精品自产拍在线观看55亚洲 | 欧美大码av| 少妇精品久久久久久久| 国产黄色免费在线视频| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播| 国产一区二区三区av在线| 九色亚洲精品在线播放| 亚洲黑人精品在线| 水蜜桃什么品种好| 欧美精品人与动牲交sv欧美| 手机成人av网站| 天堂中文最新版在线下载| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 欧美久久黑人一区二区| 在线观看免费视频网站a站| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 在线永久观看黄色视频| 极品人妻少妇av视频| 精品福利观看| 久久久久精品人妻al黑| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 最近中文字幕2019免费版| av网站在线播放免费| 午夜视频精品福利| 国产有黄有色有爽视频| 男女国产视频网站| 每晚都被弄得嗷嗷叫到高潮| 国产免费福利视频在线观看| 亚洲欧美日韩高清在线视频 | 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 超碰成人久久| 免费在线观看完整版高清| 一二三四在线观看免费中文在| 国产在线视频一区二区| 91麻豆av在线| 悠悠久久av| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| av天堂在线播放| 一区二区三区精品91| av电影中文网址| 大陆偷拍与自拍| 在线观看免费高清a一片| 欧美日本中文国产一区发布| av在线播放精品| 欧美97在线视频| 亚洲精品自拍成人| 免费高清在线观看视频在线观看| 一级毛片女人18水好多| 久久精品国产亚洲av香蕉五月 | 国产成人免费无遮挡视频| 国产精品影院久久| 黄片大片在线免费观看| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| 国产精品免费大片| 在线观看人妻少妇| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 亚洲av日韩精品久久久久久密| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久av美女十八| 18在线观看网站| 国产精品熟女久久久久浪| 美女高潮到喷水免费观看| www.熟女人妻精品国产| 新久久久久国产一级毛片| 亚洲色图 男人天堂 中文字幕| 久久久久网色| 免费高清在线观看日韩| 久久影院123| videos熟女内射| 精品国产乱码久久久久久小说| 又紧又爽又黄一区二区| 天堂中文最新版在线下载| 啦啦啦视频在线资源免费观看| 在线永久观看黄色视频| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 国产免费福利视频在线观看| 午夜福利视频精品| 久久精品国产亚洲av香蕉五月 | 久久久久精品人妻al黑| svipshipincom国产片| 国产亚洲av片在线观看秒播厂| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 五月开心婷婷网| 亚洲国产精品一区三区| av在线老鸭窝| 国产成人一区二区三区免费视频网站| 亚洲精品一卡2卡三卡4卡5卡 | 精品欧美一区二区三区在线| 中文字幕制服av| 这个男人来自地球电影免费观看| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美在线一区| 成人国产一区最新在线观看| 丝袜人妻中文字幕| 亚洲va日本ⅴa欧美va伊人久久 | 菩萨蛮人人尽说江南好唐韦庄| 精品少妇一区二区三区视频日本电影| 99国产综合亚洲精品| e午夜精品久久久久久久| 欧美成人午夜精品| 99精国产麻豆久久婷婷| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 国产精品偷伦视频观看了| 欧美精品啪啪一区二区三区 | 成人国语在线视频| 亚洲专区中文字幕在线| 中亚洲国语对白在线视频| netflix在线观看网站| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 黄片播放在线免费| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 97在线人人人人妻| 少妇裸体淫交视频免费看高清 | 久久精品熟女亚洲av麻豆精品| 三级毛片av免费| 亚洲精品第二区| 最近中文字幕2019免费版| 久久午夜综合久久蜜桃| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 精品国产一区二区久久| 亚洲欧美激情在线| 精品免费久久久久久久清纯 | 免费少妇av软件| 国产不卡av网站在线观看| 十分钟在线观看高清视频www| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 亚洲av成人一区二区三| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| 成在线人永久免费视频| 免费在线观看日本一区| 1024香蕉在线观看| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 一进一出抽搐动态| 黄色视频在线播放观看不卡| 91成年电影在线观看| 亚洲国产精品一区三区| 亚洲精品久久成人aⅴ小说| 欧美黄色淫秽网站| 99久久人妻综合| 制服诱惑二区| a级毛片黄视频| 中文字幕另类日韩欧美亚洲嫩草| 高潮久久久久久久久久久不卡| 亚洲第一av免费看| 操美女的视频在线观看| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 亚洲av电影在线进入| 欧美另类一区| 国产成人影院久久av| 国产1区2区3区精品| 欧美日韩中文字幕国产精品一区二区三区 | 性色av乱码一区二区三区2| 色播在线永久视频| 女人久久www免费人成看片| 精品第一国产精品| 精品人妻在线不人妻| av网站在线播放免费| 少妇精品久久久久久久| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 大型av网站在线播放| netflix在线观看网站| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 午夜福利乱码中文字幕| 亚洲第一欧美日韩一区二区三区 | 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 欧美激情极品国产一区二区三区| 一级毛片电影观看| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 成人手机av| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| av不卡在线播放| 国产伦人伦偷精品视频| 咕卡用的链子| 丝袜美腿诱惑在线| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 免费在线观看日本一区| 国产又色又爽无遮挡免| 国产精品 欧美亚洲| 国产免费av片在线观看野外av| 日本猛色少妇xxxxx猛交久久| 男女无遮挡免费网站观看| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产亚洲午夜精品一区二区久久| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 亚洲欧美色中文字幕在线| 国产精品亚洲av一区麻豆| 成年av动漫网址| 久久久精品国产亚洲av高清涩受| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 99久久人妻综合| 女人精品久久久久毛片| 不卡一级毛片| 亚洲人成电影免费在线| 久久人人97超碰香蕉20202| 精品国产一区二区久久| av天堂在线播放| 女人精品久久久久毛片| 日本欧美视频一区| 国产区一区二久久| 国产成人系列免费观看| 国产成人免费观看mmmm| 少妇精品久久久久久久| 老司机福利观看| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 国产精品香港三级国产av潘金莲| 亚洲综合色网址| 两个人免费观看高清视频| 亚洲国产中文字幕在线视频| 成年动漫av网址| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产av在线观看| 成人影院久久| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 免费在线观看完整版高清| 黄色a级毛片大全视频| 欧美激情极品国产一区二区三区| 国产免费一区二区三区四区乱码| 91成年电影在线观看| 国精品久久久久久国模美| 免费在线观看完整版高清| 色视频在线一区二区三区| 国产精品二区激情视频| 日日摸夜夜添夜夜添小说| 老司机影院毛片| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 午夜老司机福利片| 国产日韩欧美亚洲二区| 久久久久国产一级毛片高清牌| 久久精品aⅴ一区二区三区四区| 高清在线国产一区| 人人妻人人爽人人添夜夜欢视频| 脱女人内裤的视频| 精品久久久久久久毛片微露脸 | 新久久久久国产一级毛片| 老司机福利观看| 国产不卡av网站在线观看| 脱女人内裤的视频| 成在线人永久免费视频| 老司机影院成人| 久久天躁狠狠躁夜夜2o2o| 蜜桃国产av成人99| 亚洲欧美成人综合另类久久久| 亚洲国产毛片av蜜桃av| 欧美国产精品一级二级三级| 91精品三级在线观看| 久久 成人 亚洲| 黄色视频,在线免费观看| 欧美日韩精品网址| 成年人黄色毛片网站| 老熟女久久久| 婷婷丁香在线五月| 蜜桃在线观看..| 国产1区2区3区精品| 久久人妻熟女aⅴ|