杜柯,王成彥,王玲
?
銅吹煉轉(zhuǎn)爐渣主要元素分布及其礦相特征
杜柯,王成彥,王玲
(北京科技大學(xué) 冶金與生態(tài)工程學(xué)院,北京,100083)
通過X線衍射分析、化學(xué)物相分析、化學(xué)多元素分析等方法,并結(jié)合顯微鏡觀測,研究銅吹煉轉(zhuǎn)爐渣中主要元素分布規(guī)律及其礦相的產(chǎn)出特征。研究結(jié)果表明:贊比亞謙比希銅冶煉公司的銅吹煉轉(zhuǎn)爐渣中的鐵、銅和鈷質(zhì)量分?jǐn)?shù)較高,質(zhì)量分?jǐn)?shù)分別為47.84%,3.60%與2.52%;80.94%的銅以金屬態(tài)存在,12.71%以硫化態(tài)存在;鈷與鐵主要呈氧化態(tài)富集,鈷在磁鐵礦相與鐵橄欖石相中的質(zhì)量分?jǐn)?shù)分別為40.71%和49.35%,而鐵質(zhì)量分?jǐn)?shù)分別為56.34%,41.94%;轉(zhuǎn)爐渣中主要物相為鐵橄欖石相與磁鐵礦相,質(zhì)量分?jǐn)?shù)分別為47.50%與38.91%;含銅物相主要為金屬銅相與輝銅礦相,質(zhì)量分?jǐn)?shù)分別2.64%與1.17%;此外,渣中含有9.78%的玻璃相。鐵橄欖石相與磁鐵礦相相互包裹、夾雜,構(gòu)成渣的基底物相;輝銅礦相、金屬銅相及玻璃相夾雜在磁鐵礦、鐵橄欖石晶粒間,或被二者包裹;鈷與鐵元素的面分布一致,鐵與氧、硅元素的面分布均一致,銅與硫元素的面分布一致。
銅吹煉轉(zhuǎn)爐渣;化學(xué)物相分析;礦相特征;面分布
在銅的火法冶煉工藝流程中,通常會對前期造锍熔煉環(huán)節(jié)產(chǎn)出的銅锍進行吹煉,以除去銅锍中的鐵、硫及其他雜質(zhì)而產(chǎn)出粗銅。在吹煉過程中,鐵、鈷等元素被氧化,幾乎全部富集在轉(zhuǎn)爐渣中;金、銀及鉑族元素等幾乎全部富集在粗銅中。目前,銅锍的吹煉過程絕大多數(shù)在P?S轉(zhuǎn)爐內(nèi)進行,整個吹煉過程為間歇式的周期性作業(yè),整個過程分為造渣期與造銅期2個階段[1?3]。在造渣期,銅锍中的FeS與鼓入空氣中的氧發(fā)生強烈氧化反應(yīng),生成FeO和Fe3O4,F(xiàn)eO與造渣劑中的SiO2結(jié)合生成鐵橄欖石(FeO?SiO2),并與磁鐵礦構(gòu)成爐渣的含鐵相,即為磁鐵礦飽和的鐵橄欖石熔體。與此同時,隨著氧位和锍品位增大,冰銅中的CoS也逐漸被氧化為CoO進入渣相,最后只有極少量鈷保留在冰銅中。由于锍和渣相互之間的溶解度很小且密度不同,因此渣相位于锍相的上層;在造銅期,鐵與鈷已氧化完全,Cu2S開始被氧化,其先氧化為中間產(chǎn)物Cu2O,再與未被氧化的Cu2S反應(yīng),產(chǎn)出粗銅。轉(zhuǎn)爐渣中因富含磁鐵礦,其黏度較大,易夾雜少量粗銅粒。除此之外,渣中還夾雜有少量的硫化物如FeS,Cu2S及CoS,其質(zhì)量分?jǐn)?shù)較低。銅吹煉轉(zhuǎn)爐渣富集了大量的鐵、鈷、銅等有價元素[4?6],為回收這些金屬提供了條件,尤其在非洲贊比亞及剛果(金)的交界地帶,所產(chǎn)的高鈷銅精礦經(jīng)冶煉產(chǎn)出的轉(zhuǎn)爐渣中鈷質(zhì)量分?jǐn)?shù)更是高達(dá)2%以上[7?9],極具回收價值;而研究轉(zhuǎn)爐渣中鐵、銅、鈷元素的分布規(guī)律及主要礦相的微觀結(jié)構(gòu)及嵌布規(guī)律,對后續(xù)有價元素的回收起到較大的理論指導(dǎo)作用。本文作者選擇贊比亞謙比希銅冶煉有限公司的銅吹煉緩冷轉(zhuǎn)爐渣作為研究對象,研究渣中鐵、銅、鈷在不同礦相中的分布情況,探究渣中主要礦相的質(zhì)量分?jǐn)?shù)和礦相特征,以及渣中主要元素的相互依存特征。
轉(zhuǎn)爐渣試樣化學(xué)成分如表1所示。
表1 轉(zhuǎn)爐渣的化學(xué)成分分析(質(zhì)量分?jǐn)?shù))
由表1可知:轉(zhuǎn)爐渣中Fe,Cu和Co質(zhì)量分?jǐn)?shù)較高,分別為47.84%,3.60%和2.52%;S質(zhì)量分?jǐn)?shù)較低,僅為0.21%;Si質(zhì)量分?jǐn)?shù)較高,為12.21%;其他金屬元素質(zhì)量分?jǐn)?shù)均較低。
表2,表3和表4所示分別為轉(zhuǎn)爐渣中Cu,Co和Fe的化學(xué)物相分析。
表2 轉(zhuǎn)爐渣中銅的化學(xué)物相分析
表3 轉(zhuǎn)爐渣中鈷的化學(xué)物相分析
表4 轉(zhuǎn)爐渣中鐵的化學(xué)物相分析
由表2,表3和表4可知:轉(zhuǎn)爐渣中銅主要以金屬態(tài)存在,分布率達(dá)到80.94%,其次以硫化態(tài)存在,分布率為12.71%,而以氧化態(tài)存在的銅所占比例很?。烩捨磫为毘上?,主要呈氧化態(tài)富集在磁鐵礦與鐵橄欖石中,分布率相差不大,另外約有9.94%的鈷分布在玻璃相中;鐵亦主要分布在磁鐵礦與鐵橄欖石中,并有少量賦存于玻璃相與硫化鐵。
結(jié)合轉(zhuǎn)爐渣試樣的X線衍射分析、化學(xué)物相分析及化學(xué)成分分析結(jié)果,可確定轉(zhuǎn)爐渣所含物相的種類及質(zhì)量分?jǐn)?shù),如表5所示。
由表5可見:轉(zhuǎn)爐渣中主要物相為鐵橄欖石相與磁鐵礦相,其質(zhì)量分?jǐn)?shù)分別為47.50%與38.91%,二者也是主要的含鐵礦相;含銅物相主要為金屬銅相,質(zhì)量分?jǐn)?shù)為2.64%,其次為輝銅礦,質(zhì)量分?jǐn)?shù)為1.17%;其次渣中有一定量的玻璃相賦存,質(zhì)量分?jǐn)?shù)為9.78%;渣中未見鈷的單獨礦相。
表5 轉(zhuǎn)爐渣物相組成(質(zhì)量分?jǐn)?shù))
試驗選用XJZ?6型正置式金相顯微鏡與JSM?6071F冷場發(fā)射掃描電鏡觀測轉(zhuǎn)爐渣的礦相礦相特征及嵌布規(guī)律,并采用電子探針測試各礦相的化學(xué)組成。
輝銅礦是轉(zhuǎn)爐渣中銅的次要存在形式,由吹煉過程中銅锍中的Cu2S夾雜在渣相中而形成[10?12]。圖1所示為渣中輝銅礦的礦相特征。由圖1可見:輝銅礦主要以顆粒狀夾雜在磁鐵礦、鐵橄欖石晶粒間或被上述礦相包裹,其產(chǎn)出粒度通常小于0.03 mm。電子探針測試結(jié)果表明:輝銅礦中Cu2S,F(xiàn)eO,SiO2和CoO的平均質(zhì)量分?jǐn)?shù)分別為92.73%,4.65%,2.16%和0.46%。
(a) 顯微鏡像,輝銅礦夾雜于磁鐵礦晶粒間;(b) 顯微鏡像,輝銅礦包裹于磁鐵礦與鐵橄欖石相間
金屬銅相是轉(zhuǎn)爐渣中銅的主要存在形式,由吹煉過程中產(chǎn)出的粗銅夾雜在渣中而形成[10?12]。圖2所示為渣中金屬銅相的礦相特征。由圖2可見:金屬銅相呈金屬液滴狀,產(chǎn)出粒度通常小于0.02 mm,主要分布在鐵橄欖石與磁鐵礦的晶粒間。在掃描電鏡下,放大倍數(shù)為15 000時,可觀測到小于100 nm的金屬銅晶粒分布于鐵橄欖石樹枝晶的晶粒間。電子探針測試結(jié)果表明:金屬銅中Cu,F(xiàn)e,Co和Ni的平均質(zhì)量分?jǐn)?shù)分別為99.69%,0.17%,0.02%和0.12%。
(a) 顯微鏡像;(b) 掃描電鏡二次電子像;(c) 掃描電鏡二次電子像(放大15 000倍)
磁鐵礦是轉(zhuǎn)爐渣中含鐵的主要物相,主要成分為Fe3O4,是鈷的主要載體[13?14]。圖3所示為磁鐵礦的礦相特征。由圖3可知:渣中磁鐵礦呈2種形態(tài)產(chǎn)出:一種是結(jié)晶粒度較粗的磁鐵礦,呈半自形?他形晶粒狀產(chǎn)出,其粒度一般為0.02~0.20 mm;另一種是呈八面體狀或樹枝狀雛晶形式分布在鐵橄欖石晶粒間,其結(jié)晶粒度一般小于10 μm。
磁鐵礦的電子探針分析結(jié)果表明:磁鐵礦中SiO2,F(xiàn)eO,Cu2O和CoO的平均質(zhì)量分?jǐn)?shù)分別為0.61%,91.39%,4.52%和3.48%。
(a) 顯微鏡像;(b) 掃描電鏡背散射電子像
鐵橄欖石是轉(zhuǎn)爐渣的主要物相之一,主要成分為Fe2SiO4,也是鈷的主要載體[13?14]。圖4所示為鐵橄欖石相的礦相特征。由圖4可見:鐵橄欖石相的結(jié)晶粒度比較粗,其與磁鐵礦相相互包裹、夾雜,組成渣的基底物相。另外可見磁鐵礦雛晶、微晶金屬銅、玻璃相等相包含其中,或分布在其晶粒間。鐵橄欖石的電子探針分析結(jié)果表明:磁鐵礦中SiO2,F(xiàn)eO,Cu2O和CoO平均質(zhì)量分?jǐn)?shù)分別為30.69%,61.08%,3.77%和4.46%。
玻璃相是轉(zhuǎn)爐渣中的次要礦相,是渣相中最晚結(jié)晶出來的部分[15?16]。圖5所示為玻璃相的礦相特征。由圖5可見:玻璃相呈膠狀充填于磁鐵礦及鐵橄欖石集合體中,也可見部分金屬銅夾雜其間,并常有磁鐵礦雛晶與微晶鐵橄欖石富集在玻璃相周邊。電子探針分析結(jié)果表明:玻璃相成分以FeO和SiO2為主,Cu2O,Al2O3,K2O及Na2O等也較為集中地分布于其中。
(a) 顯微鏡像;(b) 掃描電鏡背散射電子像
(a) 掃描電鏡背散射電子像,玻璃相充填于磁鐵礦及鐵橄欖石集合體;(b) 掃描電鏡背散射電子像,磁鐵礦雛晶與微晶鐵橄欖石富集于玻璃相周邊
圖6所示為轉(zhuǎn)爐渣中Co,F(xiàn)e,Cu,S,Si和O的面掃描圖[5]。由圖6可見:Fe與Co的面分布表現(xiàn)出明顯的一致性,這是由于在轉(zhuǎn)爐渣中,鈷元素以類質(zhì)同象的形式取代鐵橄欖石與磁鐵礦中的鐵而賦存其間,并保持原有晶型不變[17?22],因此,Co的分布依存于Fe的分布,F(xiàn)e質(zhì)量分?jǐn)?shù)高的地方,Co質(zhì)量分?jǐn)?shù)一定隨之增高;Fe與O和Si的面分布也保持著較高的一致性,這是由于Fe元素是渣中主要元素,且其主要賦存在鐵橄欖石與磁鐵礦2種礦相中,即Fe主要與O和Si化合而賦存在一起;Cu與S的面分布呈現(xiàn)一致性,這是由于轉(zhuǎn)爐渣中Cu除以金屬態(tài)存在外,還以硫化態(tài)形式存在,而渣中S也主要賦存在輝銅礦相中的Cu2S中,其他金屬元素的硫化物質(zhì)量分?jǐn)?shù)極小。
(a) Co元素面分布;(b) Fe元素面分布;(c) O元素面分布;(d) Si元素面分布;(e) Cu元素面分布;(f) S元素面分布
1) 贊比亞謙比希銅冶煉公司的銅吹煉轉(zhuǎn)爐渣中鐵、銅、鈷質(zhì)量分?jǐn)?shù)較高,分別為47.84%,3.60%與2.52%;轉(zhuǎn)爐渣中80.94%的銅以金屬態(tài)存在,12.71%以硫化態(tài)存在;鈷主要呈氧化態(tài)富集在磁鐵礦與鐵橄欖石中,分布率分別為40.71%與49.35%,約有9.94%的鈷分布在玻璃相中;鐵主要分布在磁鐵礦與鐵橄欖石中,分布率分別為56.34%與41.94%,并有少量賦存在玻璃相與硫化鐵中。
2) 轉(zhuǎn)爐渣中主要物相為鐵橄欖石相與磁鐵礦相,質(zhì)量分?jǐn)?shù)分別為47.50%與38.91%;含銅物相主要為金屬銅相,質(zhì)量分?jǐn)?shù)為2.64%,其次為輝銅礦,質(zhì)量分?jǐn)?shù)為1.17%;另外渣中含有9.78%的玻璃相。
3) 輝銅礦相、金屬銅相分別以細(xì)粒狀和液滴狀夾雜在磁鐵礦、鐵橄欖石晶粒間;磁鐵礦呈半自形?他形晶粒狀產(chǎn)出,或以呈八面體狀或樹枝狀雛晶形式分布在鐵橄欖石晶粒間;鐵橄欖石相粒度較粗,與磁鐵礦相相互包裹、夾雜,并構(gòu)成了渣的基底物相;玻璃相呈膠狀充填于磁鐵礦及鐵橄欖石集合體中。
4) 鈷元素因以類質(zhì)同象形式取代鐵,其與鐵元素的面分布保持一致;鐵作為主要元素,與氧、硅因化合作用,其面分布也呈現(xiàn)出較高的一致性;銅有較高比例呈硫化態(tài)存在,因此,與硫元素的面分布呈現(xiàn)一 致性。
[1] 翟秀靜. 重金屬冶金學(xué)[M]. 北京: 冶金工業(yè)出版社, 2011: 47?48. ZHAI Xiujing. Heavy metal metallurgy[M]. Beijing: Metallurgical Industry Press, 2011: 47?48.
[2] NAGAMORI M, MACKEY P J. Thermodynamics of copper matte converting: part I. fundamentals of the noranda process[J]. Metallurgical and Materials Transactions B, 1978, 9(2): 255?265.
[3] E Jiaqiang, WANG Yaonan, MEI Chi, et al. Chaotic behavior of crude copper composition time series in the process of matte converting and its predicable time scale[J]. Nonlinear Analysis Real World Applications, 2006, 7(4): 651?661.
[4] YU Zhengjun, FENG Qiming, OU Leming, et al. Recovery of cobalt, nickel and copper from nickel converter slag by reduction-sulfurization process[J]. Minerals & Metallurgical Processing, 2006, 26(1): 49?55.
[5] LI Hongxu, DU Ke, SUN Shi, et al. The distribution rules of element and compound of cobalt/iron/copper in the converter slag of copper smelting process[C]// REDDY R G, CHAUBAL P, PISTORIUS P C, et al. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts. Seattle,America: Springer, 2016: 1343?1350.
[6] DU Ke, LI Hongxu, ZHANG Mingming. Calculation of distribution coefficients of cobalt and copper in matte and slag phases in reduction–vulcanization process of copper converter slag[J]. Journal of the Minerals Metals & Materials Society, 2017, 69(11): 2379?2382.
[7] ZHAI Xiujing, LI Naijun, ZHANG Xu, et al. Recovery of cobalt from converter slag of Chambishi Copper Smelter using reduction smelting process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 2117?2121.
[8] ZHAO Xingguo. Geological characteristics of Chambishi Copper Deposit in Zambia[J]. Geology & Exploration, 2010, 46(1): 183?190.
[9] FRANC G, JUTAND A. On the origin of copper catalysts from copper precursors in C—N and C—O cross-couplings[J]. Dalton Transactions, 2010, 39(34): 7873?7875.
[10] 李磊, 胡建杭, 魏永剛, 等. 銅渣中銅的回收工藝及新技術(shù)[J]. 材料導(dǎo)報, 2013, 27(11): 21?26. LI Lei, HU Jianhang, WEI Yonggang, et al. Progress in copper recovery from copper slags and the new technology[J]. Materials Review, 2013, 27(11): 21?26.
[11] 朱茂蘭, 熊家春, 胡志彪, 等. 銅渣中銅鐵資源化利用研究進展[J]. 有色冶金設(shè)計與研究, 2016, 37(2): 15?17. ZHU Maolan, XIONG Jiachun, HU Zhibiao, et al. Research progress in resource utilization of iron and copper in copper smelting slag[J]. Nonferrous Metals Engineering & Research, 2016, 37(2): 15?17.
[12] 楊慧芬, 袁運波, 張露, 等. 銅渣中鐵銅組分回收利用現(xiàn)狀及建議[J]. 金屬礦山, 2012, 41(5): 165?168. YANG Huifen, YUAN Yunbo, ZHANG Lu, et al. Present situation and proposed method of recycling iron and copper from copper slag[J]. Metal Mine, 2012, 41(5): 165?168.
[13] MIHAILOVA I, MEHANDJIEV D. Characterization of fayalite from copper slags[J]. Journal of the University of Chemical Technology and Metallurgy, 2010, 45(3): 317?326.
[14] 鄧彤, 凌云漢. 含鈷銅轉(zhuǎn)爐渣的工藝礦物學(xué)[J]. 中國有色金屬學(xué)報, 2001, 11(5): 881?885.DENG Tong, LING Yunhan. Process mineralogy of cobalt- bearing copper converter slag[J]. Chinese Journal of Nonferrous Metals, 2001, 11(5): 881?885.
[15] 劉柳, 閆紅杰, 周孑民, 等. 氧氣底吹銅熔池熔煉過程的機理及產(chǎn)物的微觀分析[J]. 中國有色金屬學(xué)報, 2012, 22(7): 2116?2124. LIU Liu, YAN Hongjie, ZHOU Jiemin, et al. Mechanism of copper smelting process by oxygen bottom blowing and microanalysis of smelting products[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 2116?2124.
[16] BUSOLIC D, PARADA F, PARRA R, et al. Recovery of iron from copper flash smelting slags[J]. Mineral Processing & Extractive Metallurgy, 2014, 120(1): 32?36.
[17] SRIDHAR R, TOGURI J M, SIMEONOV S. Copper losses and thermodynamic considerations in copper smelting[J]. Metallurgical and Materials Transactions B, 1997, 28(2): 191?200.
[18] 劉英俊. 元素地球化學(xué)導(dǎo)論[M]. 北京: 地質(zhì)出版社, 1987: 220?222. LIU Yingjun. Introduction to elemental geochemistry[M]. Beijing: Geological Publishing House, 1987: 220?222.
[19] 閆朋, 安鵬升, 劉志超, 等. 澳大利亞布朗斯炭質(zhì)頁巖銅鎳鈷礦工藝礦物學(xué)研究[J]. 金屬礦山, 2017, 46(4): 91?95. YAN Peng, AN Pengsheng, LIU Zhichao, et al. Study on process mineralogy of carbonaceous shale copper-cobalt-nickel ore from Browns Area in Australia[J]. Metal Mine, 2017, 46(4): 91?95.
[20] 徐鶯, 楊磊, 劉飛燕. 金川銅鎳礦貧礦石選礦產(chǎn)品的工藝礦物學(xué)研究[J]. 礦產(chǎn)綜合利用, 2013(3): 52?55. XU Ying, YANG Lei, LIU Feiyan. Study on process mineralogy of mineral processing products in the low-grade ore at Jinchuan[J]. Multipurpose Utilization of Mineral Resources, 2013(3): 52?55.
[21] 陳彪, 戚長謀. 鈷的賦存狀態(tài)及其在找礦和資源評估中的意義[J]. 長春科技大學(xué)學(xué)報, 2001, 31(3): 217?218.
CHEN Biao, QI Changmou. The occurrence state of cobalt and its significance in prospecting and resource assessment[J]. Journal of Changchun University of Science and Technology, 2001, 31(3): 217?218.
[22] 佟立永, 肖駿, 李劍鷺. 國外某炭質(zhì)頁巖銅鈷鎳礦選礦工藝研究[J]. 礦產(chǎn)綜合利用, 2017(5): 45?51. TONG Liyong, XIAO Jun, LI Jianlu. Study on beneficiation process technology of a foreign carbonaceous shale copper cobalt nickel ore[J]. Multipurpose Utilization of Mineral Resources, 2017(5): 45?51.
(編輯 伍錦花)
Distribution of main elements and phase characteristics of copper converter slag
DU Ke, WANG Chengyan, WANG Ling
(School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)
The distribution rule of main elements and phase characteristics of copper converter slag were studied by using methods of X-ray diffraction analysis, chemical phase analysis, chemical multielement analysis, combined with microscopic observation. The results show that copper converter slag from the Chambishi Copper Smelter has high mass fractions of iron, copper and cobalt, which are 47.84%, 3.60% and 2.52%, respectively. There exists 80.94% of Cu in the slag in the form of metallic state, and 12.71% in the form of Vulcanized state. Co and Fe mainly existin the form of oxidation state, and the mass fractions of Co in magnetite and fayalite are 40.71% and 49.35%, respectively, while that of Fe are 56.34% and 41.94%, respectively. The main phases of the slag are fayalite and magnetite, with their mass fractions being 47.50% and 38.91%, respectively. The main copper-bearing phases are metallic copper and chalcocite, the mass fractions of which are 2.64% and 1.17%, respectively. Additionally, 9.78% of glass phase also exists in the slag. Fayalite is mixed with the magnetite and forms the basement phase. The metallic copper, chalcocite and glass phase are mingled inside the grains of fayalite and magnetite, or coated by them. The surface distribution of cobalt is basically the same with that of iron. The surface distribution of iron is basically the same with that of oxygen and silicon, and so is the surface distribution of copper with that of sulfur.
copper converter slag; chemical phase analysis; phase characteristic; surface distribution
10.11817/j.issn.1672-7207.2018.11.002
TF803.1
A
1672?7207(2018)11?2649?07
2017?12?11;
2018?02?28
中央高?;究蒲袑m椯Y金資助項目(230201606500078);國家自然科學(xué)基金資助項目(U1302274,51674026) (Project(230201606500078) supported by Fundamental Research Funds for the Central Universities; Projects(U1302274, 51674026) supported by the National Natural Science Foundation of China)
王成彥,博士,教授,從事有色冶金方向研究;E-mail: chywang@yeah.net