• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    2018-12-06 07:35:53FeiLIYvanORSOLINIHuijunWANGYongqiGAOandShengpingHE63NILUNorwegianInstituteforAirResearchKjeller2007Norway
    Advances in Atmospheric Sciences 2018年1期

    Fei LI,Yvan J.ORSOLINI,Huijun WANG,Yongqi GAO,and Shengping HE6,4,3NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    Fei LI?1,2,Yvan J.ORSOLINI1,Huijun WANG3,4,2,Yongqi GAO5,2,and Shengping HE6,4,31NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Early studies suggested that the Aleutian–Icelandic low seesaw(AIS)features multidecadal variation.In this study,the multidecadal modulation of the AIS and associated surface climate by the Atlantic Multidecadal Oscillation(AMO)during late winter(February–March)is explored with observational data.It is shown that,in the cold phase of the AMO(AMO|-),a clear AIS is established,while this is not the case in the warm phase of the AMO(AMO|+).The surface climate over Eurasia is significantly in fluenced by the AMO’s modulation of the Aleutian low(AL).For example,the weak AL in AMO|-displays warmer surface temperatures over the entire Far East and along the Russian Arctic coast and into Northern Europe,but only over the Russian Far East in AMO|+.Similarly,precipitation decreases over central Europe with the weak AL in AMO|-,but decreases over northern Europe and increases over southern Europe in AMO|+.

    The mechanism underlying the influence of AMO|-on the AIS can be described as follows:AMO|-weakens the upward component of the Eliassen–Palm flux along the polar waveguide by reducing atmospheric blocking occurrence over the Euro–Atlantic sector,and hence drives an enhanced stratospheric polar vortex.With the intensified polar night jet,the wave trains originating over the central North Pacific can propagate horizontally through North America and extend into the North Atlantic,favoring an eastward-extended Pacific–North America–Atlantic pattern,and resulting in a significant AIS at the surface during late winter.

    Aleutian–Icelandic low seesaw,Atlantic Multidecadal Oscillation,Pacific–North America–Atlantic pattern,stratospheric polar vortex

    1.Introduction

    During boreal winter,there are two major climatological surface low-pressure cells in the Northern Hemisphere:the Aleutian low(AL)and the Icelandic low(IL).Early studies indicated that the AL and IL vary in an anti-phase seesaw pattern on the interannual timescale,particularly during late winter(February–March)(Honda et al.,2001;Honda and Nakamura,2001;Orsolini,2004).Honda et al.(2001)named this pattern the Aleutian and Icelandic low seesaw(AIS).Combining both observations and simulations with an atmospheric general circulation model(AGCM),Honda et al.(2005a)put forward a dynamical pathway for the formation of the AIS,consisting of a three-step process:(1)the AIS starts with the North Pacific variability associated with the AL;(2)the North Pacific influence extends across North America through the eastward propagation of stationary Rossby wave trains,which corresponds to the Pacific–North America(PNA)pattern(Wallace and Gutzler,1981);and(3)IL anomalies form as part of the Atlantic edge of the PNA-like wave trains.Typically,the formation of the AIS begins with an anomalous AL and ends with the Pacific–North America–Atlantic(PNAA)pattern(Honda et al.,2005b;focused on 1973–94),as well as upward propagation from the surface into the stratosphere during late winter(Nakamura and Honda,2002;focus on 1966/67–1996/97).Orsolini et al.(2008)used AGCM simulations to demonstrate that El Ni?no can extend its influence into the Icelandic sector,forming a PNAA pattern,and into the stratosphere,via the horizontal and vertical propagation of planetary waves modulated by the maturation of the AIS during late winter.

    Honda et al.(2005b)showed a significant influence of the AIS on surface air temperature(TS)and precipitation over the extratropical Northern Hemisphere during late winter,except in central continental regions.The AIS modulates the storm-track activity over both Pacific and Atlantic basins,which produces a downstream increase in eddy activity and precipitation(Garreaud,2007).However,they also noted that the anti-correlation between the AL and IL is not always significant during the 20th century,but undergoes multidecadal modulations.Sun and Tan(2013)explored the formation of the AIS pattern and attributed it to a stronger stratospheric polar vortex,which may act to reflect the eastern North Pacific wave trains(EPWs)in December–March(focused on 1948–2009).The role of the polar vortex in linking the Aleutian and North Atlantic variability was also noted by Castanheira and Graf(2003).

    The Atlantic Multidecadal Oscillation(AMO)is a basinscale oceanic pattern of sea surface temperature(SST)variability on a multidecadal timescale[~60–70 years(Kerr,2000)].Cold AMO phases(AMO|-)occur in the 1900s–1920s and 1970s–1990s,while warm AMO phases(AMO|+)occur in the 1930s–1950s and after the mid-1990s.The fluctuations of the AMO are associated with numerous climatic phenomena.For example,the AMO induces North Atlantic Oscillation(NAO)–like anomalies during late winter(Omrani et al.,2014).Peings and Magnusdottir(2016)also explored the wintertime atmospheric response to the Atlantic multidecadal variability,based on three different configurations of version 5 of the Community Atmosphere Model(lowtop,high-top,and low-top coupled to a slab ocean).They suggested different timings of the NAO-like response,which they attributed to an earlier occurrence of the polar warming in the stratosphere in the high-top configuration.Remotely,the AMO modulates the East Asian monsoon through coupled atmosphere–ocean feedbacks in the western Pacific and Indian oceans(Lu et al.,2006;Li and Bates,2007).Moreover, AMO|+increases the frequency of atmospheric blocking highs over the Euro–Atlantic sector by changing the baroclinicity and the transient eddy activity(H?kkinen et al.,2011;Peings and Magnusdottir,2014).The increased blocking highs over the Euro–Atlantic sector can further enhance upward planetary wave propagation, resulting in stratospheric warming(i.e.,a weaker polar vortex)(Nishii et al.,2011).

    Despite our incomplete understanding of the connection between the AMO and the stratosphere(Reichler et al.,2012),we try in this study to determine whether the AMO is linked to the multi-decadal variability of the AIS and the associated surface climate during the 20th century using observational/reanalysis data,and whether the potential driver is the AMO’s modulation of the stratospheric polar vortex.

    2.Data,climatic index and method

    We use five monthly mean datasets:(1)sea level pressure(SLP)from HadSLP2r(Allan and Ansell,2006)during 1860–2016;(2)atmospheric fields from NCEP/NCAR Reanalysis 1(Kalnay et al.,1996)during 1948–2016;(3)TS from CRU TS3.24(Harris et al.,2014)during 1901–2015;(4)precipitation from GPCC Reanalysis 7.0(Schneider et al.,2015)during 1901–2016;and(5)SST from Kaplan Extended SST V2(Kaplan et al.,1998)during 1856–2017.The analyzed period extends from 1948 to 2011,which allows for atmospheric fields from the relatively reliable NCEP-1 to be used.Besides,our analysis focuses on late winter(February–March),when the AIS is mature and stable(Honda et al.,2001;also see Fig.S2).

    The AL and IL indices are defined as the average anomalies of SLP over(50°–60°N,185°–215°E)and(55°–65°N,315°–345°E),respectively(Orsolini et al.,2008;derived from HadSLP2r).The AIS index is the difference between the normalized AL and IL indices.A positive value of the AL(AIS)index corresponds to a weak AL(a weak AL and a stronger IL).The AIS index used here differs slightly from the one defined by Honda et al.(2005b).The main difference is the geographical sector used for the AL definition,which in our case is situated farther north,in the region of strongest SLP variance in February.The correlation coefficient between the AIS index used here and that used by Honda et al.(2005b)is 0.94(over the 99%confidence level)(Fig.S1).The smoothed AMO index is based upon the average SST anomaly(SSTA)in the North Atlantic basin(0°–70°N)during 1861–2011(available at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/).Weak(strong)AL years are determined when the normalized AL index is above (below) a standard deviation from the mean of 0.8(-0.8).The AMO|+and AMO|-phases correspond to cases in which the smoothed AMO index is above and below zero,respectively.The classification of weak and strong AL years according to the different phases of the AMO,used for the composite analysis,is shown in Table 1.

    Regarding the statistical methods used in this study,we employ correlation analysis,linear regression,and compositeanalysis.The statistical significance of correlation is assessed using the two-tailed Student’s t-test.The wave activity flux(WAF)is used to identify the origin and propagation of Rossby wave–like perturbations,which are calculated in the quasi-geostrophic framework(Plumb,1985).The Eliassen–Palm(EP)flux(Andrews,1987)is used to measure the planetary wave(wavenumbers 1–3)activity propagation.Blocking high events are defined as intervals in which daily 500-hPa height from the reanalysis exceeds a standard deviation of 1 above the monthly mean for each grid cell over five consecutive days(Thompson and Wallace,2001;Liu et al.,2012;Tang et al.,2013).The incidence of blocking highs is measured as(1)the percentage relative to the blocking climatology during 1948–2011 or(2)the ratio of the number of days when a certain grid point is blocked to the total number of days.

    Table 1.Classification of weak and strong AL years in AMO|+and AMO|-.

    3.AIS connection to the AMO

    Figure 1a illustrates the time series of the AL and IL indices from 1860 to 2016,February–March.The AL and IL indices have been detrended by removing the long-term linear trend.Year-to-year variations in the AL and IL show an anticorrelation over the 157 years,with a coefficient of-0.26(over the 99%confidence level).The correlations between the AL and IL indices,computed over a 25-year moving window,are presented in Fig.1b.The main result is that the AL–IL relationship displays multidecadal non-stationarity.The anti-correlation significance is higher than the 95%confidence level,over the 1900s–1920s and 1970s–1990s approximately.It is statistically insignificant before the 1900s and after the mid-1990s,and even changes sign over the 1930s–1950s.Note that the significant anti-correlation period(the 1970s–1990s)revealed by the present study is in good agreement with the analyzed period(1973–94)in Honda et al.(2001).

    Fig.1.(a)The AL(orange bars)and IL(blue line)indices from 1860 to 2016,February–March.(b)Correlations in a 25-year moving window between the AL and IL indices.The 90%and 95%confidence level for the correlations is indicated by the horizontal dashed lines.(c)Smoothed AMO index from 1861 to 2011,February–March.The vertical dashed lines reflect the analyzed period(1973–94)in Honda et al.(2001).(d)Composite differences of February–March SST(units:°C)restricted to the Atlantic region between AMO|-and AMO|+years.Crosshatched region is statistically significant at the 95%confidence level.

    Figure 1c illustrates the time series of the smoothed AMO from 1861 to 2011,February–March.Composite analysis of February–March SSTAs between AMO|-and AMO|+years(Fig.1d)shows cold anomalies over the North Atlantic,with a minimum of-0.30°C over the subpolar region,and warm anomalies over the South Atlantic(up to 0.13°C).Interestingly,significant anti-correlations between the AL and IL exist only in AMO|-.The period of AMO|+shows no significant correlation.

    To investigate the effects of AMO phases on the intensity of the AL and IL and on the formation of the AIS,we conduct a composite analysis for the whole period,as well as for each phase of the AMO.The upper panel of Fig.2 illustrates the composite differences of February–March SLP(derived from HadSLP2r)between weak and strong AL years for 1861–2011,as well as in AMO|+and AMO|-.For the whole period,the weak AL is associated with positive SLP anomalies over the North Pacific,and negative SLP anomalies over the polar cap and Iceland(Fig.2a).In AMO|+,the negative SLP anomalies retreat to the polar cap and even change to positive sign over the Barents Sea(Fig.2b).There is no AL–IL correlation.In AMO|-,the negative SLP anomalies occupy the polar cap and subpolar North Atlantic,with the minimum located in the climatological center of the IL(Fig.2c).A clear AIS pattern appears.The same conclusion is reached when using NCEP-1(1948–2011)(Figs.2d–f)instead of HadSLP2r.

    Fig.2.Composite differences of February–March SLP(units:hPa)(derived from HadSLP2r)between weak and strong AL years for(a)1861–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for SLP(derived from NCEP-1,1948–2011).Shaded regions indicate significance at the 95%confidence level.

    The upper panel of Fig.3 illustrates the composite differences of February–March 250-hPa geopotential height(Z250)and horizontal WAF(departures from zonal means)between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In the following analysis,our description particularly focuses on the composites for AMO|+and AMO|-.In AMO|+,the weak AL is associated with positive Z250 anomalies over the North Pacific and southern United States,and there is a negative Z250 center in central Canada(Fig.3b).Meanwhile,the PNA-like stationary Rossby wave trains originate over the central North Pacific and stretch horizontally across North America.In AMO|-,the negative Z250 center in central Canada extends considerably farther across Newfoundland,past the south of Greenland(i.e.,the subpolar North Atlantic;Fig.3c),as another wave train emanates from the leading edge of the PNA-like Rossby wave to form the PNAA pattern(Honda et al.,2001,2005a).This pattern is analogous to the EPWs in Sun and Tan(2013),which originate over the central North Pacific and propagate horizontally through North America and into the North Atlantic.

    The lower panel of Fig.3 is the same as the upper panel,but for zonally averaged zonal wind.In AMO|+,anomalous westward flow is significant along the midlatitudes(30°–40°N)from the surface into the lower stratosphere(Fig.3e).However,in AMO|-,both anomalous westward and eastward flows are significant,and of stronger magnitude,along the midlatitudes(30°–40°N)and high latitudes(north of 50°N),respectively,from the surface into the upper stratosphere(Fig.3f),suggesting a stronger stratospheric polar vortex.Thus,the clear AIS seen in the SLP in AMO|-is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the stronger stratospheric polar vortex;whereas,in AMO|+,there is no established AIS with the upper-tropospheric PNA pattern.

    4.AIS-based surface climate

    Fig.3.Composite differences of February–March Z250(contours;units:gpm)/horizontal WAF(vectors;scale in m2s-2)(departures from zonal means)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a-c),but for zonally averaged zonal wind(units:m s-1).Shaded regions indicate significance at the 95%confidence level.

    We extend our investigation into how the AL’s impact on surface climate is influenced by the AMO phase.Figure4 illustrates the composite differences of February–March TS and 1000-hPa horizontal temperature advection between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In AMO|+,the weak AL-related anticyclonic anomalies induce cold advection along the west coast of North America and warm advection along the Russian Far East coast;anticyclonic anomalies over the Barents Sea contribute to cold advection over Europe(Fig.4e).Cold anomalies are pronounced over Canada and Europe(Fig.4b).In AMO|-,cold anomalies over Canada are much weaker,and warm anomalies extend over the entire Far East and along the Russian Arctic coast(Fig.4c).Besides,the intensified IL-related cyclonic anomalies(Fig.4f)lead to cold anomalies over the Middle East,and warm anomalies over northern Europe stretching along the Russian Arctic coast.Figure 5 is the same as Fig.4,but for precipitation and 300-hPa zonal wind(U300)/variance of bandpass-filtered(3–7 days)300-hPa meridional wind(V300).The monthly variance of V300 is calculated from daily mean values,which are then band-pass filtered(3–7 days),to reflect the transient eddy activity.In AMO|+,positive band-passed U300 anomalies occur over the Bering Sea/Aleutian Islands and the United States,and negative band-passed U300 anomalies over the midlatitude North Pacific and Arctic Canada/Europe(Fig.5e,contours),favoring enhanced(diminished)eddy activity downstream(Fig.5e,vectors).Correspondingly,positive precipitation anomalies are over western Canada,and negative precipitation anomalies over the western United States and northern Europe(Fig.5b).In AMO|-,the positive band-passed U300 anomalies over the United States extend eastwards through the North Atlantic,with opposite bandpassed U300 anomalies over the Mediterranean Sea,which corresponds to diminished eddy activity and precipitation over southern Europe(Figs.5c and f).

    5.How does the AMO modulate the AIS?

    How can the AMO be linked to the AIS multidecadal fluctuations through an anomalous stratospheric polar vortex?To answer this,the composite-differences of daily geopotential height averaged north of 60°N(pressure versus time)between AMO|-and AMO|+years are presented in Fig.6a.The subpolar North Atlantic cold SSTAs(see Fig.1d)are associated with a precursory strengthening of the stratospheric polar vortex during early winter(November–January),which propagates downwards into the troposphere during late winter(February–March).The strengthening of the stratospheric polar vortex(i.e.,stratospheric cooling)is mainly maintained by anomalous negative quasi-stationary eddy heat flux(Fig.6b).

    Fig.4.Composite differences of February–March TS(units:°C)(derived from CRU)between weak and strong AL years for(a)1948-2011,and for(b)AMO|+,and(c)AMO|-.(d–f)As in(a–c),but for 1000-hPa horizontal temperature advection(scale in m K s-1).Dotted(a–c)and shaded(d–f)regions indicate significance at the 95%confidence level.

    Fig.5.Composite differences of February–March precipitation(units:mm)(derived from GPCC)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for U300(contours;unit:m s-1)/variance of bandpass-filtered(3–7 days)V300(shaded,units:m s-1).Dotted regions indicate significance at the 95%confidence level.

    Fig.6.(a)Temporal evolution of daily geopotential height(units:gpm)averaged north of 60°N for the composite difference between AMO|-and AMO|+years.(b)Temporal evolution of monthly quasi-stationary eddy heat flux(units: °C m s-1)averaged north of 60°N in the lowermost stratosphere(150 hPa)for the composite difference with both AMO|+(red line)and AMO|-(blue line)years.

    Figure 7 illustrates the composite differences of November–January 20-hPa geopotential height(Z20)and February–March Z250/horizontal WAF(departures from zonal means)between AMO|-and AMO|+years.The Z20 pattern related to AMO|-shows negative anomalies over the polar cap and positive anomalies in the midlatitudes(Fig.7a),suggesting an enhanced stratospheric polar vortex during early winter,consistent with Omrani et al.(2014).The negative Z20 anomalies in the Arctic extend downwards to 250 hPa during late winter,accompanied by EPWs that emanate over the eastern North Pacific and stretch horizontally through the western North America–North Atlantic–Europe sector(Fig.7b).

    The composite differences of November–January and February–March EP flux cross sections and zonally averaged zonal wind between AMO|+and AMO|-years are presented in Figs.8a and b,respectively.In AMO|-,during early winter,the polar night jet accelerates(Fig.8a,contours)because of anomalous equator ward-pointing EP flux in the uppermost stratosphere(20 hPa),and anomalous down ward-pointing EP flux along the polar waveguide(Dickinson,1968;Fig.8a,vectors).During late winter,the anomalous upper-stratospheric equator ward-pointing EP flux disappears,while the anomalous downward-pointing EP flux is stronger in magnitude,moving directly from the upper stratosphere in the high latitudes to reach the surface(Fig.8b,vectors).The high-latitude zonal wind anomaly strengthens not only in the stratosphere but also in the troposphere(Fig.8b,contours).

    To better understand the spatial modulation of planetary waves associated with the anomalous downward-pointing EP flux at different levels,we calculate the February–March 50-hPa and 250-hPa vertical WAFs in the climatology and the composite difference between AMO|-and AMO|+years(Figs.8c and d).The positive(negative)contours represent the upward(downward) climatological stationary wave activity(Plumb,1985).At 50 hPa,the anomalous downward stationary wave flux over the subpolar North Atlantic related to AMO|-(Fig.8c,shaded)collocates with the climatological negative center(Fig.8c,contours).This center of anomalous downward flux is also apparent over northeastern North America and Greenland at 250 hPa(Fig.8d,shaded),and may superimpose on the horizontal EPWs(Fig.7b), contributing to an eastward-extended PNAA pattern and the formation of the AIS(Sun and Tan,2013).

    The results mentioned above indicate that the AMO|-phase has the potential to drive an intensified polar night jet because of anomalous downward-pointing EP flux along the polar waveguide(Figs.8a and b)or,equivalently,because of the negative quasi-stationary eddy heat flux anomalies in the high latitudes(Fig.6b).It is suggested that the EPWs propagate zonally along the intensified polar night jet in late winter(Fig.7b).The central question remains as to why AMO|-is associated with an intensified polar vortex,and the an-swer can be found in how the AMO modulates the occurrence of atmospheric blockings over the Atlantic(H?kkinen et al.,2011;Peings and Magnusdottir,2014).Reduced occurrence of blocking highs over the Euro–Atlantic sector would imply a lessening of the upward wave activity flux,resulting in a stronger stratospheric polar vortex(Nishii et al.,2011).

    Fig.7.Composite differences between AMO|-and AMO|+years of(a)November–January Z20(units:gpm)and(b)February–March Z250(contours;units:gpm)/WAF(vectors;scale in m2s-2;departures from zonal means).Shaded regions indicate significance at the 95%confidence level.

    Fig.8.Composite differences between AMO|-and AMO|+years of(a)November–January and(b)February–March EP flux cross sections(vectors;scale in m2s-2)and zonally averaged zonal wind(contours;units:m s-1).Shaded regions indicate significance at the 95%confidence level.In order to display the EP flux throughout the stratosphere,the vectors are scaled by and the inverse of air density.Additionally,the vertical component is multiplied by 125.February–March(c)50-hPa and(d)250-hPa vertical stationary WAFs in the climatology(1948–2011;contours;unit:103m2s-2)and the composite difference between AMO|-and AMO|+years(shaded;units:103m2s-2).Crosshatched regions indicate significance at the 95%confidence level.

    Fig.9.Composite differences between AMO|-and AMO|+years of the incidence of(a)November–March,(b)November–January and(c)February–March blocking highs(measured as the percentage relative to the blocking climatology during 1948–2011)restricted to the Euro-Atlantic sector(25°–80°N,85°W–30°E).(d)Distribution of seasonal regime frequencies(40°–80°N,85°W–30°E;measured as the ratio of the number of days when a certain grid point is blocked to the total number of days)in AMO|+(red boxplots)and AMO|-(blue boxplots)for November–March,November–January and February–March.Boxplots indicate the maximum,upper-quartile,median,lower-quartile and minimum of the distribution(horizontal bars).The mean of the distribution is shown by black diamonds,and asterisks indicate the significance level of the difference of the mean between AMO|-and AMO|+:one star,p<0.05;two stars,p<0.01.

    To test this,we re-examine the composite differences of the incidence of November–March,November–January and February–March blockings highs(measured as the percentage relative to the blocking climatology during 1948–2011)between AMO|-and AMO|+years(Fig.9,left panel).In AMO|-,in early winter,the frequency of blocking highs decreases over the subpolar North Atlantic,while it increases in southern Europe(Fig.9b).During late winter,the reduced blocking highs are of stronger magnitude over most parts of the Euro–Atlantic sector,except the midlatitude North Atlantic where increased blocking highs are found(Fig.9c).Figure 9d further confirms that the frequency of blocking highs over the Euro–Atlantic sector(40°–80°N,85°W–30°E)is lower in AMO|-compared to in AMO|+,especially during late winter.These findings on the occurrence of blockings are in agreement with Peings and Magnusdottir(2014),and support the association of AMO|-with a strengthened stratospheric vortex.

    6.Discussion and conclusions

    The present study,based on observations,shows:

    (1)The significant anti-correlation between the AL and IL in February–March is not a consistent feature during the 20th century, and emerges only in AMO|-.The AIS is clearly established and is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the intensified polar night jet.On the contrary,in AMO|+occurs,the AIS is not established, featuring the upper-tropospheric PNA pattern only.

    (2)The surface climate over Eurasia is sensitive to the establishment of the AIS.With an established AIS(weak AL and strong IL),the Middle East(Far East)is colder(warmer)than normal,and southern Europe experiences less rain.However,without an established AIS(weak AL only),Europe(the Russian Far East)is colder(warmer)than normal,and northern Europe receives less rain.

    (3)The AMO|-phase favors a clear AIS mainly because of its in fluence on the intensified polar night jet,via weakening the EP flux along the polar waveguide/negative quasistationary eddy heat flux anomalies in the high latitudes,which can be achieved by atmospheric blocking modulation(H?kkinen et al.,2011;Peings and Magnusdottir,2014;see also Fig.9).The EPWs propagate zonally along the intensified polar night jet during late winter,favoring an eastward extended PNAA pattern and resulting in a significant AIS at the surface.

    It is important to note that,within a decadal period of AMO|-,the interannually varying AIS can be of either phase,with a concomitant weak or strong AL and an out-of-phase IL.By itself,AMO|-would favor a strong stratospheric polar vortex and IL(Omrani et al.,2014).Hence,the AMO may modulate the stratospheric polar vortex and IL superimposed on the active AIS.In this paper,we select the AMO phases based on the smoothed AMO index above and below zero,and hence the modulation of IL intensity is much weaker(Fig.7c)compared to the results in Omrani et al.(2014).

    In addition,the AIS’connection to different phases of the AMO and to the winter surface climate over Eurasia warrants a study using an AGCM externally forced with observed SST and extending into the stratosphere.This issue will be addressed in future work.

    Acknowledgements.The authors are supported by the Research Council of Norway(Grant Nos.EPOCASA#229774/E10 and SNOWGLACE#244166),the National Natural Science Foundation of China(Grant No.41605059),and the Young Talent Support Plan launched by the China Association for Science and Technology(Grant No.2016QNRC001).

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(HadSLP2):1850-2004.J.Climate,19,5816–5842,https://doi.org/10.1175/JCLI3937.1.

    Andrews,D.G.,1987:On the interpretation of the eliassen-palm flux divergence.Quart.J.Roy.Meteor.Soc.,113(475),323–338,https://doi.org/10.1002/qj.49711347518.

    Castanheira,J.M.,and H.-F.Graf,2003:North Pacific-North Atlantic relationships under stratospheric control?J.Geophys.Res.,108,ACL 11-1–ACL 11-10,https://doi.org/10.1029/2002JD002754.

    Dickinson,R.E.,1968:Planetary Rossby waves propagating vertically through weak westerly wind wave guides.J.Atmos.Sci.,25,984–1002,https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    Garreaud,R.D.,2007:Precipitation and circulation covariability in the extratropics.J.Climate,20(18),4789–4797,https://doi.org/10.1175/JCLI4257.1.

    H?kkinen,S.,P.B.Rhines,and D.L.Worthen,2011:Atmospheric blocking and Atlantic Multidecadal Ocean variability.Science,334,655–659,https://doi.org/10.1126/science.1205683.

    Harris,I.,P.D.Jones,T.J.Osborn,and D.H.Lister,2014:Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset.International Journal of Climatology,34(3),623–642,https://doi.org/10.1002/joc.3711.

    Honda,M.,and H.Nakamura,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part II:Its significance in the interannual variability over the wintertime Northern Hemisphere.J.Climate,14,4512–4529,https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    Honda,M.,H.Nakamura,J.Ukita,I.Kousaka,and K.Takeuchi,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part I:Seasonal dependence and life cycle.J.Climate,14,1029–1042,https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    Honda,M.,Y.Kushnir,H.Nakamura,S.Yamane,and S.E.Zebiak,2005a:Formation,mechanisms,and predictability of the Aleutian-Icelandic low seesaw in ensemble AGCM simulations.J.Climate,18,1423–1434,https://doi.org/10.1175/JCLI3353.1.

    Honda,M.,S.Yamane,and H.Nakamura,2005b:Impacts of the Aleutian-Icelandic low seesaw on surface climate during the twentieth century.J.Climate,18(14),2793–2802,https://doi.org/10.1175/JCLI3419.1.

    Kalnay,E.,and Coauthors,1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,77,437–471,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kaplan,A.,M.A.Cane,Y.Kushnir,A.C.Clement,M.B.Blumenthal,and B.Rajagopalan,1998:Analyses of global sea surface temperature 1856-1991.J.Geophys.Res.,103,18 567–18 589,https://doi.org/10.1029/97JC01736.

    Kerr,R.A.,2000:A North Atlantic climate pacemaker for the centuries.Science,288,1984–1986,https://doi.org/10.1126/science.288.5473.1984.

    Li,S.L.,and G.T.Bates,2007:In fluence of the Atlantic multidecadal oscillation on the winter climate of East China.Adv.Atmos.Sci.,24(1),126–135,https://doi.org/10.1007/s00376-007-0126-6.

    Liu,J.,J.A.Curry,H.Wang,M.Song,and R.M.Horton,2012:Impact of declining Arctic sea ice on winter snowfall.Proceedings of the National Academy of Sciences of the United States of America,109,4074–4079,https://doi.org/10.1073/pnas.1114910109.

    Lu,R.Y.,B.W.Dong,and H.Ding,2006:Impact of the At-lantic Multidecadal Oscillation on the Asian summer monsoon.Geophys.Res.Lett.,33(24),https://doi.org/10.1029/2006GL027655.

    Nakamura,H.,and M.Honda,2002:Interannual seesaw between the Aleutian and Icelandic lows Part III:Its influence upon the stratospheric variability.J.Meteor.Soc.Japan,80(4B),1051–1067,https://doi.org/10.2151/jmsj.80.1051.

    Nishii,K.,H.Nakamura,and Y.J.Orsolini,2011:Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation.J.Climate,24(24),6408–6423,https://doi.org/10.1175/JCLI-D-10-05021.1.

    Omrani,N.-E.,N.S.Keenlyside,J.Bader,and E.Manzini,2014:Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions.Climate Dyn.,42,649–663,https://doi.org/10.1007/s00382-013-1860-3.

    Orsolini,Y.J.,2004:Seesaw fluctuations in ozone between the North Pacific and North Atlantic.J.Meteor.Soc.Japan,82(3),941–949,https://doi.org/10.2151/jmsj.2004.941.

    Orsolini,Y.J.,N.G.Kvamst?,I.T.Kindem,M.Honda,and H.Nakamura,2008:Influence of the Aleutian-Icelandic low seesaw and ENSO onto the Stratosphere in ensemble winter hindcasts.J.Meteor.Soc.Japan,86(5),817–825,https://doi.org/10.2151/jmsj.86.817.

    Peings,Y.,and G.Magnusdottir,2014:Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean.Environmental Research Letters,9(3),034018,https://doi.org/10.1088/1748-9326/9/3/034018.

    Peings,Y.,and G.Magnusdottir,2016:Wintertime atmospheric response to Atlantic multidecadal variability:Effect of stratospheric representation and ocean-atmosphere coupling.Climate Dyn.,47,1029–1047,https://doi.org/10.1007/s00382-015-2887-4.

    Plumb,R.A.,1985:On the three-dimensional propagation of stationary waves.J.Atmos.Sci.,42,217–229,https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    Reichler,T.,J.Kim,E.Manzini,and J.Kr¨oger,2012:A stratospheric connection to Atlantic climate variability.Nature Geoscience,5(11),783–787,https://doi.org/10.1038/ngeo1586.

    Schneider,U.,A.Becker,P.Finger,A.Meyer-Christoffer,B.Rudolf,and M.Ziese,2015:GPCC Full Data Reanalysis Version 7.0 at 1.0°:Monthly Land-Surface Precipitation from Rain-Gauges built on GTS based and Historic Data,https://doi.org/10.5065/D6000072.

    Sun,J.,and B.Tan,2013:Mechanism of the wintertime Aleutian low-Icelandic low seesaw.Geophys.Res.Lett.,40(15),4103–4108,https://doi.org/10.1002/grl.50770.

    Tang,Q.H.,X.J.Zhang,X.H.Yang,and J.A.Francis,2013:Cold winter extremes in northern continents linked to Arctic sea ice loss.Environmental Research Letters,8(1),014036,https://doi.org/10.1088/1748-9326/8/1/014036.

    Thompson,D.W.J,and J.M.Wallace,2001:Regional climate impacts of the Northern Hemisphere annular mode.Science,293(5527),85–89,https://doi.org/10.1126/science.1058958.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hemisphere winter.Monthly Weather Review,109(4),784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

    1 February 2017;revised 30 May 2017;accepted 22 June 2017)

    :Li,F.,Y.J.Orsolini,H.J.Wang,Y.Q.Gao,and S.P.He,2018:Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation.Adv.Atmos.Sci.,35(1),95–105,https://doi.org/10.1007/s00376-017-7028-z.?

    Fei LI

    Email:lifei-715@163.com

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany 2018

    国产亚洲午夜精品一区二区久久| 国产福利在线免费观看视频| 欧美激情极品国产一区二区三区| 久久久国产精品麻豆| 精品人妻熟女毛片av久久网站| 欧美日本中文国产一区发布| 美女高潮喷水抽搐中文字幕| 午夜福利一区二区在线看| 国产高清激情床上av| 人人妻,人人澡人人爽秒播| 久久久国产欧美日韩av| 中文字幕制服av| 亚洲伊人色综图| 欧美在线黄色| 亚洲欧美色中文字幕在线| 国产日韩欧美在线精品| 男女无遮挡免费网站观看| 国产淫语在线视频| 丁香欧美五月| 在线永久观看黄色视频| 99国产精品免费福利视频| 视频区欧美日本亚洲| 男女之事视频高清在线观看| 91av网站免费观看| a级毛片在线看网站| 久久亚洲真实| 欧美日韩成人在线一区二区| 肉色欧美久久久久久久蜜桃| 最近最新中文字幕大全免费视频| 男女之事视频高清在线观看| 一边摸一边抽搐一进一小说 | 51午夜福利影视在线观看| 天天操日日干夜夜撸| 国产成人影院久久av| 亚洲五月婷婷丁香| 午夜老司机福利片| 大片电影免费在线观看免费| 国产精品 欧美亚洲| 国产高清国产精品国产三级| 在线播放国产精品三级| 亚洲中文日韩欧美视频| 亚洲午夜精品一区,二区,三区| 午夜激情av网站| 婷婷成人精品国产| 999久久久国产精品视频| 美女午夜性视频免费| 久久久精品免费免费高清| 国产一区二区三区综合在线观看| 亚洲,欧美精品.| 日韩三级视频一区二区三区| 大陆偷拍与自拍| 又大又爽又粗| 精品熟女少妇八av免费久了| 一级片'在线观看视频| www.熟女人妻精品国产| 中文字幕高清在线视频| 咕卡用的链子| 麻豆乱淫一区二区| 乱人伦中国视频| 午夜福利欧美成人| videos熟女内射| 国产欧美日韩一区二区三区在线| 国产日韩欧美视频二区| 777久久人妻少妇嫩草av网站| 老汉色∧v一级毛片| 巨乳人妻的诱惑在线观看| 亚洲男人天堂网一区| 啦啦啦 在线观看视频| 夜夜爽天天搞| 青草久久国产| 国产欧美日韩综合在线一区二区| 久久这里只有精品19| 亚洲欧洲日产国产| 满18在线观看网站| 亚洲av日韩在线播放| 久久久久国内视频| 精品久久久久久电影网| 中文字幕最新亚洲高清| 精品国产国语对白av| 成人特级黄色片久久久久久久 | 久久久国产精品麻豆| 欧美亚洲 丝袜 人妻 在线| 免费观看a级毛片全部| 久久久久国产一级毛片高清牌| 久久热在线av| 99国产精品一区二区三区| 999精品在线视频| 嫩草影视91久久| 久久久精品免费免费高清| 99精品欧美一区二区三区四区| 亚洲国产精品一区二区三区在线| 国产成人精品无人区| 如日韩欧美国产精品一区二区三区| 免费在线观看黄色视频的| 中文字幕色久视频| av天堂久久9| 午夜福利视频精品| 老司机亚洲免费影院| 国产精品久久久久久精品古装| 丝袜喷水一区| 国产欧美亚洲国产| 国产精品一区二区在线观看99| 中文欧美无线码| 精品午夜福利视频在线观看一区 | 99国产极品粉嫩在线观看| 久久久精品免费免费高清| 日本精品一区二区三区蜜桃| 国产有黄有色有爽视频| bbb黄色大片| 一级毛片电影观看| 91九色精品人成在线观看| 咕卡用的链子| 亚洲欧美激情在线| 999久久久国产精品视频| 超碰97精品在线观看| 国产日韩欧美在线精品| 成年人免费黄色播放视频| 久久精品91无色码中文字幕| 操出白浆在线播放| 美女扒开内裤让男人捅视频| 热re99久久国产66热| 日本黄色视频三级网站网址 | 搡老岳熟女国产| 欧美黄色片欧美黄色片| 色94色欧美一区二区| 最近最新中文字幕大全免费视频| 欧美日韩成人在线一区二区| 中文字幕色久视频| 久久影院123| 超碰成人久久| 三上悠亚av全集在线观看| av在线播放免费不卡| 久久久国产欧美日韩av| 80岁老熟妇乱子伦牲交| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区有黄有色的免费视频| 黄色视频不卡| 免费观看人在逋| 18在线观看网站| av福利片在线| 久久国产精品人妻蜜桃| 久久国产精品影院| 乱人伦中国视频| 久久久国产精品麻豆| 这个男人来自地球电影免费观看| 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 婷婷成人精品国产| 免费黄频网站在线观看国产| 国产精品一区二区在线观看99| 视频在线观看一区二区三区| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 男男h啪啪无遮挡| 热re99久久精品国产66热6| 久久久久久久国产电影| 高清视频免费观看一区二区| 日韩欧美免费精品| 午夜老司机福利片| av国产精品久久久久影院| 999精品在线视频| av在线播放免费不卡| 国产在线视频一区二区| 丝袜人妻中文字幕| 久久这里只有精品19| 国产1区2区3区精品| 另类精品久久| 欧美av亚洲av综合av国产av| 欧美变态另类bdsm刘玥| 午夜福利在线观看吧| 色婷婷av一区二区三区视频| 成人精品一区二区免费| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久| 成年人免费黄色播放视频| 国产精品成人在线| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 国产精品免费视频内射| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 免费在线观看黄色视频的| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 日韩欧美三级三区| 亚洲精华国产精华精| av网站免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 色视频在线一区二区三区| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 午夜福利在线免费观看网站| 黄色片一级片一级黄色片| 日本av手机在线免费观看| 一级黄色大片毛片| 国产av一区二区精品久久| 麻豆av在线久日| 人妻久久中文字幕网| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 老司机亚洲免费影院| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 欧美另类亚洲清纯唯美| 一本久久精品| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 两性夫妻黄色片| 黄色丝袜av网址大全| 国产精品免费视频内射| 人妻 亚洲 视频| 啦啦啦 在线观看视频| 久久这里只有精品19| 久久精品亚洲精品国产色婷小说| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 操美女的视频在线观看| 多毛熟女@视频| 丝袜美足系列| 欧美日韩亚洲高清精品| 男女床上黄色一级片免费看| 免费看十八禁软件| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址 | 国产一区二区三区在线臀色熟女 | 国产在线免费精品| 免费观看a级毛片全部| 国产1区2区3区精品| 亚洲国产成人一精品久久久| 考比视频在线观看| 高清毛片免费观看视频网站 | 99re在线观看精品视频| 在线看a的网站| 亚洲综合色网址| 久久久久网色| 久久亚洲精品不卡| 欧美精品一区二区大全| 国产精品久久电影中文字幕 | 久久影院123| 国产视频一区二区在线看| av在线播放免费不卡| 国产黄色免费在线视频| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 99re在线观看精品视频| 免费看十八禁软件| 最新美女视频免费是黄的| 女人被躁到高潮嗷嗷叫费观| 国产男女超爽视频在线观看| 一区二区av电影网| 午夜91福利影院| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 高清毛片免费观看视频网站 | 国产一区有黄有色的免费视频| 高清黄色对白视频在线免费看| 精品欧美一区二区三区在线| 国产精品一区二区精品视频观看| 人妻 亚洲 视频| 99riav亚洲国产免费| 精品国产乱子伦一区二区三区| 蜜桃国产av成人99| 成人亚洲精品一区在线观看| 国产区一区二久久| 黄色成人免费大全| 他把我摸到了高潮在线观看 | 亚洲全国av大片| 99精国产麻豆久久婷婷| 欧美中文综合在线视频| 中文亚洲av片在线观看爽 | 天堂中文最新版在线下载| 777米奇影视久久| 久久精品国产99精品国产亚洲性色 | av网站免费在线观看视频| 精品欧美一区二区三区在线| 99国产精品99久久久久| 日韩视频在线欧美| 亚洲一码二码三码区别大吗| 国产亚洲午夜精品一区二区久久| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 人人妻人人澡人人看| 一本久久精品| 国产xxxxx性猛交| 一区二区三区精品91| 日日爽夜夜爽网站| 免费看a级黄色片| 性色av乱码一区二区三区2| 国产97色在线日韩免费| 欧美国产精品va在线观看不卡| 久久狼人影院| 久久午夜亚洲精品久久| 香蕉久久夜色| 亚洲国产欧美日韩在线播放| 色94色欧美一区二区| 91麻豆av在线| 亚洲三区欧美一区| 国产午夜精品久久久久久| 久久这里只有精品19| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 国产高清videossex| 黄色视频在线播放观看不卡| 亚洲男人天堂网一区| 国产精品秋霞免费鲁丝片| 成人永久免费在线观看视频 | 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 一区二区日韩欧美中文字幕| 亚洲精品自拍成人| 高潮久久久久久久久久久不卡| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 高清av免费在线| av免费在线观看网站| 日本黄色日本黄色录像| 久久精品国产99精品国产亚洲性色 | 操美女的视频在线观看| 国产精品一区二区精品视频观看| 亚洲成av片中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| 免费日韩欧美在线观看| 另类亚洲欧美激情| 欧美乱妇无乱码| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 欧美在线黄色| 黄片大片在线免费观看| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 久久精品亚洲av国产电影网| 中文字幕av电影在线播放| 美女午夜性视频免费| 青草久久国产| 国产成人精品久久二区二区免费| 男女无遮挡免费网站观看| 亚洲人成电影免费在线| 亚洲午夜理论影院| 国产又爽黄色视频| 中文字幕人妻熟女乱码| 丁香六月欧美| 欧美在线黄色| 精品国产一区二区久久| 久热爱精品视频在线9| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 欧美老熟妇乱子伦牲交| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 日韩三级视频一区二区三区| 美女扒开内裤让男人捅视频| 自线自在国产av| 啪啪无遮挡十八禁网站| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 中文亚洲av片在线观看爽 | 国产免费福利视频在线观看| 看免费av毛片| 久久毛片免费看一区二区三区| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线观看免费 | 久久九九热精品免费| 国产精品久久久久久精品电影小说| 99在线人妻在线中文字幕 | 美女福利国产在线| 在线永久观看黄色视频| 国产欧美日韩综合在线一区二区| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 满18在线观看网站| 真人做人爱边吃奶动态| 欧美变态另类bdsm刘玥| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 亚洲国产毛片av蜜桃av| 性少妇av在线| 动漫黄色视频在线观看| 男女下面插进去视频免费观看| 精品国内亚洲2022精品成人 | 国产老妇伦熟女老妇高清| 黄片小视频在线播放| 中文字幕色久视频| 亚洲专区中文字幕在线| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 99在线人妻在线中文字幕 | 91老司机精品| 国产精品香港三级国产av潘金莲| 欧美精品一区二区免费开放| 99国产精品一区二区三区| 国产欧美亚洲国产| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网| 久久精品91无色码中文字幕| 一本久久精品| 日韩熟女老妇一区二区性免费视频| 国产aⅴ精品一区二区三区波| 国产真人三级小视频在线观看| 精品久久久久久电影网| 日本黄色视频三级网站网址 | 最新的欧美精品一区二区| 美国免费a级毛片| 国产不卡一卡二| 精品一区二区三区四区五区乱码| 亚洲欧美激情在线| 亚洲一码二码三码区别大吗| 精品国产国语对白av| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 日韩人妻精品一区2区三区| netflix在线观看网站| h视频一区二区三区| 亚洲国产av影院在线观看| 777久久人妻少妇嫩草av网站| 国产精品九九99| 在线av久久热| 成年人午夜在线观看视频| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 99在线人妻在线中文字幕 | 黄色丝袜av网址大全| 亚洲国产欧美一区二区综合| 叶爱在线成人免费视频播放| xxxhd国产人妻xxx| 黄片小视频在线播放| 夫妻午夜视频| 丁香欧美五月| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址 | 欧美亚洲 丝袜 人妻 在线| 精品高清国产在线一区| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 午夜福利视频精品| 国产精品国产av在线观看| 午夜久久久在线观看| 丁香欧美五月| 精品一区二区三区四区五区乱码| 超碰97精品在线观看| 丝袜人妻中文字幕| 岛国在线观看网站| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 亚洲精品一二三| √禁漫天堂资源中文www| 国产在线观看jvid| 成年女人毛片免费观看观看9 | 国产深夜福利视频在线观看| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 黑人操中国人逼视频| 男女免费视频国产| 999久久久精品免费观看国产| 亚洲国产av新网站| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 成在线人永久免费视频| 国产精品免费视频内射| 国产精品美女特级片免费视频播放器 | 国产av又大| 亚洲少妇的诱惑av| 国产片内射在线| 美女高潮到喷水免费观看| 久久精品亚洲精品国产色婷小说| 久久久久国内视频| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 一级,二级,三级黄色视频| 老熟妇仑乱视频hdxx| 亚洲第一欧美日韩一区二区三区 | www.精华液| 国产精品二区激情视频| 中文字幕精品免费在线观看视频| 黄片大片在线免费观看| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 午夜福利免费观看在线| av免费在线观看网站| 99精品久久久久人妻精品| 丁香欧美五月| 亚洲欧美日韩高清在线视频 | 建设人人有责人人尽责人人享有的| 三级毛片av免费| 欧美在线黄色| 脱女人内裤的视频| 大型av网站在线播放| 精品国产超薄肉色丝袜足j| 国产成人免费观看mmmm| 另类亚洲欧美激情| 99久久99久久久精品蜜桃| 日韩人妻精品一区2区三区| 另类精品久久| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 国产国语露脸激情在线看| 999久久久精品免费观看国产| 国产精品 国内视频| 亚洲色图av天堂| 最近最新免费中文字幕在线| 黄色成人免费大全| 一边摸一边抽搐一进一小说 | 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| 十八禁人妻一区二区| 一边摸一边做爽爽视频免费| 中文字幕人妻熟女乱码| 国产亚洲精品第一综合不卡| 老司机福利观看| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 午夜福利,免费看| 美女福利国产在线| 性色av乱码一区二区三区2| 亚洲午夜精品一区,二区,三区| a在线观看视频网站| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| 久久精品91无色码中文字幕| 在线观看66精品国产| 91国产中文字幕| 老熟妇仑乱视频hdxx| 亚洲国产av新网站| 欧美精品高潮呻吟av久久| 2018国产大陆天天弄谢| av视频免费观看在线观看| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 黑人操中国人逼视频| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 成人手机av| 亚洲 国产 在线| 国产精品久久电影中文字幕 | 男女下面插进去视频免费观看| 亚洲国产成人一精品久久久| 法律面前人人平等表现在哪些方面| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 日韩中文字幕视频在线看片| 黄色视频不卡| 黄色成人免费大全| 国产区一区二久久| 精品人妻熟女毛片av久久网站| 手机成人av网站| 久久这里只有精品19| 亚洲第一青青草原| 亚洲va日本ⅴa欧美va伊人久久| 麻豆国产av国片精品| 午夜福利乱码中文字幕| 黄色毛片三级朝国网站| 免费看十八禁软件| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 久久av网站| 精品久久久精品久久久| 成人黄色视频免费在线看| 无遮挡黄片免费观看| www.熟女人妻精品国产| 国产欧美亚洲国产| 亚洲一区中文字幕在线| 国产一区二区在线观看av| 美女高潮喷水抽搐中文字幕| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区三| 我要看黄色一级片免费的| 免费观看a级毛片全部| 80岁老熟妇乱子伦牲交| 久久精品亚洲精品国产色婷小说| 美女主播在线视频| 欧美午夜高清在线| 热99国产精品久久久久久7| 黄色片一级片一级黄色片| 黄片小视频在线播放| 色老头精品视频在线观看| 极品人妻少妇av视频| 十八禁网站免费在线| 国产精品98久久久久久宅男小说| 国产97色在线日韩免费| 啦啦啦 在线观看视频| 女同久久另类99精品国产91| 欧美一级毛片孕妇| 成人免费观看视频高清| 国产亚洲一区二区精品| 亚洲综合色网址| 免费高清在线观看日韩| 婷婷成人精品国产| 高清在线国产一区| 国产免费福利视频在线观看|