• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages

    2018-12-06 07:35:50JamesOVERLANDMuyinWANGandThomasBALLINGERNOAAPacificMarineEnvironmentalLaboratorySeattleWA98115USA
    Advances in Atmospheric Sciences 2018年1期

    James E.OVERLAND,Muyin WANG,and Thomas J.BALLINGERNOAA/Pacific Marine Environmental Laboratory,Seattle WA 98115,USA

    2Joint Institute for the Study of Atmosphere and Oceans/University of Washington,Seattle WA 98115,USA

    3Department of Geography,Texas State University,San Marcos TX 78666,USA

    Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages

    James E.OVERLAND?1,Muyin WANG1,2,and Thomas J.BALLINGER31NOAA/Pacific Marine Environmental Laboratory,Seattle WA 98115,USA

    2Joint Institute for the Study of Atmosphere and Oceans/University of Washington,Seattle WA 98115,USA

    3Department of Geography,Texas State University,San Marcos TX 78666,USA

    Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming.During 2008–13,this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier.This front separates the southeastern Bering Sea temperatures from Arctic air masses.Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate,reaching a change of+4°C by 2040 relative to the 1981–2010 mean.Offshore at 74°N,climate models project the open water duration season to increase from a current average of three months to five months by 2040.These rates are occasionally enhanced by midlatitude connections.Beginning in August 2014,additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska,especially in winter 2015–16.While global warming and equatorial teleconnections are implicated in North Pacific SSTs,the ending of the 2014–16 North Pacific warm event demonstrates the importance of internal,chaotic atmospheric natural variability on weather conditions in any given year.Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss,with occasional North Pacific support,are projected to continue to propagate through the marine ecosystem in the foreseeable future.The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.

    Alaska,North Pacific,Arctic,warm advection,polar vortex

    1.Introduction

    This paper provides an update on the major climate changes in the marine Alaskan Arctic over the past decade(Wood et al.,2013;Ballinger and Sheridan,2014;Overland et al.,2014a;Cassano et al.,2015).At the decadal/regional scale of climate change,Fig.1 shows the 13-month running mean surface air temperature(SAT)anomalies for Barrow,Alaska(red),and areal averages for the Northern Hemisphere land area(blue),relative to a baseline period of 1981–2010.Temperature anomalies at Barrow are predominantly positive since 2003,and in winter 2015–16 are roughly four times the magnitude of the Northern Hemisphere mean temperature increase.Alaskan Arctic waters participate in the hemispheric wide warming of the Arctic over the last two decades.Additional warming of Alaskan Arctic coastal waters from autumn 2014 through autumn 2016 can be attributed to the shift to warm ocean temperature anomalies in the North Pacific and associated shifts to southerly winds over Alaska.Such North Pacific contributions subside after autumn 2016,but greenhouse gas(GHG)and regional Arctic feedback contributions remain.

    Arctic air and ocean surface temperature increases coincide with the expansion of sea-ice-free areas,increases in the mobility of sea ice,shifts in ocean currents,and biological impacts at all trophic levels from primary productivity increases through loss of walrus habitat Wassmann(2015).In the following sections,we track atmospheric changes in the Alaskan Arctic,compare them relative to the Bering Sea,assess future climate projections,and address Alaskan Arctic temperature increases since August 2014 due to warming in the North Pacific.

    2.Regional climate of the maritime Alaskan Arctic

    The Pacific Arctic discussed here is defined as regions north of 66°N,which covers the area north of the Bering Strait and the southern Chukchi and Beaufort Seas.Climatologically,this region is on the northern side of the transition zone between the relatively warm and moist storm tracks of the Aleutian low weather system reaching into the Bering Sea,and the colder,drier,and higher-pressure Arctic air mass to the north.As summarized in Overland et al.(2014a):“Located in the southern part of the Pacific Arctic is a region of large north–south gradients in atmospheric properties such as near-surface air temperature(Fig.2)and atmospheric sea level pressure(SLP,Fig.3).This region of strongest gradients moves north and south with the seasonal cycle.Maximum temperature gradients in winter are located over the central Bering Sea with sub-freezing temperatures and extensive sea-ice coverage.In summer,the greatest air temperature gradients are found across the southern Chukchi Sea and seaward of the coast of Alaska with SAT above-freezing.Large north–south gradients in SLP produce a vast east–west trending region of strong climatological winds from the east across a relatively narrow band of latitudes in all seasons but summer.”The Aleutian low center to the south of the Alaskan Arctic is a dominant feature shown in the climatology of SLP plots(Fig.3)in all seasons except summer.

    Fig.1.13-month running mean SAT anomalies for Barrow and Northern Hemisphere lands relative to their respective 1981–2010 means(from CRUTEM4;available at www.cru.uea.ac.uk/cru/data/temperature/).

    Fig.2.Mean(1961–2010)near-surface temperature(units: °C)for the four seasons over the western Arctic.Data are from the NCEP–NCAR Reanalysis via NOAA/ESRL,generated online at http://www.esrl.noaa.gov/psd/cgibin/data/composites/printpage.pl.Figure is similar to Fig.2.2 in Overland et al.(2014).

    Fig.3.Mean(1961–2010)SLP (units: hPa)for the four seasons over the western Arctic. Data are from the NCEP–NCAR Reanalysis via NOAA/ESRL,generated online at http://www.esrl.noaa.gov/psd/cgibin/data/composites/printpage.pl.Figure is similar to Fig.2.3 in Overland et al.(2014).

    From 2007 through mid-2014,the Pacific air mass to the south and the Arctic air mass to the north are on different trajectories.To the north,the Chukchi/Beaufort Sea region is part of the decadal change of Arctic warming where recent sea-ice and snow losses are allowing extensive areas to absorb more late-spring and summer solar radiation than in the past,and are changing the atmospheric climatology of the region with positive temperature anomalies extending throughout the year(i.e.Arctic amplification,AA).Figure 4(top)shows monthly SAT at Barrow,in which it is notable that there is an observed shift to positive temperature anomalies beginning in 1995.To the south,the Bering Sea,represented by Saint Paul SAT(Fig.4,bottom),turns colder with extensive seasonal sea-ice cover in 2007–13,which has not been observed since the mid-1970s.This period contrasts an earlier warmer than-normal Bering Sea temperature anomaly period for the southern Bering Sea from 2000 through 2006.Beginning in 2014,the Bering Sea returned to consistent warm anomalies,tied to ocean temperature changes in the greater North Pacific.While this short-term warming event ends in autumn 2016,lower tropospheric air temperatures continue to remain above-normal in the Alaskan Arctic.We return to discussing this latest North Pacific Ocean impact on the Pacific Arctic in section 5.

    3.Arctic change

    Arctic-wide average surface temperatures have increased at double the rate of global mean temperatures—a well documented phenomenon referred to as AA(Holland and Bitz,2003;Serreze and Barry,2011).Figure 5 shows the difference in mean annual Northern Hemisphere lower tropospheric air temperatures for 2010–14 relative to the end of the 20th century(1971–2000).Although the entire Northern Hemisphere polewards of 40°N has witnessed positive changes in annual mean temperatures in recent years,much of central Arctic shows increases of at least+2°C.Note that the southeastern Bering Sea does not show a change in recent temperatures relative to the late 20th century.The spatial pattern of AA(Fig.5)does not resemble the temperature spatial pattern of major atmospheric circulation variability indices such as the Arctic Oscillation(AO),suggesting that radiative forcing is a primary forcing for AA.Mechanisms for AA include reduced summer albedo due to sea-ice and snow-cover loss,decreased total cloudiness in summer and increased cloud cover in winter,additional atmospheric heating generated by newly sea-ice-free ocean areas that are maintained later into the autumn,increased longwave radiation due to local and advected atmospheric moisture sources,and the decreased rate of heat loss to space in the Arctic relative to the subtropics due to lower mean temperatures(Makshtas et al.,2011;Pithan and Mauritsen,2014).

    Upward trends in GHGs and resulting AA significantly influence multiple changes throughout the Arctic environment(Stroeve et al.,2012).This is evident in the Alaskan Arctic where robust lagged relationships are found between Northern Hemisphere SAT and September Beaufort Sea ice extent,particularly since the early 1990s(Ballinger and Rogers,2014).This lag is explained by ongoing increases in GHGs causing global warming that contribute to AA temperature increases and resultant thinning of summer sea-ice cover in the Alaskan Arctic over the course of several years,resulting in a series of recent,anomalous September sea-ice losses.

    Fig.4.Monthly SAT anomalies for Barrow and Saint Paul,Alaska,compared to their respective 1981–2010 mean values.Anomalies are based on NWS weather station data.

    Fig.5.Annual Arctic 925-hPa air temperature increases for 2010–14 relative to the end of the 20th century(1971–2000).Figure created through the NOAA/ESRL website.

    Fig.6.Beaufort Sea ice freeze date anomalies,1979–2016,compared to the 1981–2010 mean freeze date(data obtained from Jeffrey Miller,Cryospheric Sciences Laboratory,NASA Goddard Space Flight Center and KBRwyle).

    Warm temperatures in the Alaskan Arctic have persisted since 2007. Extended periods of sea-ice-free conditions have a role in the pronounced temperature departures from the norm.In particular,Beaufort Sea ice formation occurs progressively later during this era,especially during autumn 2012 when ice formed approximately five weeks later relative to the 1981–2010 climatology(Fig.6).Since 2007,there has been an increase in easterly winds,which has helped set the stage for AA by advecting sea ice out of the Alaskan region and enhancing ocean surface stratification due to the offshore transport of fresh water from the large Mackenzie River discharge plume(Wood et al.,2013).

    Recent decades are also associated with the predominance of a large spatial-scale climate pattern referred to as the Arctic Dipole(AD;Figs.7a,b and c),which is characterized by low SLP on the Siberian side of the Arctic and high SLP on the North American side in its negative phase(Fig.7a;Overland and Wang,2005;Wang et al.,2009,2014).Note,however,some authors define the dipole with the opposite sign(e.g.,Wu et al.,2006).One can also interpret this decadal change as the increased presence of a summer Beaufort high region located north of Alaska continuing from its springtime climatology(Ballinger and Sheridan,2014;Ballinger et al.,2014).These anomalous Beaufort high patterns have occurred more often since 2007,aligned with an era of abrupt sea-ice decline,as compared to previous years dating to the late 1970s.This summer Beaufort high is a major change for the Alaskan Arctic,as the previous summer climatology often consisted of weak pressure gradients andmonthly-averaged low pressure in the central Arctic basin.As summarized by Overland et al.(2014a):“While the negative AD pattern was present in spring as early as 1997,its recent occurrence began in summer 2007 when it was present in all months and contributed to 2007 record minimum summer sea ice extent(Wang et al.,2009).Most years after 2007 have seen the AD pattern persist for at least part of the summer.For example,in 2010,the AD pattern was present in May and June,but then the Arctic reverted to the more traditional climatological summer SLP pattern involving a weak central-Arctic low-pressure center.But by August 2010 the AD pattern had returned.”The AD pattern was absent in the summer 2013 and 2017,but reappeared in 2014 and 2015 with Beaufort/Chukchi sea-ice extents below normal.

    Fig.7.(a)Composite of June SLP(units:hPa)for 2007–15,illustrating the SLP distribution for the negative phase of the AD pattern.Data are from the NCEP–NCAR Reanalysis through the NOAA/ESRL.(b)The AO Index,an Arctic wide index low pressure in its positive phase,and the AD,during early summer months.The negative phase of the AD pattern is often associated with higher pressure in the Beaufort Sea.Note the recent presence of negative AD values in June and July 2015(b and c)(updated from Overland and Wang 2005).Note also that some authors define the dipole with the opposite sign(e.g.,Wu et al.,2006).

    The increased Beaufort high and AD patterns since 2007 are also connected with unprecedented higher pressure systems across Greenland and the North Atlantic Arctic sector in one large positive hemispheric SLP anomaly pattern(Overland et al.,2012;Belleflamme et al.,2015;Bezeau et al.,2015;Petrie et al.,2015).Whether this shift in atmospheric pressure and wind patterns is tied to AA is unknown,but its persistence is noted relative to more strictly interannual variability before 2007(Fig.7b and c).This provides further evidence that Alaskan Arctic changes are tied to large-scale Arctic-centric changes.

    In summary,the Alaskan Arctic has participated in the Arctic-wide AA driven by increases in GHGs and amplified by regional,Arctic-specific feedback processes.Persistent higher than normal surface pressures in the Pacific Arctic influenced by the anomalous occurrence of the summer Beaufort high pressure system have increased easterly winds in the region and contributed to ocean circulation changes and sea-ice loss.

    4.Decadal future projections

    The AA of SAT is projected to continue through the 21st century(Fig.8)according to CMIP5 climate models,which formed the basis for IPCC AR5(Overland et al.,2014b).Because CO2 remains in the atmosphere for many decades,the GHG contribution from the previous decades and projected emissions for the next two decades lead to a model-estimated,Arctic-wide October–March SAT increase of+4°C by 2040.Beyond 2050,the SAT depends on which GHG emissions scenario is chosen for the projection.The red curves for summer and winter periods give the high CO2 business-as-usual emissions scenario,referred to as RCP8.5,according to IPCC AR5(IPCC,2013).The blue curves provide the change in SAT based on the aggressive but not extreme GHG mitigation scenario,RCP4.5.

    Fig.8.Future Arctic-wide SAT increases for a business-as-usual increase in CO2emissions(RCP8.5,red)and for a modest(RCP4.5,blue)CO2mitigation scenario.

    According to the CMIP5 models,sea-ice loss for the Alaskan Arctic is projected to continue over the next decades.The important change is the increase in the number of seaice-free months(Fig.9).The duration of months with openwater conditions generally decreases with northerly latitude.A rough change estimate at 74°N is from three months of open water in 2010 to five months by 2040(Wang and Overland,2015,updated).These average changes are based on GHG increases;actual sea-ice loss is projected to continue to have a large year-to-year component due to variations in weather patterns.It will be difficult for the open-water duration to extend much later than November due to seasonal darkness,or occur earlier in spring due to solar reflection off of snow and sea-ice cover;thus,the future duration of Alaskan sea-ice-free duration will be limited by the winter atmospheric climatology.

    5.Recent changes in the North Pacific

    After more than a decade-and-a-half of both positive and negative SSTs and associated weather patterns in the central and eastern North Pacific Ocean,there is evidence of multi-month persistent positive ocean temperature anomaly patterns since 2013.These consist of near-record positive SST anomalies centered near(45°N,145°W)during 2013,labeled the “blob”by Bond et al.(2015),and the return of the positive Pacific Decadal Oscillation(PDO)climate pattern in 2015,with SST maxima near the northeastern North Pacific coast.Persistent,above-average geopotential heights in the mid-level atmosphere during 2012–15 associated with warmer air temperatures,which steer the prevailing wind direction more from the south and transport heat towards the north over the central and eastern North Pacific,have resulted in what has been referred to as the Ridiculously Resistant Ridge(RRR)of high pressure(e.g.Fig.10b).

    Beginning in late autumn 2014,Alaska experienced record positive temperature anomalies associated with the RRR orientation of mid-tropospheric geopotential heights over the west coast of North America,and a positive PDO with above-average lower tropospheric air temperatures,situated polewards from the southern Alaskan coast(Fig.10a and b).Winds flow clockwise around high geopotential height centers(parallel to contours),thus directing the air flow from the North Pacific northwards across Alaska to the Alaskan Arctic region.The PDO index supports this wind pattern and is strongly positive(>+1.0)beginning September 2014 and decreased into 2017(Fig.11).

    Winter 2015–16 continued the warm pattern,with widespread Alaskan temperature anomalies of+5°C(Walsh et al.,2017).The 700-hPa geopotential height pattern is similar to 2015,as shown in Fig.10,but the low geopotential height Aleutian low center is more dominant than the coastal ridge feature.Loss of snow cover and decreased land surface albedo in southern Alaska added to the persistence of positive near-surface air temperature anomalies(Walsh et al.,2017).El Ni?no conditions,as well as warm North Pacific SSTs,continue for winter 2015–16.Previous research suggests warm temperature anomalies in the Alaskan marine Arctic during El Ni?no often result in diminished Beaufort and Chukchi ice cover(Papineau,2001;Liu et al.,2004;Bond and Harrison,2006).Walsh et al.(2017)also estimated that about 20%of the 2015–16 Alaska warm temperature anomalies(about+1°C)was due to global warming,as projected by CMIP5 models.

    Fig.9.Annual duration of sea-ice cover averaged over the period 1990–2014 (left) based on satellite data. Right: change(relative to 1990–2014)in annual sea-ice duration by the middle of the century(2030–44)based on seven CMIP5 model means under the RCP8.5 emissions scenario.Figures are adapted from Wang et al.(2017)with modification.The subset of CIMP5 models were selected by matching the monthly sea-ice extent and magnitude of the seasonal cycle.See Wang and Overland(2015)and Wang et al.(2017)for more information.

    Fig.10.September 2014 through July 2015 925-hPa air temperature anomalies over western North America(a),and corresponding anomalies in 700-hPa geopotential height(b);anomalous winds follow the contours with a southerly wind component over the Gulf of Alaska.Anomaly maps are presented with respect to the 1981–2010 climatological values.Data are from the NCEP–NCAR Reanalysis through NOAA/ESRL.

    Fig.11.The PDO index time series from 1900–2016.Positive values correlate with elevated SST in the Gulf of Alaska.The PDO index is obtained from http://research.jisao.washington.edu/pdo/PDO.latest.

    Autumn 2016 marked the end of warm northeast Pacific SSTs,with a return to more zonal 700-hPa wind flow and with the Aleutian low feature moving northwest spanning northeastern Siberia and the Sea of Okhotsk with above normal temperatures confined to the Chukchi Sea and the Alaskan Arctic(Figs.12a and b).

    Newman et al.(2016)discusses causal contributions to North Pacific SSTs and the PDO and concludes there is a combination of tropical forcing,North Pacific Ocean memory,and interannual chaotic atmospheric variability.North Pacific atmospheric processes have a long-memory stochastic(random)character(Overland et al.,2006),rejecting purely cyclic predictions.

    Despite a shift towards a weak La Ni?na,autumn 2016 showed some evidence that the PDO might continue to be neutral or weakly positive based on persistence,and there is some evidence for warm subsurface ocean temperature anomalies(Zhang and Delworth,2015).Yet,strong zonal atmospheric flow(Fig.12b)is the primary reason for the termination of the North Pacific contribution to Alaskan Arctic warming.Baxter and Nigam(2015)show that notable climate anomalies in the Pacific–North American sector can be caused by such internal variability of regional atmospheric patterns,and need not originate from the tropics or local surface forcing.The future for the Alaskan marine Arctic primarily involves continued warm temperatures based on AA with occasional midlatitude support.

    6.Summary

    Fig.12.925-hPa air temperature anomalies over western North America(a),and corresponding 700-hPa geopotential height(b)for autumn 2016.Anomaly maps are presented with respect to the 1981–2010 climatological values.Data are from the NCEP–NCAR Reanalysis through NOAA/ESRL.

    One should note that future air temperature increases are likely to manifest as considerable year-to-year extremes based on internal random variability of the atmosphere added to long-term GHG-induced trends,rather than the smooth projections shown in Fig.8.Extreme Arctic temperature events,as a combination of anthropogenically forced temperature increases combined with natural variability,will become common,exceeding previous thresholds.Such an event occurred with+4°C temperature anomalies for Alaska in November–December 2014 and+5°C January–April 2016,related to recent warm Pacific SSTs.Breaking the string of cold,southern Bering Sea temperature anomalies and mostly negative PDO years from 2006–13,recent years show interaction of the Beaufort and Chukchi Seas with the subarctic.Regional warm temperature anomalies associated with loss of sea ice and snow for the Alaskan Arctic have been supplemented by southerly air flow in addition to the monotonic AA signal.This North Pacific SST connection broke down in autumn 2016 due to internal atmospheric variability that manifested as strong zonal winds.

    For the foreseeable future(out to 2040),continuing rapid environmental changes in Alaskan Arctic seas,land,atmosphere and sea ice are likely,and the appropriate response is to plan for adaptation to meet these mean and extreme-event changes.Arctic and global climate changes will continue to propagate throughout the biological ecosystem through shifts in winds and air temperatures,sea-ice loss,ocean circulation and stratification changes,and permafrost melt,with impacts on societal systems.

    Acknowledgements.The work was supported by the NOAA Arctic Research Project of the Climate Program Office.Datafields from the NCEP–NCAR Reanalysis are available as images provided by the NOAA/ESRL Physical Sciences Division,Boulder,Colorado from their website at http://www.esrl.noaa.gov/psd/.This publication was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under the NOAA Cooperative Agreement NA10OAR4320148,contribution number 2016-01-40.PMEL contribution number:4535.

    Ballinger,T.J.,and S.C.Sheridan,2014:Associations between circulation pattern frequencies and sea ice minima in the western Arctic.International Journal of Climatology,34,1385–1394,https://doi.org/10.1002/joc.3767.

    Ballinger,T.J.,and J.C.Rogers,2014:Climatic and atmospheric teleconnection indices and western Arctic sea ice variability.Physical Geography,35,459–477,https://doi.org/10.1080/02723646.2014.949338.

    Ballinger,T.J.,S.C.Sheridan,and E.Hanna,2014:Resolving the Beaufort Sea High using synoptic climatological methods.International Journal of Climatology,34,3312–3319,https://doi.org/10.1002/joc.3907.

    Baxter,S.,and S.Nigam,2015:Key role of the North Pacific Oscillation-West Pacific Pattern in generating the extreme 2013/14 North American winter.J.Climate,28,8109–8117,https://doi.org/10.1175/JCLI-D-14-00726.1.

    Belleflamme,A.,X.Fettweis,and M.Erpicum,2015:Recent summer Arctic atmospheric circulation anomalies in a historical perspective.The Cryosphere,9,53–64,https://doi.org/10.5194/tc-9-53-2015.

    Bezeau,P.,M.Sharp,and G.Gascon,2015:Variability in summer anticyclonic circulation over the Canadian Arctic Archipelago and west Greenland in the late 20th/early 21st centuries and its effect on glacier mass balance.International Journal of Climatology,35,540–557,https://doi.org/10.1002/joc.4000.

    Bond,N.A.,and D.E.Harrison,2006:ENSO’s effect on Alaska during opposite phases of the Arctic Oscillation.International Journal of Climatology,26,1821–1841,https://doi.org/10.1002/joc.1339.

    Bond,N.A.,M.F.Cronin,H.Freeland,and N.Mantua,2015:Causes and impacts of the 2014 warm anomaly in the NE Pacific.Geophys.Res.Lett.,42,3414–3420,https://doi.org/10.1002/2015GL063306.

    Cassano,E.N.,J.M.Glisan,J.J.Cassano,W.J.Gutowski Jr.,and M.W.Seefeldt,2015:Self-organizing map analysis of widespread temperature extremes in Alaska and Canada.Climate Research,62,199–218,https://doi.org/10.3354/cr01274.

    Holland,M.M.,and C.M.Bitz,2003:Polar amplification of climate change in coupled models.Climate Dyn.,21,221–232,https://doi.org/10.1007/s00382-003-0332-6.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Groupito the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker,T.F.,D.Qin,G.-K.Plattner,M.Tignor,S.K.Allen,J.Boschung,A.Nauels,Y.Xia,V.Bex and P.M.Midgley(eds.)].Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,1535 pp.

    Liu,J.P.,J.A.Curry,and Y.Y.Hu,2004:Recent Arctic sea ice variability:Connections to the Arctic Oscillation and the ENSO.Geophys.Res.Lett.,31,L09211,https://doi.org/10.1029/2004GL019858.

    Makshtas,A.P.,I.I.Bolshakova,R.M.Gun,O.L.Jukova,N.E.Ivanov,and S.V.Shutilin,2011:Climate of the hydrometeorological observatory Tiksi region.Meteorological and Geophysical Investigations,M.Paulsen,Ed.,49–74.

    Newman,M.,and Coauthors,2016:The Pacific decadal oscillation,revisited.J.Climate,29,4399–4427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    Overland,J.E.,and M.Y.Wang,2005:The third Arctic climate pattern:1930s and early 2000s.Geophys.Res.Lett.,32,L23808,https://doi.org/10.1029/2005GL024254.

    Overland,J.E.,D.B.Percival,and H.O.Mofjeld,2006:Regime shifts and red noise in the North Pacific.Deep Sea Research Part I,53,582–588,https://doi.org/10.1016/j.dsr.2005.12.011.

    Overland,J.E.,J.A.Francis,E.Hanna,and M.Y.Wang,2012:The recent shift in early summer arctic atmospheric circulation.Geophys.Res.Lett.,39,L19804,https://doi.org/10.1029/2012GL053268.

    Overland,J.E.,J.Wang,R.S.Pickart,and M.Y.Wang,2014a:Recent and future changes in the meteorology of the Pacific Arctic.The Pacific Arctic Region,J.Grebmeier and W.Maslowski,Eds.,Springer,Dordrecht,17–30,https://doi.org/10.1007/978-94-017-8863-22.

    Overland,J.E.,M.Y.Wang,J.E.Walsh,and J.C.Stroeve,2014b:Future Arctic climate changes:Adaptation and mitigation time scales.Earth’s Future,2,68–74,https://doi.org/10.1002/2013EF000162.

    Papineau,J.M.,2001:Wintertime temperature anomalies in Alaska correlated with ENSO and PDO.International Journal of Climatology,21,1577–1592,https://doi.org/10.1002/joc.686.

    Petrie,R.E.,L.C.Shaffrey,and R.T.Sutton,2015:Atmospheric response in summer linked to recent Arctic sea ice loss.Quart.J.Roy.Meteor.Soc.,141,2070–2076,https://doi.org/10.1002/qj.2502.

    Pithan,F.,and T.Mauritsen,2014:Arctic amplification dominated by temperature feedbacks in contemporary climate models.Nature Geoscience,7,181–184,https://doi.org/10.1038/ngeo2071.

    Serreze,M.C.,and R.G.Barry,2011:Processes and impacts of Arctic amplification:A research synthesis.Global and Planetary Change,77,85–96,https://doi.org/10.1016/j.gloplacha.2011.03.004.

    Stroeve,J.C.,M.C.Serreze,M.M.Holland,J.E.Kay,J.Maslanik,and A.P.Barrett,2012:The Arctic’s rapidly shrinking sea ice cover:A research synthesis.Climatic Change,110,1005–1027,https://doi.org/10.1007/s10584-011-0101-1.

    Walsh,J.,P.A.Bieniek,B.Brettschneider,E.S.Euskirchen,R.Lader,and R.L.Thoman,2017:The exceptionally warm winter of 2015/16 in Alaska.J.Climate,30,2069–2088,https://doi.org/10.1175/JCLI-D-16-0473.1.

    Wang,J.,J.L.Zhang,E.Watanabe,M.Ikeda,K.Mizobata,J.E.Walsh,X.Z.Bai,and B.Y.Wu,2009:Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?Geophys.Res.Lett.,36,L05706,https://doi.org/10.1029/2008GL036706.

    Wang,J.,and Coauthors,2014:Abrupt climate changes and emerging ice-ocean processes in the Pacific Arctic region and the Bering Sea.The Pacific Arctic Region,J.Grebmeier and W.Maslowski,Eds.,Springer,65–99,https://doi.org/10.1007/978-94-017-8863-24.

    Wang,M.Y.,and J.E.Overland,2015:Projected future duration of the sea-ice-free season in the Alaskan Arctic.Progress in Oceanography,136,50–59,https://doi.org/10.1016/j.pocean.2015.01.001.

    Wang,M.,Q.Yang,J.E.Overland,and P.Stabeno,2017:Seaice Evolution in the Pacific Arctic:the present to mid-century by selected CMIP5 models.Deep Sea Research Part II.(in press).

    Wassmann,P.,2015:Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean.Progress in Oceanography,139,1–12,https://doi.org/10.1016/j.pocean.2015.08.004.

    Wood,K.R.,J.E.Overland,S.A.Salo,N.A.Bond,W.J.Williams,and X.Q.Dong,2013:Is there a “new normal”climate in the Beaufort Sea? Polar Research,32,19552,https://doi.org/10.3402/polar.v32i0.19552.

    Wu,B.Y.,J.Wang,and J.E.Walsh,2006:Dipole anomaly in the winter arctic atmosphere and its association with sea ice motion.J.Climate,19,210–225,https://doi.org/10.1175/JCLI3619.1.

    Zhang,L.P.,and T.L.Delworth,2015:Analysis of the characteristics and mechanisms of the pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory.J.Climate,28,7678–7701,https://doi.org/10.1175/JCLI-D-14-00647.1.

    29 January 2017;revised 15 July 2017;accepted 3 August 2017)

    :Overland,J.E.,M.Wang,and T.J.Ballinger,2018:Recent increased warming of the Alaskan marine Arctic due to midlatitude linkages.Adv.Atmos.Sci.,35(1),75–84,https://doi.org/10.1007/s00376-017-7026-1.

    ?Corresponding author:James E.OVERLAND

    Email:james.e.overland@noaa.gov

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany 2018

    日本熟妇午夜| 全区人妻精品视频| 免费av不卡在线播放| 婷婷精品国产亚洲av| 国产毛片a区久久久久| 中国美白少妇内射xxxbb| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 干丝袜人妻中文字幕| 久久久国产成人精品二区| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| 欧洲精品卡2卡3卡4卡5卡区| 小蜜桃在线观看免费完整版高清| 少妇的逼水好多| 免费看光身美女| 你懂的网址亚洲精品在线观看 | 天天躁夜夜躁狠狠久久av| 无遮挡黄片免费观看| 欧美一区二区精品小视频在线| 久久精品人妻少妇| 丰满人妻一区二区三区视频av| 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 久久午夜亚洲精品久久| 国产日本99.免费观看| 亚洲国产精品久久男人天堂| 亚洲丝袜综合中文字幕| 亚洲经典国产精华液单| 久久久久久九九精品二区国产| 少妇人妻一区二区三区视频| 国产精品亚洲美女久久久| 91在线观看av| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 亚洲av.av天堂| 国产伦精品一区二区三区视频9| 在线播放国产精品三级| 精品一区二区三区人妻视频| 一个人看的www免费观看视频| 伦精品一区二区三区| 日本在线视频免费播放| 一区二区三区免费毛片| 婷婷色综合大香蕉| 成人av一区二区三区在线看| 成人亚洲精品av一区二区| 久久午夜亚洲精品久久| 国产av不卡久久| 国产精品久久久久久亚洲av鲁大| 国产高清不卡午夜福利| 18+在线观看网站| 免费在线观看成人毛片| 丰满乱子伦码专区| 99久久久亚洲精品蜜臀av| 欧美+日韩+精品| 久久精品国产鲁丝片午夜精品| 日韩欧美精品免费久久| 成人漫画全彩无遮挡| 丰满的人妻完整版| 久久人人精品亚洲av| 亚洲成人久久性| 三级经典国产精品| 麻豆一二三区av精品| 99热这里只有是精品50| 欧洲精品卡2卡3卡4卡5卡区| 老司机午夜福利在线观看视频| 日本欧美国产在线视频| 别揉我奶头 嗯啊视频| 青春草视频在线免费观看| 欧美绝顶高潮抽搐喷水| 波多野结衣高清无吗| 亚洲欧美成人综合另类久久久 | 成人无遮挡网站| 亚洲国产精品成人久久小说 | 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 99热全是精品| 国产av一区在线观看免费| 小蜜桃在线观看免费完整版高清| 亚洲,欧美,日韩| av福利片在线观看| av国产免费在线观看| АⅤ资源中文在线天堂| 一区二区三区免费毛片| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 午夜福利18| 欧美日韩乱码在线| 在线播放国产精品三级| 日韩精品中文字幕看吧| av天堂在线播放| 丰满人妻一区二区三区视频av| 午夜亚洲福利在线播放| 精品欧美国产一区二区三| 桃色一区二区三区在线观看| 真人做人爱边吃奶动态| 国产极品精品免费视频能看的| 亚洲精品成人久久久久久| 男女边吃奶边做爰视频| 国产亚洲精品久久久com| 久久久国产成人精品二区| 国内精品久久久久精免费| 内射极品少妇av片p| 老熟妇仑乱视频hdxx| 亚洲精品日韩av片在线观看| 淫秽高清视频在线观看| 久久国内精品自在自线图片| 成年av动漫网址| 国产在线男女| 男人舔奶头视频| 成人国产麻豆网| 长腿黑丝高跟| 免费观看的影片在线观看| 成年av动漫网址| 国产亚洲精品综合一区在线观看| 中文亚洲av片在线观看爽| 欧美日韩精品成人综合77777| 成年女人永久免费观看视频| 男人和女人高潮做爰伦理| 欧美成人精品欧美一级黄| 日韩欧美在线乱码| 欧美日韩国产亚洲二区| 国产极品精品免费视频能看的| 亚洲欧美日韩无卡精品| АⅤ资源中文在线天堂| 高清毛片免费观看视频网站| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 国产欧美日韩精品一区二区| 一级黄色大片毛片| 欧美bdsm另类| 亚洲熟妇熟女久久| 一区二区三区四区激情视频 | 大型黄色视频在线免费观看| 国产男人的电影天堂91| 搡老妇女老女人老熟妇| 国产人妻一区二区三区在| 欧美xxxx性猛交bbbb| 久久人妻av系列| 伊人久久精品亚洲午夜| 亚洲精品亚洲一区二区| 一进一出抽搐gif免费好疼| 久久99热这里只有精品18| 十八禁网站免费在线| 毛片一级片免费看久久久久| 蜜桃亚洲精品一区二区三区| 免费av观看视频| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| 免费大片18禁| 99热这里只有是精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产成人freesex在线 | 搡女人真爽免费视频火全软件 | 三级毛片av免费| 真实男女啪啪啪动态图| 精品不卡国产一区二区三区| av在线蜜桃| 国产私拍福利视频在线观看| 99热全是精品| 免费观看在线日韩| 日本免费a在线| 人妻少妇偷人精品九色| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看| 黄片wwwwww| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 国产高潮美女av| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 亚洲乱码一区二区免费版| 长腿黑丝高跟| 久久精品国产自在天天线| 亚洲国产欧美人成| 中国国产av一级| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 中文亚洲av片在线观看爽| 亚洲欧美成人综合另类久久久 | av视频在线观看入口| 亚洲av成人精品一区久久| 成年av动漫网址| 国产精品1区2区在线观看.| 黄色欧美视频在线观看| 人妻丰满熟妇av一区二区三区| 久久人妻av系列| aaaaa片日本免费| 老司机影院成人| 69人妻影院| 欧美zozozo另类| 日韩欧美精品免费久久| 亚洲va在线va天堂va国产| 麻豆国产av国片精品| 一级av片app| 久久精品国产鲁丝片午夜精品| 国产成人福利小说| 在线观看美女被高潮喷水网站| 简卡轻食公司| 一本精品99久久精品77| 亚洲人成网站在线观看播放| 少妇高潮的动态图| 神马国产精品三级电影在线观看| 此物有八面人人有两片| 美女免费视频网站| 国产高清视频在线观看网站| а√天堂www在线а√下载| 午夜精品在线福利| 别揉我奶头 嗯啊视频| 国产色爽女视频免费观看| 国产精品亚洲美女久久久| 日韩一区二区视频免费看| 午夜日韩欧美国产| 免费av不卡在线播放| 日本成人三级电影网站| 麻豆久久精品国产亚洲av| 一区福利在线观看| 床上黄色一级片| 中文字幕熟女人妻在线| av在线天堂中文字幕| 97在线视频观看| 露出奶头的视频| 在线观看午夜福利视频| 国产黄色视频一区二区在线观看 | 国产91av在线免费观看| 观看免费一级毛片| 在线观看av片永久免费下载| 久久久久久久久大av| 乱系列少妇在线播放| 成人欧美大片| 精品一区二区三区人妻视频| 亚洲综合色惰| 99久久精品国产国产毛片| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区免费观看 | 俄罗斯特黄特色一大片| 大又大粗又爽又黄少妇毛片口| 午夜福利高清视频| 我要看日韩黄色一级片| 麻豆精品久久久久久蜜桃| 国产又黄又爽又无遮挡在线| 成人特级黄色片久久久久久久| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 精品一区二区三区人妻视频| 亚洲内射少妇av| 在现免费观看毛片| 18+在线观看网站| 久久热精品热| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 午夜免费男女啪啪视频观看 | 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 在线免费观看的www视频| 男人的好看免费观看在线视频| 在线播放国产精品三级| 中文资源天堂在线| 插逼视频在线观看| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 日韩大尺度精品在线看网址| 中文字幕av成人在线电影| 有码 亚洲区| 91久久精品国产一区二区成人| 亚洲av不卡在线观看| 在线观看66精品国产| 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 性欧美人与动物交配| 白带黄色成豆腐渣| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 日韩欧美国产在线观看| 欧美激情久久久久久爽电影| 香蕉av资源在线| 国产成年人精品一区二区| 简卡轻食公司| 欧美人与善性xxx| 国产一区二区三区av在线 | 能在线免费观看的黄片| 身体一侧抽搐| 精品欧美国产一区二区三| 亚洲经典国产精华液单| 狠狠狠狠99中文字幕| 午夜日韩欧美国产| 久久久久久大精品| 亚洲中文日韩欧美视频| 国产男人的电影天堂91| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| a级毛色黄片| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 一个人看的www免费观看视频| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 色哟哟·www| 国产色爽女视频免费观看| 久久这里只有精品中国| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 亚洲高清免费不卡视频| 在线播放无遮挡| 国产精品久久久久久久电影| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 国产亚洲欧美98| 国产成人freesex在线 | 日韩成人av中文字幕在线观看 | 一个人观看的视频www高清免费观看| 欧美中文日本在线观看视频| 看免费成人av毛片| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 精品一区二区三区视频在线观看免费| 18禁在线播放成人免费| 国产久久久一区二区三区| 国产视频一区二区在线看| 色哟哟·www| 免费黄网站久久成人精品| 婷婷精品国产亚洲av| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 内射极品少妇av片p| 美女黄网站色视频| 亚洲欧美中文字幕日韩二区| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 91久久精品国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 欧美绝顶高潮抽搐喷水| 五月伊人婷婷丁香| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 黄色一级大片看看| 床上黄色一级片| 国产91av在线免费观看| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| av在线亚洲专区| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 一本精品99久久精品77| 午夜福利在线观看免费完整高清在 | 日韩精品中文字幕看吧| 国产一区亚洲一区在线观看| 99热全是精品| 熟女电影av网| 亚洲七黄色美女视频| 中文在线观看免费www的网站| 日韩欧美精品v在线| 亚洲成人久久爱视频| 看十八女毛片水多多多| 亚州av有码| 欧美中文日本在线观看视频| 91久久精品电影网| 亚洲婷婷狠狠爱综合网| 欧美日本视频| 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看 | 你懂的网址亚洲精品在线观看 | 成人高潮视频无遮挡免费网站| avwww免费| 99久国产av精品国产电影| a级一级毛片免费在线观看| 男人舔奶头视频| 久久久久国内视频| 日韩,欧美,国产一区二区三区 | 一本精品99久久精品77| 欧美日韩在线观看h| 日韩av在线大香蕉| 久久久欧美国产精品| 深夜a级毛片| 亚洲七黄色美女视频| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 欧美一区二区精品小视频在线| 亚洲精品一区av在线观看| 久久久久国内视频| 99久久九九国产精品国产免费| 嫩草影院精品99| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 又黄又爽又免费观看的视频| 色综合站精品国产| 99热这里只有精品一区| 日日啪夜夜撸| 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 免费高清视频大片| 99热这里只有精品一区| 最好的美女福利视频网| 免费观看的影片在线观看| 欧美激情久久久久久爽电影| 亚洲最大成人av| 精品国内亚洲2022精品成人| 少妇丰满av| 少妇人妻精品综合一区二区 | 亚洲人成网站高清观看| 一区福利在线观看| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 午夜免费激情av| 国内精品一区二区在线观看| 中国国产av一级| 欧美潮喷喷水| 亚洲18禁久久av| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 12—13女人毛片做爰片一| 少妇人妻精品综合一区二区 | 色吧在线观看| 看片在线看免费视频| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 色哟哟哟哟哟哟| 一级黄片播放器| 亚洲成人精品中文字幕电影| 久久精品国产鲁丝片午夜精品| 亚洲自偷自拍三级| 在线播放无遮挡| 久久6这里有精品| 欧美+日韩+精品| 一夜夜www| 在线a可以看的网站| 毛片女人毛片| 两个人的视频大全免费| 久久久国产成人精品二区| 国产高清激情床上av| 乱系列少妇在线播放| 午夜福利视频1000在线观看| 日韩欧美在线乱码| 变态另类丝袜制服| 免费人成在线观看视频色| 国产精品人妻久久久影院| 国产av一区在线观看免费| 亚洲美女黄片视频| 国产亚洲欧美98| 大型黄色视频在线免费观看| 最近在线观看免费完整版| 高清午夜精品一区二区三区 | av在线播放精品| 尾随美女入室| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 国产麻豆成人av免费视频| 国产极品精品免费视频能看的| 禁无遮挡网站| ponron亚洲| 美女高潮的动态| 久久亚洲精品不卡| 国产色婷婷99| 深爱激情五月婷婷| 欧美区成人在线视频| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 成人美女网站在线观看视频| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 亚洲精品国产成人久久av| 人妻丰满熟妇av一区二区三区| 一个人看的www免费观看视频| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 3wmmmm亚洲av在线观看| 啦啦啦啦在线视频资源| 18禁黄网站禁片免费观看直播| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 毛片一级片免费看久久久久| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 亚洲在线观看片| 99热网站在线观看| 午夜福利成人在线免费观看| 久久精品国产自在天天线| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 色视频www国产| 婷婷精品国产亚洲av在线| 热99re8久久精品国产| 国产乱人视频| 少妇丰满av| 国产片特级美女逼逼视频| 国产亚洲精品久久久久久毛片| 亚洲va在线va天堂va国产| 亚洲专区国产一区二区| 国产精品久久久久久av不卡| 久久久久久久久久成人| 中国国产av一级| 亚洲欧美成人精品一区二区| 黄色视频,在线免费观看| 国产亚洲精品av在线| 黄色视频,在线免费观看| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 国产免费男女视频| 欧美激情在线99| 99久久九九国产精品国产免费| 亚洲高清免费不卡视频| 欧美区成人在线视频| 日本一二三区视频观看| 精品一区二区三区人妻视频| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 精品国产三级普通话版| 老师上课跳d突然被开到最大视频| 深夜精品福利| 亚洲av不卡在线观看| 搡女人真爽免费视频火全软件 | 国产高清视频在线播放一区| 一卡2卡三卡四卡精品乱码亚洲| АⅤ资源中文在线天堂| 中国美白少妇内射xxxbb| 男人的好看免费观看在线视频| 午夜福利18| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩卡通动漫| 我的老师免费观看完整版| 成熟少妇高潮喷水视频| 亚洲熟妇熟女久久| 亚洲经典国产精华液单| 久久精品国产亚洲网站| 日韩制服骚丝袜av| 成人综合一区亚洲| 夜夜爽天天搞| 蜜臀久久99精品久久宅男| 国产在视频线在精品| 偷拍熟女少妇极品色| 国产一级毛片七仙女欲春2| 欧美成人免费av一区二区三区| 九色成人免费人妻av| 黄色一级大片看看| 中文字幕精品亚洲无线码一区| 99久久中文字幕三级久久日本| 国产精品99久久久久久久久| 久久久国产成人免费| 男人舔女人下体高潮全视频| 国产精品野战在线观看| videossex国产| 亚洲自拍偷在线| 亚洲三级黄色毛片| 亚洲aⅴ乱码一区二区在线播放| 日韩av不卡免费在线播放| 乱码一卡2卡4卡精品| 嫩草影院新地址| 日韩人妻高清精品专区| 日本在线视频免费播放| 噜噜噜噜噜久久久久久91| 成人特级黄色片久久久久久久| 亚洲欧美精品综合久久99| 国产国拍精品亚洲av在线观看| 婷婷亚洲欧美| 51国产日韩欧美| 日韩欧美一区二区三区在线观看| 在线播放无遮挡| 精品欧美国产一区二区三| 搡女人真爽免费视频火全软件 | 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 成人二区视频| 久久精品综合一区二区三区| 国产熟女欧美一区二区| 国产精品伦人一区二区| 久久精品综合一区二区三区| 夜夜看夜夜爽夜夜摸| 校园春色视频在线观看| 变态另类丝袜制服| 在线观看免费视频日本深夜| 99久国产av精品| or卡值多少钱| 精品一区二区三区人妻视频| 久久精品国产亚洲av天美| 亚洲性夜色夜夜综合| 12—13女人毛片做爰片一| 又爽又黄a免费视频| а√天堂www在线а√下载| 一区二区三区高清视频在线| 亚洲天堂国产精品一区在线| 成人午夜高清在线视频| 亚洲精品一区av在线观看|