• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙原子分子激發(fā)態(tài)勢能的自旋相關(guān)局域Hartree-Fock密度泛函理論方法

    2020-03-11 02:55:22周忠源
    關(guān)鍵詞:喬治亞州激發(fā)態(tài)局域

    周忠源

    (喬治亞州大學(xué)系統(tǒng)董事會研究與政策分析局,美國)

    1 Introduction

    Density functional theoretical(DFT)method[1,2]has been widely applied to many areas in theoretical physics and chemistry[3,4]due to its computational simplicity in dealing with systems with a large number of electrons.The basis of the DFT method is Kohn-Sham(KS)equation[2]together with the key part of exchange-correlation(XC)potential[5].Traditional XC potentials,such as local density approximation(LDA)[3,4]and generalized gradient approximation(GGA)[6-8],are obtained by using uniform electron gas.They cannot be directly applied to the calculation of excited -state energy,especially highly excited-state energy,because of two reasons:(1)Only a few bound unoccupied states and no Rydberg states are predicted when using these potentials because they fall off too fast and do not have correct asymptotic behavior;(2)The calculated energies of the excited states with different symmetries may have the same value because these potentials are independent of symmetries such as electron orbital angular momentum and spin.

    Actually,the eigenvalues of the KS equation are not rigorously the excited-state energies because the DFT method itself is a ground -state theory.However,the eigenvalues can serve as good zero-order excited -state energies provided a high-quality XCpotential is used in solving the KS equation.A number of theoretical methods have been developed along this direction.In particular,a DFT method[9,10]has been proposed based on a localized Hartree-Fock(LHF)exchange(X)potential.The LHF exchange potential is derived under the assumption that the X-only KS determinant is equal to the Hartree-Fock(HF)determinant.It only uses occupied orbitals and is dependent on the orbital symmetry.This method has been successfully applied to the ground -state calculations of atomic and molecular systems[9].

    Recently,we presented a spin -dependent localized Hartree-Fock(SLHF)DFT approach[11]for the calculation of highly and multiply excited states of atomic systems based on the LHF DFT method[9,10]and Slater's diagonal sum rule[12].In this approach,the exchange potential is an exactly nonvariational SLHF exchange potential obtained in a similar way as the LHF potential by assuming that for excited states the X-only KS determinant is also equal to the HF determinant.This approach has been successfully used to accurately calculate the energies of multiply excited states of valence electrons of atomic systems[11],inner-shell excited states of close-shell atomic systems[13],and inner-shell excited states of open-shell atomic systems[14].

    In this paper,we extend the SLHF DFT approach to molecular systems and apply the approach to the calculation of potential energies of excited states of diatomic molecular systemsand H2.Because diatomic molecules are cylindrically symmetric the KS equation is transformed to the form in prolate spheroidal coordinates,in which the singularities of electron -nuclei interaction potential at two nuclei are taken good care of.Due to the singularity at the origin and longrange nature of the Coulomb potential,we use the generalized pseudospectral(GPS)method[15]to discretize the spatial coordinates and optimize the solution of the KS equation.The total potential energies ofand H2obtained from the X-only SLHF DFT calculations are surprisingly close to those of the Exact and Hartree-Fock(HF)methods.The total potential energies from the XC SLHF DFT calculations are in overall agreement with the available theoretical results at equilibrium internuclear distance.The correlation potential and energy functionals of widely-used traditional approximations,such as Lee,Yang and Parr(LYP)[7]and Perdew and Wang(PW)[8],are explored.It is shown that the approximations underestimate the correlation energy at large internuclear distance.

    2 Theoretical methodology

    2.1 SLHF DFT approach for molecular systems

    The spin-orbitalφjσ(r)of an electron j with spin σ(σ=αfor spin-up and β for spin-down)is determined by Kohn-Sham(KS)equation(in a.u.)

    where,the local effective potential VSσ(r)=Vext(r)+VH(r)+Vxcσ(r)consists of three parts:external potential Vext(r),Coulomb electrostatic potential between electrons VH(r),and exchange-correlation potential Vxcσ(r).The total electron number of the molecule N=∑σNσ=Nα+Nβ.

    For a molecular system with M nuclei(Zi,Ri)(i=1,2,…,M),the external potential Vext(r)is given by

    The Coulomb electrostatic potential between electrons is given by

    where,the total electron densityρ(r)=ρα(r)+ρβ(r)and the spin -dependent electron density ρσ(r)is defined by

    hereνjσis occupied number of electron on the spin -orbitalφjσ(r).

    The exchange correlation potential Vxcσ(r)=Vxσ(r)+Vcσ(r)can be separated into exchange potential Vxσ(r)and correlation potential Vcσ(r).The exchange potential is the SLHF exchange potential given by[11]

    The exchange interaction only occurs among electrons with same spin.When(r)=0 in Eq.(5),the SLHF exchange potential downgrades to the Slater potential of the HF method[16].Because(r)in Eq.(7)depends on,the SLHF exchange potentialhas to be computed self-consistently.The SLHF exchange potential determined by Eqs.(5)-(9)has an arbitrary additive constant.This constant is computed by demanding the highest-occupied-spin-orbital Nσof spin σsatisfy[11]〈φNσσ||φNσσ〉=0.

    The correlation potential Vcσ(r)can be estimated from several approaches.In this work,a widelyused LYP correlation potential[7]is used.The feasibility and accuracy of correlation potentials from other approximations,such as PW correlation potential[8],are also explored.

    The single Slater determinant for a specific state of an Nσ-electron molecule can be constructed under the single determinant approximation byΦσ(r).The total energy is a sum of kinetic-energy Ek,external-field energy Eext,Hartree energy(Classical Coulomb energy)EH,exchange energy Ex,and correlation energy Ec.They are evaluated by

    and the correlation energy Ecis computed by using the LYP approximation[7].

    2.2 KS equation in prolate spheroidal coordinates for diatomic molecules

    For a diatomic molecule with two nuclei(Z1,R1)and(Z2,R2),the external potential Vext(r)given by Eq.(2)is reduced to

    This potential has two singularities at R1and R2.The diatomic molecule has a cylindrical symmetry.It can be very well represented in prolate spherical coordinates(η,θ,φ)(0 ≤η<∞,0 ≤θ<π,0 ≤φ<2π).Most importantly,the two singularities can be taken good are of.The relation between the prolate spherical coordinates and Cartesian coordinates(x,y,z)is x=a sin hηsinθcosφ,y=a sin hηsinθsinφ,z=a cos hηcosθ,a is constant.Due to the cylindrically symmetric property,the spin -orbitalφjσ(η,θ,φ)depends on the angleφthrough the function fm(φ)(m=0,±1,±2…)and thus can be written as

    The corresponding spin -dependent density(independent ofφ)is given by

    Here the quantum number m measures the component of angular momentum m?along the molecule axis.The orbital energy only depends on λ=|m|and thus is double degenerate(corresponding to m=±λ)except forλ=0.

    The orbitals are denoted byσ,π,δ,φ,… forλ=|m|=0,1,2,3,….For a homonuclear diatomic molecule the corresponding spin -orbitals are completely denoted byσg,σu,πg(shù),πu…,where the subscripts g(even parity)and u(odd parity)represent that the spin -orbital is either unchanged or merely changed in sign when an inversion is applied to the molecule with respect to the midpoint between the nuclei(the center of the molecule):φjσ(r)=φjσ(-r)orφjσ(r)=-φjσ(-r).In the prolate spheroidal coordinates the g orbitals and u orbitals satisfy respectively

    This condition is used to identify a specified orbital from the calculated spin-orbitals.

    The molecular states are denoted by similar symbols but capital letters.For molecules with the total orbital angular momentum Λ?around the symmetry axis,its states are denoted byΣ,Π,Δ,Φ,… for Λ=0,1,2,3,….Furthermore,there are two kind ofΣstates,Σ+and Σ-,corresponding to the wave function does(-)or does not(+)change sign on reflection in a plane passing through the nuclei.So the molecular states are denoted by,,Πg,Πu,Δg,Δu,Φg,Φuand so on.The state symbols are also prefixed by a multiplicity superscript2S+1 for the resultant spin S(S=0,1/2,1,3/2,…).For example,the ground-state and an excited-state electron configurations and molecular states of H2is1Σand 1σg1Π.For a diatomic molecule with internuclear distance R=2a,applying Eq.(15)to KS equation Eq.(1),one has

    where,the expansion of1/|r-r'|in term of the first kind of associated Legendre polynomialand the second kind of associated Legendre polynomialis used,r=(η,θ,φ),r′=(η',θ',φ'),η<=min(η,η')and η>=max(η,η'),dτηθ=a3(cosh2η-cos2θ)sinhηsinθdηdθand dr=dτ=dτηθdφ.

    From Eqs.(5)-(9),the exchange potential is computed by

    where,the Slater potential is given by

    The correlation potential Vcσ(η,θ)is estimated from the one given by LYP approximation[7].

    The boundary conditions for solving Eq.(18)for m=even and odd are given by

    and

    respectively.For both m=even and odd

    2.3 Total energy of the diatomic molecule

    From Eqs.(10)-(13),after obtained the 2D spin-orbitals,the total energy is computed by E=Ek+EH+Ex+Ec.Here the kinetic energy is

    and the correlation energy is estimated from the one given by LYP approximation[7].

    It is interesting to check the contributions from both Hartree energy and exchange energy to the selfinteraction energy.By setting n'm'σ'=n″m″σ″=nmσin Eq.(34)the contribution from Hartree energy is

    Similarly,by setting n'm'=n″m″=nm in Eq.(35)the contribution from the exchange energy equals to-SE.As a result,the contributions from Hartree energy and exchange energy completely cancel out each other.Thus SLHF DFT approach is completely selfinteraction free.

    3 Numerical algorithm and programming

    3.1 Generalized pseudospectral method

    On(-1 ≤x≤1,-1 ≤y≤1),a function F(x,y)is approximated by an Nx×Ny-order polynomial FNxNy(x,y)constructed by cardinal functions gi(x)and gj(y)

    where,F(xiàn)ij=F(xi,yj)=FNxNy(xi,yj).In the generalized Legendre-Gauss-Lobatto pseudospectral method,the cardinal function is given by

    where,PNzandare Legendre polynomial and its first derivative,respectively.The collocation points zk(k=0,1,…,Nz)are determined by(zk)=0 and gk(zk')=δkk'.

    To use the pseudospectral method above to solve Eq.(18),the spin -orbital is mapped from{(η,θ),0 ≤η<ηmax,0 ≤θ≤π)} to{(x,y),-1≤x≤1,-1 ≤y≤1 )} by using mapping functions

    where,xm=2L/ηmax.The mapping parameter L can be used to adjust the distribution of the collocation points and thus optimize the solution of the KS equation.

    3.2 Symmetric matrix eigenvalue equation

    To acquire a symmetric matrix eigenvalue equation we apply variational method to the one-electron energy functional under the boundary conditions Eqs.(29)-(31)instead of directly discretizing Eq.(18).From Eq.(1),using Eq.(15)and ?φin the prolate spheroidal coordinates,the one-electron energy functional is calculated by(we drop the subscripts of the state in this subsection for convenience)

    Using the variational method ?G(ψ)/?ψ*=0,the symmetric matrix eigenvalue equation is given by

    where,μ=e and o for m=even and odd,respectively.The coefficients for m=even and odd are listed in List 1.where

    List 1 The coefficients used in Eq.(46).

    Since all the Akk'coefficients is symmetric with respect to k?k',the coefficient matrix X and Y are symmetric.Using the eigenvectorχijobtained from the matrix eigenvalue equation(46),the electron orbitalψis calculated by

    3.3 Potential and energy

    In the matrix eigenvalue equation,the potential matrix elements Vij=vSσ(i,j)are calculated slefconsistently with eigenvectors χij.The external potential Eq.(20)is calculated by

    The classical Coulomb potential Eq.(21)is computed by

    where

    The exchange potential given by Eq.(22)is

    The total effective potential Eq.(19)is now computed by

    where,Vcσis correlation potential given by the LYP approximation[7].

    Once the eigenvectorsχijare obtained,the total energy of the molecular system is calculated by

    where,the kinetic energy Ek,external energy Eext,Hartree energy EH,exchange energy Exare calculated by

    respectively,and the correlation energy Ecis calculated by the LYPapproximation[7].In Eq.(64),Tnλσis calculated by

    where,the matrix elements used in Eq.(68)are listed in List 2.

    List 2 The matrix elements used in Eq.(68).

    4 Resultsand discussion

    4.1 Potential energy of

    4.1.1 Potentialenergy from‘Exact’ calculation

    Table 1 Potential energy of ground state and excited states from the‘Exact' and SLHF DFT calculations at R=2(a.u.).

    Table 1 Potential energy of ground state and excited states from the‘Exact' and SLHF DFT calculations at R=2(a.u.).

    4.1.2 Potentialenergy fromSLHFDFTcalculation

    In Fig.1,the potential energy curves from SLHF DFT calculations are plotted together with the‘Exact' results for some lower-lyingσstates.It is shown again that in the internuclear distances displayed the potential energy curves from SLHF DFT calculations are in very good agreement with the‘Exact' results.This conclusion also holds for other excited states such asπ,δ,φ,…,demonstrating that the SLHF DFT approach using the SLHF potential as exchange potential is very accurate and feasible in the calculation of the potential energies ofexcited states.

    Fig.1 Potential energies of ground state 1σgand excited states 1σu,2σgand 2σufrom the‘Exact' and SLHF DFT calculations.

    The SLHF DFT approach is as accurate as the‘Exact' method in the potential energy calculation is because the SLHF DFT approach is self-interaction free.To check this,we calculate various parts of the total potential energy for 1σgat R=2(a.u.).The results are given in Table 2.It is clearly shown that the total self-energy is zero because the contributions from the exchange energy and Hartree energy cancel out each other although none of them are zero.Thus the total potential energy is a sum of kinetic energy and external energy,which is just the results of the‘Exact' calculation.

    Table 2 Various parts of the total potential energy of 1σgat R=2(a.u.).

    Table 2 Various parts of the total potential energy of 1σgat R=2(a.u.).

    4.2 X-only potential energy of H2

    4.2.1 Groundstate

    H2is a simplest molecular system(with the equilibrium internuclear distance R≈1.4 a.u.)in which the electron correlation exists.A complete computation of the total potential energy should include the correlation energy.However,to explore the accuracy of the SLHF potential as exchange potential in DFT calculation of more than one electron molecular systems,we first perform X-only SLHF DFT calculation by neglecting the correlation effect and compare the results with those of Hartree-Fock(HF)method[18].To that end,we include every parts in the effective potential but correlation in the calculation of H2energy.The calculated results are listed in Table 3 together with those from HF method[18]for the ground state1Σof H2at different internuclear distances.It is shown that the results are in very good agreement with those of HF method for the given internuclear distances,demonstrating that the SLHF potential as an exchange potential is also very accurate in the DFT calculation of H2ground state.

    Table 3 The negative values of the X-only potential energies(in a.u.)for H2ground state Σat different internuclear distances.

    Table 3 The negative values of the X-only potential energies(in a.u.)for H2ground state Σat different internuclear distances.

    a:this work,b:HF method[18].

    4.2.2 Excitedstates

    Success of the SLHF DFT calculation of the ground state of H2and excited states of atomic systems[11,13,14]make it confident to extend the SLHF DFT approach to the calculation of X-only potential energies of H2excited states.Systematic and accurate potential energy curves of H2excited states are useful and helpful to basic theoretical research and experimental investigations.The potential energy depends on electron spin λ,electron symmetries(g,u),and total spin S=∑si.The calculated X-only potential energies of H2ground state 11Σand singly excited states1σg1σu1Σand3Σare shown in Fig.2.The ground state potential energy curve is very close to the results of HF method[18]at available internuclear distances,as shown in Table 1.The potential energy curve of 1σg1σu1Σis a weak bound -state potential energy curve which can only hold a very limited number of bound states.While the potential energy curve of 1σg1σu3Σis a repulsive potential that does not hold any bound state.

    In Fig.3,the X-only potential energy curves of H2singly excited states1σg2σg1Σand 1σg2σu1Σ and3Σare plotted.All the three are bound -state potential energy curves.The deeper potential energy curve is the one of 1σg2σg1Σand the shallower one is that of 1σg2σu1Σ.

    Fig.2 X-only potential energies of H2ground state 1Σand singly excited states 1σg1σu1Σ and3Σ.

    Fig.3 X-only potential energies of H2singly excitedstates1σg2σg1Σand 1σg2σu1Σ and 3Σ.

    The X-only potential energy curves of H2singly excited states 1σg1πu3Π and1Π,and 1σg1πg(shù)3Π and1Πare displayed in Fig.4.These potential energy curves are also bound -state potential energy curves.The potential energy curve of 1σg1πg(shù)3Π is very close to that of1σg1πg(shù)1Π.The deeper potential energy curve is the one of 1σg1πu3Πand the shallower one is that of 1σg1πg(shù)1Π.

    For higher singly excited states and doubly(or multiply)excited states,their potential energy curves are either very weak bound -state ones or repulsive ones.

    4.3 Total XC potential energy of H2

    Fig.4 X-only potential energies of H2singly excitedstates1σg1πu3Πand 1Π,and 1σg1πg(shù)3Πand 1Π.

    A complete calculation of the potential energy should include electron correlation energy.In this section,we take the correlation energy into account in the energy calculation and explore the accuracy of the traditional approximations of correlation energy.For this purpose,we incorporate the correlation potential and energy functionals given by LYPapproximation[7]into Eq.(62)and Eq.(63)to estimate the correlation potential and energy when solving the matrix eigenvalue equation Eq.(46).The calculated total XC potential energies of H2ground state11Σat different internuclear distances are given in Table 4 together with the results of variational method(VM)[19].It is shown that the total XC potential energies are overall in reasonable agreement with the VM results[19]at smaller and around equilibrium internuclear distances but deviate from the VM results at larger internuclear distances.This can be seen more clearly in Fig.5,where the potential energy curves from the XC SLHF DFT calculation and the VM calculation are plotted.

    Table 4 The negative values of the total XCpotential energies(in a.u.)for H2ground state 1 Σat different internuclear distances.

    Table 4 The negative values of the total XCpotential energies(in a.u.)for H2ground state 1 Σat different internuclear distances.

    a:this work,b:variational method[19].

    Fig.5 Potential energies of H2ground state 1 1Σ from the XC SLHF DFT approach and variational method[19].

    Obviously,the discrepancy of total potential energy between the XC SLHF DFT calculation and the VM calculation is due to the underestimation of the correlation energy from the LYP approximation at larger internuclear distances.This can be seen clearly from Table 5,where the contributions of exchange and correlation to the total potential energies from various approaches,in particular,the exact exchangecorrelation treatment(EET)with an orbital dependent exchange-correlation functional[20],are given at equilibrium and larger internuclear distances.It is shown that the exchange energies from the XC SLHF DFT calculation are overall close to those from the EET[20]at both equilibrium and larger internuclear distances.The correlation energies from both the traditional LYP[7]and PW[8]approximations are roughly close to those of EET at equilibrium internuclear distance but greatly underestimate the correlation at larger internuclear distance.Therefore an accurate approach for correlation energy at large internuclear distances is also indispensable to the calculation of excited-state potential energy curves of diatomic molecular systems.

    5 Conclusions

    We proposed an SLHF DFT approach for the excited-state potential energies of molecular systems by extending the SLHF DFT approach we developed for the excited -state energies of atomic systems.This approach is applied to the calculation of the groundstate and excited state potential energies of diatomic molecular systemsand H2.The diatomic molecular system is cylindrically symmetric and its potential has two singularities.To remove the numerical difficulty of singularities we first transform the KS equation to the form in the prolate spherical coordinates.Then we applied the generalized pseudospectral method to discretize the KS equation and optimize the solution of the KS equation.Finally we solve a symmetric matrix eigenvalue equation to obtain the electron spin-orbitals and energies as well as the total potential energies.For bothand H2,the calculated Xonly potential energies from the SLHF DFT approach are in very good agreement with those of the‘Exact'and HF methods.For H2,the total XC potential energies from the SLHF DFT approach are in reasonable agreement with those of the variational method at equilibrium and small internuclear distances,but big discrepancy occurs at large internuclear distances.The reason for the big discrepancy at large internuclear distances is the underestimation of the traditional approximations to the correlation energy.To reduce the discrepancy,an accurate approximation for correlation is essential.The exact exchange-correlation treatment recently developed based on the orbital dependent exchange-correlation functional seems promising.The feasibility and accuracy of this approximation in the calculation of excited-state potential energies of diatomic molecular systems will be explored in the future.The SLHF DFT approach proposed in this work can also be directly extended to the polyatomic molecular systems once an accurate correlation potential and energy functional is available.

    Table 5 Contributions(in eV)to the exchange and correlation energies in H2at equilibrium internuclear distance R=1.401 and 5.0(a.u.).

    猜你喜歡
    喬治亞州激發(fā)態(tài)局域
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    局域積分散列最近鄰查找算法
    電子測試(2018年18期)2018-11-14 02:30:34
    Environmental Impacts Engendered by Agribusiness and Related—Solutions
    PET成像的高分辨率快速局域重建算法的建立
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    基于局域波法和LSSVM的短期負(fù)荷預(yù)測
    電測與儀表(2015年7期)2015-04-09 11:39:50
    基于非正交變換的局域波束空時自適應(yīng)處理
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    UF6振動激發(fā)態(tài)分子的振動-振動馳豫
    两个人看的免费小视频| 欧美三级亚洲精品| 村上凉子中文字幕在线| 久久久久久国产a免费观看| 91国产中文字幕| 老司机午夜福利在线观看视频| 国产精品电影一区二区三区| 夜夜看夜夜爽夜夜摸| 精华霜和精华液先用哪个| 国产精品自产拍在线观看55亚洲| 成人手机av| 成人18禁在线播放| 欧美性长视频在线观看| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 精品一区二区三区四区五区乱码| 91在线观看av| 亚洲欧美日韩无卡精品| 69av精品久久久久久| 成人国语在线视频| 熟妇人妻久久中文字幕3abv| 国产又色又爽无遮挡免费看| 欧美黑人巨大hd| 精品午夜福利视频在线观看一区| 岛国在线观看网站| 97人妻精品一区二区三区麻豆 | 亚洲色图 男人天堂 中文字幕| 成人18禁在线播放| 国产一级毛片七仙女欲春2 | 天天一区二区日本电影三级| 久久狼人影院| 视频在线观看一区二区三区| 国产在线精品亚洲第一网站| 一区二区三区激情视频| 波多野结衣高清无吗| 两性午夜刺激爽爽歪歪视频在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 桃红色精品国产亚洲av| 两个人看的免费小视频| 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 1024手机看黄色片| 男男h啪啪无遮挡| ponron亚洲| 久久久水蜜桃国产精品网| 一本一本综合久久| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 亚洲aⅴ乱码一区二区在线播放 | 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 欧美日韩福利视频一区二区| 亚洲av中文字字幕乱码综合 | 国产v大片淫在线免费观看| 一本综合久久免费| 日本 av在线| 免费人成视频x8x8入口观看| 制服人妻中文乱码| 一区二区三区高清视频在线| 成在线人永久免费视频| 99久久综合精品五月天人人| 午夜两性在线视频| 久久久国产精品麻豆| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 日韩欧美一区视频在线观看| 又大又爽又粗| 成人欧美大片| 国产精品综合久久久久久久免费| or卡值多少钱| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 欧美又色又爽又黄视频| 久久久久久久精品吃奶| 一卡2卡三卡四卡精品乱码亚洲| 女性被躁到高潮视频| 国产一区在线观看成人免费| 十八禁人妻一区二区| 亚洲第一电影网av| 999久久久精品免费观看国产| 亚洲av美国av| 热99re8久久精品国产| 午夜日韩欧美国产| 亚洲第一av免费看| 一个人观看的视频www高清免费观看 | 19禁男女啪啪无遮挡网站| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 国产高清有码在线观看视频 | 国产在线精品亚洲第一网站| 精品人妻1区二区| 欧美激情高清一区二区三区| 日本三级黄在线观看| 亚洲五月色婷婷综合| 欧美午夜高清在线| 国产精品美女特级片免费视频播放器 | 久99久视频精品免费| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 欧美激情高清一区二区三区| 中文在线观看免费www的网站 | 国产av不卡久久| 在线观看免费午夜福利视频| 欧美日本视频| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 级片在线观看| 伊人久久大香线蕉亚洲五| 嫩草影院精品99| 在线av久久热| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区| 国产区一区二久久| 一级黄色大片毛片| 99在线人妻在线中文字幕| 女警被强在线播放| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 免费av毛片视频| 亚洲成av人片免费观看| 国产亚洲精品一区二区www| 18禁黄网站禁片免费观看直播| 国产成人精品无人区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人妻少妇| 精品久久久久久久末码| 日日爽夜夜爽网站| 美女午夜性视频免费| 1024视频免费在线观看| 成人精品一区二区免费| 精品久久久久久,| 99久久无色码亚洲精品果冻| 欧美最黄视频在线播放免费| 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 美女午夜性视频免费| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 啦啦啦免费观看视频1| 中国美女看黄片| 中文字幕久久专区| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 一区福利在线观看| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情极品国产一区二区三区| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三 | 亚洲在线自拍视频| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 日韩精品中文字幕看吧| 啦啦啦 在线观看视频| 午夜精品在线福利| 法律面前人人平等表现在哪些方面| 成人欧美大片| 欧美国产精品va在线观看不卡| 亚洲一区中文字幕在线| 亚洲精品在线美女| 国产视频一区二区在线看| 18禁黄网站禁片免费观看直播| 国产一区二区激情短视频| 男人的好看免费观看在线视频 | 国产又黄又爽又无遮挡在线| 精品高清国产在线一区| 亚洲电影在线观看av| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 久久中文看片网| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 色综合亚洲欧美另类图片| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 国产极品粉嫩免费观看在线| 又紧又爽又黄一区二区| 露出奶头的视频| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 欧美成人一区二区免费高清观看 | 黑人欧美特级aaaaaa片| 18禁黄网站禁片免费观看直播| 久久九九热精品免费| 久久精品国产综合久久久| 国产高清激情床上av| 亚洲成人久久爱视频| 激情在线观看视频在线高清| a级毛片a级免费在线| 午夜久久久在线观看| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| a级毛片在线看网站| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 精品久久久久久久末码| 不卡av一区二区三区| 日韩欧美三级三区| 校园春色视频在线观看| 悠悠久久av| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 国内揄拍国产精品人妻在线 | 国产亚洲精品久久久久久毛片| 成人亚洲精品一区在线观看| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 亚洲熟女毛片儿| 欧美性猛交╳xxx乱大交人| 国产片内射在线| 韩国精品一区二区三区| 欧美zozozo另类| 欧美中文综合在线视频| 色播在线永久视频| 夜夜爽天天搞| 国产精品亚洲av一区麻豆| 热re99久久国产66热| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 高清毛片免费观看视频网站| 午夜免费鲁丝| 亚洲成人免费电影在线观看| 免费在线观看完整版高清| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 免费高清在线观看日韩| 亚洲一区高清亚洲精品| 真人做人爱边吃奶动态| 久久精品人妻少妇| 亚洲一码二码三码区别大吗| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区| 国产一卡二卡三卡精品| 最近在线观看免费完整版| 国产1区2区3区精品| 国产伦在线观看视频一区| 国产av在哪里看| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看 | 人人妻人人澡欧美一区二区| 免费高清在线观看日韩| 欧美色视频一区免费| 亚洲 欧美一区二区三区| 午夜福利高清视频| 亚洲无线在线观看| 久久久精品国产亚洲av高清涩受| 黑人操中国人逼视频| 自线自在国产av| 色综合站精品国产| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 巨乳人妻的诱惑在线观看| 国产亚洲欧美在线一区二区| 久久午夜综合久久蜜桃| 亚洲第一av免费看| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| 又大又爽又粗| 麻豆成人av在线观看| 精品免费久久久久久久清纯| 韩国av一区二区三区四区| 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲 国产 在线| a在线观看视频网站| 中文字幕精品免费在线观看视频| 亚洲av日韩精品久久久久久密| 中文字幕最新亚洲高清| 一区福利在线观看| 校园春色视频在线观看| 欧美在线黄色| www国产在线视频色| 日韩免费av在线播放| 91国产中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 日本一本二区三区精品| 久久久久久久久久黄片| 天堂影院成人在线观看| 亚洲激情在线av| 国产v大片淫在线免费观看| 久久久久亚洲av毛片大全| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看.| 国产精品av久久久久免费| 欧美一级a爱片免费观看看 | 国产精品久久久久久人妻精品电影| 色播在线永久视频| 露出奶头的视频| 国产亚洲欧美精品永久| 国产亚洲精品久久久久久毛片| 天堂动漫精品| 黑丝袜美女国产一区| 亚洲 欧美 日韩 在线 免费| 男人舔女人的私密视频| 夜夜爽天天搞| netflix在线观看网站| 免费电影在线观看免费观看| 成年免费大片在线观看| 丝袜在线中文字幕| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 色哟哟哟哟哟哟| 欧美激情高清一区二区三区| aaaaa片日本免费| 精品高清国产在线一区| 亚洲第一av免费看| 美女 人体艺术 gogo| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 精品欧美一区二区三区在线| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看 | 国产av一区在线观看免费| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 亚洲精品中文字幕一二三四区| 精品久久久久久久人妻蜜臀av| 中文字幕人成人乱码亚洲影| 午夜福利视频1000在线观看| 怎么达到女性高潮| 免费看a级黄色片| 精品国产乱码久久久久久男人| 日韩欧美在线二视频| 亚洲成人久久性| 亚洲av电影在线进入| 亚洲男人的天堂狠狠| 一边摸一边做爽爽视频免费| 禁无遮挡网站| 看免费av毛片| 日韩成人在线观看一区二区三区| 69av精品久久久久久| 九色国产91popny在线| 国产一区二区三区视频了| 99在线人妻在线中文字幕| 99久久精品国产亚洲精品| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 中文字幕人妻熟女乱码| 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 国产亚洲精品一区二区www| 欧美性猛交╳xxx乱大交人| 精品国产国语对白av| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 露出奶头的视频| 看片在线看免费视频| 99在线人妻在线中文字幕| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 亚洲精品av麻豆狂野| 国产一区二区在线av高清观看| 我的亚洲天堂| 色综合站精品国产| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 国产亚洲精品一区二区www| 欧美日韩亚洲综合一区二区三区_| 亚洲av成人一区二区三| 国产伦人伦偷精品视频| 岛国在线观看网站| 亚洲精品久久国产高清桃花| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2 | 国产又爽黄色视频| 丰满人妻熟妇乱又伦精品不卡| 日本 av在线| 在线播放国产精品三级| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 波多野结衣高清作品| 我的亚洲天堂| 91成年电影在线观看| 精品国产国语对白av| 免费看美女性在线毛片视频| 超碰成人久久| 亚洲国产精品成人综合色| 国产精品免费视频内射| tocl精华| 91字幕亚洲| av片东京热男人的天堂| 国产在线观看jvid| 国产片内射在线| 亚洲男人天堂网一区| 久久青草综合色| 国产午夜精品久久久久久| 久久 成人 亚洲| 久久久国产精品麻豆| 成人亚洲精品一区在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品美女久久久久99蜜臀| 怎么达到女性高潮| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 日韩大码丰满熟妇| 日韩免费av在线播放| 国产日本99.免费观看| 97碰自拍视频| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 久久婷婷人人爽人人干人人爱| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产| 国产成人av激情在线播放| 亚洲av成人av| 国产成人精品久久二区二区免费| 制服丝袜大香蕉在线| 免费无遮挡裸体视频| 高清毛片免费观看视频网站| 18禁观看日本| 又紧又爽又黄一区二区| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 老司机午夜福利在线观看视频| 97碰自拍视频| 麻豆av在线久日| 亚洲午夜理论影院| 国产主播在线观看一区二区| 国产97色在线日韩免费| 国产爱豆传媒在线观看 | av在线天堂中文字幕| 中文字幕精品免费在线观看视频| 视频在线观看一区二区三区| 日韩免费av在线播放| 在线av久久热| 国产一卡二卡三卡精品| 中文字幕高清在线视频| 亚洲精品中文字幕一二三四区| 国产精品1区2区在线观看.| 国产色视频综合| 亚洲av成人不卡在线观看播放网| 亚洲精品国产一区二区精华液| 精品国产美女av久久久久小说| 精品国内亚洲2022精品成人| 免费女性裸体啪啪无遮挡网站| 国产精品免费视频内射| 操出白浆在线播放| 亚洲国产毛片av蜜桃av| 观看免费一级毛片| 亚洲av日韩精品久久久久久密| 天天一区二区日本电影三级| 青草久久国产| 91成人精品电影| √禁漫天堂资源中文www| 亚洲精品美女久久久久99蜜臀| 中文资源天堂在线| 免费看十八禁软件| 久久久久久九九精品二区国产 | 欧美 亚洲 国产 日韩一| 18美女黄网站色大片免费观看| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 一区二区日韩欧美中文字幕| 一级毛片精品| 99国产精品一区二区蜜桃av| 亚洲国产欧美日韩在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲激情在线av| 99国产精品99久久久久| 免费搜索国产男女视频| 国产精品综合久久久久久久免费| 特大巨黑吊av在线直播 | 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 老熟妇仑乱视频hdxx| 性欧美人与动物交配| 少妇被粗大的猛进出69影院| 一区二区三区国产精品乱码| 国产成人精品无人区| 身体一侧抽搐| 欧美一级毛片孕妇| 亚洲,欧美精品.| 久久精品国产综合久久久| 最近最新免费中文字幕在线| 自线自在国产av| 亚洲男人的天堂狠狠| 亚洲熟妇熟女久久| 国产精品国产高清国产av| 真人一进一出gif抽搐免费| 亚洲在线自拍视频| 成在线人永久免费视频| 久久香蕉精品热| 日韩一卡2卡3卡4卡2021年| 男女下面进入的视频免费午夜 | 国产精品免费一区二区三区在线| 国产片内射在线| 精品乱码久久久久久99久播| а√天堂www在线а√下载| √禁漫天堂资源中文www| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 在线免费观看的www视频| svipshipincom国产片| 他把我摸到了高潮在线观看| 九色国产91popny在线| 亚洲,欧美精品.| 黄色a级毛片大全视频| 天堂√8在线中文| 国产99久久九九免费精品| 亚洲成人国产一区在线观看| 国产激情久久老熟女| 久久精品夜夜夜夜夜久久蜜豆 | cao死你这个sao货| 国语自产精品视频在线第100页| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久久久毛片| 91国产中文字幕| 999精品在线视频| 女警被强在线播放| av中文乱码字幕在线| aaaaa片日本免费| 日韩成人在线观看一区二区三区| 99久久综合精品五月天人人| 久久亚洲精品不卡| svipshipincom国产片| 1024香蕉在线观看| 淫妇啪啪啪对白视频| 长腿黑丝高跟| 人人妻人人看人人澡| 成在线人永久免费视频| 亚洲最大成人中文| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| 日韩高清综合在线| 99国产极品粉嫩在线观看| 亚洲第一电影网av| 亚洲九九香蕉| 精品国产亚洲在线| 特大巨黑吊av在线直播 | 亚洲一区中文字幕在线| 女警被强在线播放| 久久精品国产清高在天天线| 欧美乱码精品一区二区三区| 亚洲成av人片免费观看| 日韩 欧美 亚洲 中文字幕| 看片在线看免费视频| 18美女黄网站色大片免费观看| 最好的美女福利视频网| 精品第一国产精品| 国产黄色小视频在线观看| 亚洲精品国产区一区二| 亚洲avbb在线观看| 久久久久久久午夜电影| 亚洲欧美精品综合一区二区三区| 精品一区二区三区四区五区乱码| 免费在线观看完整版高清| 少妇熟女aⅴ在线视频| 99精品久久久久人妻精品| 两个人免费观看高清视频| 在线国产一区二区在线| 久久性视频一级片| 亚洲第一av免费看| 99国产精品99久久久久| 免费看十八禁软件| 成人三级黄色视频| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 村上凉子中文字幕在线| 啦啦啦韩国在线观看视频| 免费人成视频x8x8入口观看| 欧美又色又爽又黄视频| 亚洲在线自拍视频| 一个人观看的视频www高清免费观看 | 少妇的丰满在线观看| 欧美激情极品国产一区二区三区| 精品少妇一区二区三区视频日本电影| www国产在线视频色| 国产亚洲欧美在线一区二区| 亚洲熟女毛片儿| 成人三级做爰电影| 精品久久久久久久毛片微露脸| 夜夜看夜夜爽夜夜摸| 成人亚洲精品av一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲精品国产区一区二| 国产精品 欧美亚洲| 中文字幕另类日韩欧美亚洲嫩草| 麻豆久久精品国产亚洲av| 亚洲第一电影网av| 18禁美女被吸乳视频| 韩国精品一区二区三区| 国产成人av激情在线播放| 亚洲精华国产精华精| 成人三级黄色视频| 久久久久久久久中文| 国产av又大| 免费av毛片视频| 亚洲国产精品合色在线| xxxwww97欧美| 亚洲精品国产精品久久久不卡|