• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic Instability of Anisotropic Drift Wave Accompanied by Field Aligned Currents in Solar Coronal Loop

    2018-11-24 07:35:56HafsaNaimChUzmaandMurtaza
    Communications in Theoretical Physics 2018年10期

    Hafsa Naim, Ch.Uzma, and G.Murtaza

    Salam Chair,Department of Physics,GC University,Lahore 54000,Pakistan

    AbstractSolar coronal loops are frequently accompanied by the field-aligned currents,which drive instabilities if the drift velocity u0>vAthe Alfv′en velocity.For our choice of parameters,the critical threshold value of u0/vAis ~ 3.0 for growth and the corresponding current filling factor~ 10?3?10?4.Below this value we are no longer in the kinetic regime. The coronal loops also have short-scale density gradients within each loop.The electron resonance in the presence of density gradient causes the drift mode to grow.We study the effect of these two free energy sources,the electron drift and the density gradient,in the presence of temperature anisotropy T⊥α >T∥α.These effects simultaneously exist in the coronae.Using gyrokinetic theory,we investigate the influence of these effects,examine how they interplay with each other and study the consequent growth of the magnetosonic wave.We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents.The temperature anisotropy with chosen signatures causes further stabilizing effect.The results may prove useful to study the heating mechanism of solar coronal loops,acceleration of particles and confinement of particles in the thermonuclear reactors.

    Key words:solar corona,coronal loops,temperature anisotropy,density inhomogeneity,field-aligned currents,gyrokinetic

    1 Introduction

    Magnetic loops are the basic structural elements of the solar corona,which are actually the closed solar magneticfield lines.Solar coronal heating is still an unresolved puzzle since 1942 when Edl′en,[1]the Swedish physicist,fi rst time predicted the high temperature of the corona in comparison to the lower temperature of the photosphere.The solar corona consists of low-β plasma and is highly structured with a large number of continually developing loops and filaments fabricated by solar magnetic fields as observed by Skylab,SOHO,and TRACE etc.and most of these coronal magnetic loops are current carrying structures.[2?3]

    The dynamical structure of the coronal magnetic loops are the result of various processes including foot point motions of the photosphere,oscillations and tangling of loops.[4?6]The loops contribute significantly in the transformation of photospheric energy in to thermal energy in the corona.[7?9]Continuous motions of the foot points in the photosphere give rise to the field-aligned currents in the loops,[10?11]which in turn is the result of fluid motion in the convective zone.High electrical conductivity of the solar plasma causes convective flows to interact with the magnetic field at the foot points of the coronal loops,which results in twisting of field lines.In the coronal loops the magnetic pressure is much greater than the kinetic pressure,so these are the field free zones and the electric currents flow parallel or anti-parallel to the magnetic field lines.Also the field-aligned currents may be due to the flow of charges,which are gathered in the photosphere.[6,12]The field-aligned currents,which are believed to be an important source of coronal heating in closed magnetic regions,cannot be measured directly and can only be estimated from vector magnetograms and radio observations.[9,13?14]In the current carrying coronal loops,the field-aligned drift velocity of the current carrying electrons can be estimated as u0=(4I/πeneD2f)cm·s?1,where I the loop current in CGS units is found to be 3×1020statA,neis the electron density~ 109cm?3,d is the cross-sectional scale of real current channel,D is the cross-sectional diameter of the loop~108cm and f=(d/D)2?1 is the current filling factor ~ 10?3–10?4.So u0/vAcomes out to be ~ 1.0–10.0.[3,7]

    These fine structures(loops and filaments)play a crucial role in coronal heating.Among several others,the two important coronal heating theories are wave heating theory and the magnetic reconnection(nano-flare heating)theory.[7,15?16]One of the proposed heating mechanisms is through MHD waves.MHD waves are thought to play an important role in coronal plasma heating and solar wind acceleration.We can observe these waves directly in the corona through EUV imaging telescopes on SOHO and TRACE space crafts.Slow magnetosonic waves are inves-tigated by many researchers in the coronal loops.[17?20]The presence of fast magnetosonic waves in the low beta coronal plasma is reported by Thompson et al.[21]Fast magnetosonic wave is an exceptional tool for MHD seismology.

    But the present fluid/MHD models are not appropriate because actual heating occurs at much smaller length scales.So a kinetic treatment is needed.We introduce a model based on kinetic theory of obliquely propagating drift magnetosonic wave.The drift mode generally arises due to gradients in density,magnetic field or temperature.While dealing with kinetic drift wave theory,the most important factor for the heating of corona is the existence of density gradients perpendicular to the magnetic field.For the stimulation of drift waves,density gradients become a source of free energy.Drift modes continue to grow both in collisional and collisionless plasma environments in different regions of solar atmosphere and can be explained byfluid model as well as by kinetic model and therefore called universally growing modes.In a collisionless plasma the growth of the mode is the result of electron resonance accompanied by density inhomogeneity,which is exclusively a kinetic effect and cannot be studied by single fluid or MHD model.Similarly different values of electron and ion temperatures Teand Tiin the corona and large temperature anisotropy with T⊥α>T∥αcan only be explained by kinetic theory.So a kinetic drift mode can abide by all the requirements of coronal heating,i.e.,it provides an energy source at extremely high temperatures,is an efficient method of energy transfer to the particles and is applicable everywhere in the corona.[22?23]

    We are presenting a different model of coronal loops heating through drift wave accompanied by the fieldaligned currents using gyrokinetic theory.The requisite density gradients are observable in the extended magnetic loops in the entire solar atmosphere.A short scale density variations within each coronal loop discretely is observed in the 3D coronal loops analysis.[24?25]As we are considering low-β plasma,the magnetic field gradient as Ln/LB≈ β/2 can be neglected.[26?27]

    With the three free energy sources—field-aligned currents,density inhomogeneity,and temperature anisotropy,we estimate the growth of the drift magnetosonic wave.For clear perception of the problem,we first study their effects on the wave growth and the phase velocity individually,then in pairs and in the end all the three effects together.We observe that the field-aligned currents suppress the kinetic instability generated by the drift in the coronal loops.The stimulation,growth and damping of the kinetic instability is important for understanding the heating of corona and coronal loops and for analyzing the various phenomena,like acceleration of particles,taking place in space,astrophysics and in thermonuclear reactors.

    Regarding fusion applications,it is well known that in low-β toroidal devices,the density and temperature gradients are present that can drive the microinstabilities,which pose a serious threat to efficient confinement.[28?30]Further,the field-aligned currents are also present in tokamaks,which constitute another source of free energy.We notice that the simultaneous presence of the two free energy sources(density gradient and field aligned currents)along with temperature anisotropy,produces a stabilizing effect,which can improve the confinement.Gladd and Krall[31]discussed current driven drift waves in reversedfield pinches.

    The plan of the paper is as follows:Sec.2 describes the mathematical depiction.Section 3 gives graphical analysis and Sec.4 contains summary and results.

    2 Mathematical Depiction

    We consider the propagation of drift magnetosonic wave in a low beta anisotropic plasma with field-aligned currents produced by the field-aligned drift of electrons within a loop.Using gyrokinetic variables,the dispersion relation obtained by following the procedure of Naim et al.[16]is given by

    where α is used for species(ions and electrons).=/2ωcαLαis the diamagnetic drift frequency.Γn(bα)=In(bα)e?bαis the modified Bessel function and bα=is its argument.Z(ξnα)is the plasma dispersion function and ξnα(ξni=(ω ? nωci)/k∥vt∥iand ξne=(ω ? k∥u0? nωce)/k∥vt∥esince we are considering only field-aligned drift of electrons)is the argument of plasma dispersion function.Lnα= ?nα0[dnα0(x)/dx]?1is the scale length of density inhomogeneity,which is directed along x-axis,perpendicular to the ambient magnetic field directed along z-axis.

    Taking large argument expansion of plasma dispersion function ξnα? 1,and small Larmor radii bα? 1,assuming ω2?and after performing some lengthy algebra,[32]we get the ReD(ω,k)and ImD(ω,k)parts of the dispersion relation for anisotropic drift magnetosonic wave with field-aligned currents as

    where ω′= ω ? k∥u0and u0is the field-aligned drift velocity of electrons,

    The growth rate of instability is obtained by using the relationas

    3 Graphical Analysis

    We numerically evaluate the above Eqs.(2)and(4)for the following parameters of solar coronal loops,n0=109cm?3,B0=10 G,T⊥i/T∥i=6.75,T⊥e/T∥e=6,=0.002,and η=k⊥vA.The real dispersion relation Eq.(2)is obtained by putting the real part equal to zero,while Eq.(4)gives the growth rate of drift magnetosonic wave with the field-aligned currents in the presence of temperature anisotropy.Equations(2)and(4)are general expressions,which include all the three effectsparallel drift of electrons,density gradient and temperature anisotropy.For better understanding of the interaction of different effects,we first briefly examine them individually.

    Considering electron drifting alone assuming density gradient and temperature anisotropy to be absent,the growth rate is given by

    which is graphically represented in Fig.1.

    Fig.1 γ/k⊥vAvs.k∥/k⊥,for different values of u0/vA(drift velocity),i.e.,u0/vA=2.0,3.0,5.0 and 7.0.

    As is obvious from Fig.1,both damping and growth depend on the value of k∥u0? ω.We also observe that as the drift velocity is increased,the threshold of growth shifts towards lower values of k∥/k⊥.Further,from the real dispersion relation,it is clear that the field-aligned drift of electrons has no considerable effect on the phase velocity of the wave as shown in Fig.2.

    Fig.2 ωr/k⊥vAvs.k∥/k⊥,for different values of u0/vA,i.e.,u0/vA=2.0,3.0,5.0 and 7.0.

    Likewise,if we examine the effect of temperature anisotropy alone,the expression for the growth rate becomes

    and its graph is obtained in Fig.3.

    Fig.3 γ/k⊥vAvs.k∥/k⊥,for a fixed value of T⊥e/T∥e=6.0(temperature anisotropy).

    We notice that the temperature ratio T⊥e/T∥eis an important factor on which the damping or growth of the wave depends.If T⊥e>T∥e(T∥e>T⊥e)there is damping(growth).The phase velocity of the wave increases with temperature anisotropy as mentioned in our earlier work.[33]

    To investigate the independent effect of density gradient,we neglect temperature anisotropy and electron drift velocity,and get the expression for the growth rate as

    The plot for the growth is shown in Fig.4.

    Fig.4 γ/k⊥vAvs.k∥/k⊥,for different values of η (inhomogeneity factor),i.e.,η=2.0,4.0,6.0 and 8.0.

    It is obvious that the instability condition for growth is?ω>0.We observe that growth increases with the increase of inhomogeneity factor η.We also realize that the growth of the wave reduces with the increase of parallel propagation component k∥.

    The plot of the phase velocity vs.obliqueness k∥/k⊥for different values of η shows that with the increase of density gradient,the phase velocity decreases as shown in Fig.5.

    Fig.5 ωr/k⊥vAvs.k∥/k⊥,for different values of η,i.e.,η=2.0,4.0,6.0 and 8.0.

    Now to observe the effect of two free energy sources and to investigate their relationship with each other,we neglect density inhomogeneity and obtain the following growth rate

    We notice that for growth k∥u0? ω >0(i.e.,the drift velocity u0> ω/k∥the parallel phase velocity)and 2T⊥e/T∥e>1.The temperature anisotropy comes out just as a multiplicative factor and therefore it improves damping or growth of the wave roughly 10 times as is displayed in Fig.6.

    Fig.6 γ/k⊥vA vs.u0/vA,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0.

    Regarding phase velocity,we see that it increases with temperature anisotropy as shown in Fig.7.

    Fig.7 ωr/k⊥vAvs.u0/vA,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0.

    We have seen the effect of temperature anisotropy on drift velocity u0/vA.Now to see the effect of temperature anisotropy on density gradient,we neglect the fieldaligned currents.The growth rate for this case then takes the form

    The plot for the growth rate is depicted in Fig.8.

    The growth of the drift wave is suppressed by the temperature anisotropy by nearly a factor of 100 as Fig.8 displays.

    Fig.8 γ/k⊥vAvs.η,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0 for a fixed value of k∥/k⊥ =0.2.

    The phase velocity vs.density gradient for isotropic and anisotropic cases is also checked and the behavior is shown in Fig.9.

    We see that as η approaches the value near 4,the phase velocity enhances due to the temperature anisotropy.

    Fig.9 ωr/k⊥vAvs.η,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0 for a fixed value of k∥/k⊥ =0.2.

    To see how the density gradient and drift velocity u0/vAinterplay with each other we take Ti=Te.The growth rate then becomes

    Figure 10 shows the plots for the growth rate.

    Fig.10 γ/k⊥vAvs.u0/vA,for different values of η,i.e.,η =2.0,4.0,6.0,and for a fixed value of k∥/k⊥ =0.2.

    The threshold condition for instability in this case is?ω′>0.For<ω′there is damping of the drift magnetosonic wave in the presence of field-aligned currents and when>ω′growth occurs.We also observe that for the values of η=2.0,4.0,6.0,the growth decreases with the increase of η.In the absence of field-aligned currents,the behavior becomes opposite,i.e.,the growth of drift magnetosonic wave boosts with the enhancement in density gradient.The plots are made for the parameter θ~ 11.45?.

    So far as real wave frequency is concerned,we find that the phase velocity of the wave decreases for these values of η as depicted in Fig.11.

    Fig.11 ωr/k⊥vAvs.u0/vA,for different values of η,i.e.,η =2.0,4.0,6.0,and for a fixed value of k∥/k⊥ =0.2.

    The combined effect,when all the three free energy sources are present together,is that for a fixed value of k∥/k⊥=0.2 and temperature anisotropy χ =16.5,the growth occurs after a certain threshold value of u0/vA~3.0 as depicted in Fig.12,which is actually the inverse-Landau damping.Also the growth of the wave reduces with increase of η.Regarding the phase velocity of the wave,it first falls slightly and then becomes constant as seen in Fig.13.We also notice the decrement in the phase velocity with the increase of η.

    The kinetic instability of drift magnetosonic wave is driven by the free energy stored in the density gradient in the presence of field-aligned currents.The growth time of the instability τγshould be less than temperature anisotropy relaxation time τAand the diffusion time τDof plasma in the perpendicular direction.[34]The diffusion coefficient for a fixed k can be calculated by using Dk≈ π2γk/k2and the diffusion time τD=L2n/Dkcomes out to be ~ 1010sec.The growth time of instability τγis very small~ 10?3sec.It is noticed that even minute density gradient can support kinetic drift instability.

    Fig.12 γ/k⊥vAvs.u0/vA,for fixed values of k∥/k⊥ =0.2 and T⊥e/T∥e=6.0 for three different values of η,i.e.,η=2.0,4.0 and 6.0.

    Fig.13 ωr/k⊥vAvs.u0/vA,for fixed values of k∥/k⊥ =0.2 and T⊥e/T∥e=6.0 for three different values of η,i.e.,η=2.0,4.0 and 6.0.

    4 Summary and Results

    In this work,we have examined the propagation characteristics of obliquely propagating drift magnetosonic mode in an anisotropic,low beta plasma with field-aligned currents in coronal loops.Density gradients are the source of free energy,which are all time present in the coronal regime.Electric currents,constitute another free energy source,may play an important role for solar plasma heating.The solar coronal loops are mostly current carrying loops.These loops are similar to the one found in tokamak plasma regime.[7,10]The currents associated with the coronal loops cannot be measured directly because the surface boundary is not obvious.Zaitsev et al.[35]measured the total current in solar plasma loops using an analog LRC-circuit model.The total current in a loop is found to be I? 1012×p?1A1.8×1020statA?4.2×1021statA where p is the period of eigen oscillations(0.7–1.7)sec.We have three free energy sources—parallel drift of electrons,density inhomogeneity,and temperature anisotropy.To facilitate understanding,we have examined their effects one by one,then in pairs and finally all the three effects together.The drift velocity has no prominent influence on the phase velocity but it makes the wave to damp or grow depending on the condition k∥u0?ω <0 or>0.The temperature anisotropy T⊥e>T∥ecauses the magnetosonic wave to damp and increases its phase velocity.While considering density gradient,we find that it reduces the phase velocity of the wave and increases the growth rate of the wave depending on the condition?ω>0.We then investigate these effects in pairs.Regarding field-aligned currents and temperature anisotropy,we observe that as currents cause growth above the point k∥u0?ω and damping below that,the anisotropy just enhances these effects almost 10 times.In the same way,when we consider density gradient and temperature anisotropy,we find that the former shows growth for?ω>0 and the latter suppresses it.When density gradient and drift velocity are considered,we observe the damping of the wave for values?ω′<0 and growth above that.We observe that the growth decreases as η increases.However behavior pattern is different in the absence of field-aligned currents,where the growth increases and the phase velocity decreases with the enhancement of η.

    The overall effect of all the three free energy sources is shown in Figs.12–13.The instability driven by density inhomogeneity is suppressed by the field-aligned currents and is due to resonance interaction between the drifting electrons and the drift wave.The condition for the instability is u0>vA.For our parameters,the critical value of u0/vAis~3.0 below this value we no longer remain in the kinetic regime.For this condition the current filling factor f must be less than 10?3,which is fulfilled in our case.Here we note that with the increase of u0/vAthe phase velocity of the wave initially falls and then saturates.The inhomogeneity reduces the phase velocity as shown in Fig.13.

    We conclude that the instability generated by drift can be suppressed by the field-aligned currents in the presence of temperature anisotropy,which enhances that effect.The results may prove useful to study solar coronal heating and to improve the plasma confinement in nuclear reactors.

    大型黄色视频在线免费观看| 国产又爽黄色视频| 精品欧美国产一区二区三| 午夜免费观看网址| 91字幕亚洲| 麻豆成人av在线观看| 高潮久久久久久久久久久不卡| 久99久视频精品免费| 男女视频在线观看网站免费 | 黑丝袜美女国产一区| a级毛片a级免费在线| 好男人电影高清在线观看| av电影中文网址| 一区二区三区国产精品乱码| 在线播放国产精品三级| 亚洲第一电影网av| 亚洲av电影不卡..在线观看| 午夜日韩欧美国产| 99国产极品粉嫩在线观看| 亚洲成av片中文字幕在线观看| 国产高清有码在线观看视频 | 免费在线观看亚洲国产| 国产成人精品久久二区二区免费| 精品人妻1区二区| 波多野结衣高清作品| 国产主播在线观看一区二区| 成人国产一区最新在线观看| 一级毛片精品| 最近在线观看免费完整版| 男人的好看免费观看在线视频 | 人妻丰满熟妇av一区二区三区| 精品福利观看| 亚洲激情在线av| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 国产主播在线观看一区二区| 免费在线观看视频国产中文字幕亚洲| 免费观看精品视频网站| 可以在线观看毛片的网站| 在线播放国产精品三级| 成人亚洲精品av一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合久久99| 国产97色在线日韩免费| 熟女少妇亚洲综合色aaa.| 老司机午夜福利在线观看视频| 国产区一区二久久| 十分钟在线观看高清视频www| 1024手机看黄色片| 成年人黄色毛片网站| 精品熟女少妇八av免费久了| 男人操女人黄网站| 午夜精品久久久久久毛片777| 国产成人精品无人区| 国产三级黄色录像| 啦啦啦免费观看视频1| 婷婷六月久久综合丁香| 久久精品91无色码中文字幕| 亚洲在线自拍视频| 国产精品免费视频内射| 亚洲一区二区三区色噜噜| 国产精品综合久久久久久久免费| 黄色 视频免费看| 夜夜看夜夜爽夜夜摸| 在线观看66精品国产| 91在线观看av| 好看av亚洲va欧美ⅴa在| 欧美日韩瑟瑟在线播放| 变态另类成人亚洲欧美熟女| 亚洲成人久久性| 日韩欧美 国产精品| av天堂在线播放| 国产又爽黄色视频| 亚洲自拍偷在线| 久久久久亚洲av毛片大全| 无遮挡黄片免费观看| 午夜影院日韩av| 悠悠久久av| 女警被强在线播放| 俺也久久电影网| 母亲3免费完整高清在线观看| a级毛片在线看网站| 欧美日韩乱码在线| 老司机深夜福利视频在线观看| 最近最新免费中文字幕在线| 精品国产乱码久久久久久男人| 91成年电影在线观看| 国产成人精品无人区| 欧美人与性动交α欧美精品济南到| 在线观看免费午夜福利视频| 久久久精品国产亚洲av高清涩受| 在线看三级毛片| 黄色片一级片一级黄色片| 久久久久国产一级毛片高清牌| svipshipincom国产片| 可以在线观看毛片的网站| 黄色毛片三级朝国网站| 在线观看舔阴道视频| 国产精品乱码一区二三区的特点| 久久精品91蜜桃| 久久国产精品影院| 国产一级毛片七仙女欲春2 | 日本精品一区二区三区蜜桃| 精品免费久久久久久久清纯| 1024视频免费在线观看| 欧美性猛交╳xxx乱大交人| 十八禁人妻一区二区| 午夜精品久久久久久毛片777| 国产精品久久视频播放| 国内精品久久久久久久电影| 欧美黑人巨大hd| 午夜精品在线福利| 99热这里只有精品一区 | 日本在线视频免费播放| 亚洲国产中文字幕在线视频| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 久久人人精品亚洲av| 欧美zozozo另类| 国产精品久久电影中文字幕| 亚洲成人久久性| 成在线人永久免费视频| 高清在线国产一区| 亚洲人成网站在线播放欧美日韩| 久久国产精品男人的天堂亚洲| 哪里可以看免费的av片| 国产一区二区在线av高清观看| 一级片免费观看大全| 后天国语完整版免费观看| 久久性视频一级片| 亚洲成a人片在线一区二区| 久久久久国产一级毛片高清牌| 亚洲国产精品久久男人天堂| 91麻豆av在线| 正在播放国产对白刺激| 啦啦啦观看免费观看视频高清| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 国产高清视频在线播放一区| 国产亚洲精品综合一区在线观看 | 性欧美人与动物交配| 成年人黄色毛片网站| 99在线视频只有这里精品首页| 精品久久蜜臀av无| 日本在线视频免费播放| 欧美一级a爱片免费观看看 | 久久久久精品国产欧美久久久| 久久人妻av系列| 中文字幕高清在线视频| 精品国产国语对白av| 日本黄色视频三级网站网址| 自线自在国产av| 国产午夜福利久久久久久| 国产爱豆传媒在线观看 | 99久久国产精品久久久| 正在播放国产对白刺激| netflix在线观看网站| 成人国产综合亚洲| 午夜两性在线视频| av天堂在线播放| 国产精品久久久人人做人人爽| 久久久久久久久久黄片| 国产精品爽爽va在线观看网站 | 51午夜福利影视在线观看| 久久精品成人免费网站| 精品国产美女av久久久久小说| 亚洲熟妇熟女久久| 日韩av在线大香蕉| 后天国语完整版免费观看| 无人区码免费观看不卡| 日日夜夜操网爽| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 黄色女人牲交| 亚洲,欧美精品.| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区黑人| 午夜福利在线观看吧| 久久这里只有精品19| 可以在线观看毛片的网站| 欧美国产精品va在线观看不卡| 12—13女人毛片做爰片一| 亚洲第一av免费看| av有码第一页| 久久久久九九精品影院| 亚洲成a人片在线一区二区| 中文字幕最新亚洲高清| 国产精品久久电影中文字幕| 精品国内亚洲2022精品成人| 亚洲午夜精品一区,二区,三区| 精品第一国产精品| 亚洲中文日韩欧美视频| 欧美精品啪啪一区二区三区| 91成人精品电影| 亚洲av日韩精品久久久久久密| 嫁个100分男人电影在线观看| 很黄的视频免费| 亚洲国产精品久久男人天堂| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 亚洲国产精品sss在线观看| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 国产极品粉嫩免费观看在线| 精品无人区乱码1区二区| 欧美日韩福利视频一区二区| 两性夫妻黄色片| 午夜福利成人在线免费观看| 亚洲最大成人中文| 自线自在国产av| 男女午夜视频在线观看| 国产欧美日韩一区二区三| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 可以在线观看的亚洲视频| 成人亚洲精品av一区二区| 中文字幕精品免费在线观看视频| 婷婷精品国产亚洲av在线| 99精品欧美一区二区三区四区| 两个人免费观看高清视频| 日本精品一区二区三区蜜桃| 免费看十八禁软件| 亚洲一区高清亚洲精品| 天堂影院成人在线观看| 91九色精品人成在线观看| 精品不卡国产一区二区三区| 一区二区三区激情视频| 国产主播在线观看一区二区| 国产精品精品国产色婷婷| www.www免费av| 在线av久久热| 成人精品一区二区免费| 亚洲五月色婷婷综合| 午夜福利18| 丝袜美腿诱惑在线| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 午夜福利18| 久久99热这里只有精品18| 国产亚洲精品久久久久5区| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| 身体一侧抽搐| 久久中文看片网| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 中文字幕高清在线视频| 国产精品98久久久久久宅男小说| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 一区二区三区精品91| 黄色a级毛片大全视频| 97人妻精品一区二区三区麻豆 | 精品久久久久久久久久免费视频| 久久香蕉精品热| 久久中文看片网| 午夜免费激情av| 国产亚洲欧美精品永久| 亚洲av成人一区二区三| 黄色 视频免费看| 国产av一区二区精品久久| av视频在线观看入口| 女人被狂操c到高潮| 中文资源天堂在线| 韩国精品一区二区三区| 大型av网站在线播放| 最新美女视频免费是黄的| av免费在线观看网站| 亚洲自拍偷在线| 国产精品一区二区三区四区久久 | 国内毛片毛片毛片毛片毛片| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 一本综合久久免费| 无遮挡黄片免费观看| 成人午夜高清在线视频 | 黑人巨大精品欧美一区二区mp4| 精品国产一区二区三区四区第35| 亚洲五月天丁香| 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美在线一区二区| 国产成人av激情在线播放| 少妇粗大呻吟视频| 欧美性猛交╳xxx乱大交人| 欧美中文日本在线观看视频| 国产熟女xx| 精品电影一区二区在线| 日韩三级视频一区二区三区| 一级作爱视频免费观看| 免费在线观看成人毛片| 亚洲第一电影网av| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 又紧又爽又黄一区二区| 十八禁网站免费在线| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 男人舔奶头视频| 亚洲精品美女久久av网站| 欧美乱妇无乱码| 韩国av一区二区三区四区| 午夜福利18| 精品国产乱码久久久久久男人| 欧美色欧美亚洲另类二区| 一级毛片高清免费大全| 老司机靠b影院| 国产精品九九99| 久久这里只有精品19| 亚洲av成人一区二区三| 国产精品影院久久| 视频区欧美日本亚洲| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 国产av在哪里看| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 午夜免费激情av| 美国免费a级毛片| 亚洲第一av免费看| 国产伦人伦偷精品视频| 国产成人欧美在线观看| 好看av亚洲va欧美ⅴa在| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 一区二区三区国产精品乱码| 啦啦啦 在线观看视频| 黄色a级毛片大全视频| 亚洲成人精品中文字幕电影| 亚洲人成77777在线视频| АⅤ资源中文在线天堂| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 午夜免费观看网址| 真人一进一出gif抽搐免费| 老司机深夜福利视频在线观看| 天堂动漫精品| 这个男人来自地球电影免费观看| 啦啦啦观看免费观看视频高清| ponron亚洲| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 亚洲av成人av| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| www.熟女人妻精品国产| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 看免费av毛片| 女生性感内裤真人,穿戴方法视频| 脱女人内裤的视频| 亚洲精品粉嫩美女一区| 亚洲av中文字字幕乱码综合 | 久久国产精品人妻蜜桃| 亚洲av成人av| 男男h啪啪无遮挡| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 国产激情欧美一区二区| or卡值多少钱| 一本综合久久免费| 亚洲一码二码三码区别大吗| 757午夜福利合集在线观看| 少妇裸体淫交视频免费看高清 | 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| 久久国产亚洲av麻豆专区| 波多野结衣高清作品| 精品一区二区三区av网在线观看| 岛国视频午夜一区免费看| 最新美女视频免费是黄的| 日韩欧美三级三区| 看免费av毛片| 久久久精品欧美日韩精品| 日日爽夜夜爽网站| 久久久久久久午夜电影| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 香蕉丝袜av| 超碰成人久久| 国产成人精品无人区| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 黄网站色视频无遮挡免费观看| 高清毛片免费观看视频网站| 妹子高潮喷水视频| 国产亚洲av嫩草精品影院| 久久婷婷成人综合色麻豆| 欧美人与性动交α欧美精品济南到| 国产99白浆流出| 午夜精品久久久久久毛片777| 男人舔女人的私密视频| 首页视频小说图片口味搜索| 久久精品夜夜夜夜夜久久蜜豆 | 99精品在免费线老司机午夜| 成在线人永久免费视频| 亚洲国产精品合色在线| 丝袜人妻中文字幕| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 久久国产乱子伦精品免费另类| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 哪里可以看免费的av片| 成人精品一区二区免费| 天堂动漫精品| 级片在线观看| 国产单亲对白刺激| 一级黄色大片毛片| 国产av不卡久久| 国产区一区二久久| 国产一区二区三区视频了| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 成人亚洲精品av一区二区| 欧美亚洲日本最大视频资源| www.999成人在线观看| svipshipincom国产片| 久久久久亚洲av毛片大全| 欧美成人一区二区免费高清观看 | 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 亚洲国产欧美日韩在线播放| 亚洲国产精品成人综合色| 脱女人内裤的视频| 免费av毛片视频| 国产精品亚洲av一区麻豆| 999精品在线视频| 欧美日韩乱码在线| 黄色毛片三级朝国网站| 一进一出好大好爽视频| xxxwww97欧美| 90打野战视频偷拍视频| 精品福利观看| tocl精华| 人人妻人人澡欧美一区二区| 日韩欧美在线二视频| av在线播放免费不卡| 欧美丝袜亚洲另类 | 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜添小说| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 又黄又粗又硬又大视频| 欧美在线一区亚洲| 欧美成人午夜精品| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 免费在线观看黄色视频的| 丝袜在线中文字幕| 青草久久国产| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 韩国精品一区二区三区| 日韩大码丰满熟妇| 日韩精品中文字幕看吧| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 国产成人影院久久av| 日本黄色视频三级网站网址| 亚洲精品久久国产高清桃花| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 久久久久久久久免费视频了| 韩国精品一区二区三区| 一本久久中文字幕| 亚洲国产精品合色在线| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 欧美日韩一级在线毛片| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 超碰成人久久| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 一本一本综合久久| 亚洲中文字幕日韩| av在线天堂中文字幕| 黑人操中国人逼视频| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 久热这里只有精品99| 国产精品亚洲av一区麻豆| 午夜福利高清视频| 在线观看日韩欧美| 国产一区二区三区视频了| 久久九九热精品免费| 亚洲中文字幕日韩| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 少妇的丰满在线观看| 2021天堂中文幕一二区在线观 | www日本在线高清视频| 日韩视频一区二区在线观看| 色播在线永久视频| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看| 91成人精品电影| 国产视频内射| 亚洲国产精品999在线| 久久草成人影院| 亚洲精品色激情综合| 久久精品亚洲精品国产色婷小说| 午夜免费激情av| 男女午夜视频在线观看| 欧美大码av| 亚洲av电影在线进入| 成年版毛片免费区| 99精品久久久久人妻精品| 国产精品久久久av美女十八| 我的亚洲天堂| а√天堂www在线а√下载| 黄色成人免费大全| 午夜精品在线福利| 男人舔女人的私密视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 欧美黄色淫秽网站| 韩国精品一区二区三区| 国产麻豆成人av免费视频| 国产精品综合久久久久久久免费| 久久九九热精品免费| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| 欧美日韩瑟瑟在线播放| 精品久久久久久久末码| 国产精品免费视频内射| 日韩大码丰满熟妇| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 久久久久久免费高清国产稀缺| 久久午夜亚洲精品久久| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 自线自在国产av| 性欧美人与动物交配| av欧美777| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 99精品在免费线老司机午夜| 免费在线观看完整版高清| 国产又黄又爽又无遮挡在线| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 国产欧美日韩一区二区三| 两个人看的免费小视频| 波多野结衣高清作品| 成人一区二区视频在线观看| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区三区| 人成视频在线观看免费观看| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 国产一区二区三区视频了| 一进一出抽搐动态| 欧美av亚洲av综合av国产av| 久久伊人香网站| 亚洲成av片中文字幕在线观看| 麻豆一二三区av精品| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 日韩av在线大香蕉| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 欧美又色又爽又黄视频| 国产视频内射| 欧美在线黄色| 午夜久久久在线观看| 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频| 欧美性猛交╳xxx乱大交人| 国产乱人伦免费视频| 国产av又大| 人人妻,人人澡人人爽秒播| aaaaa片日本免费| 久久国产乱子伦精品免费另类| 欧美亚洲日本最大视频资源|