• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic Instability of Anisotropic Drift Wave Accompanied by Field Aligned Currents in Solar Coronal Loop

    2018-11-24 07:35:56HafsaNaimChUzmaandMurtaza
    Communications in Theoretical Physics 2018年10期

    Hafsa Naim, Ch.Uzma, and G.Murtaza

    Salam Chair,Department of Physics,GC University,Lahore 54000,Pakistan

    AbstractSolar coronal loops are frequently accompanied by the field-aligned currents,which drive instabilities if the drift velocity u0>vAthe Alfv′en velocity.For our choice of parameters,the critical threshold value of u0/vAis ~ 3.0 for growth and the corresponding current filling factor~ 10?3?10?4.Below this value we are no longer in the kinetic regime. The coronal loops also have short-scale density gradients within each loop.The electron resonance in the presence of density gradient causes the drift mode to grow.We study the effect of these two free energy sources,the electron drift and the density gradient,in the presence of temperature anisotropy T⊥α >T∥α.These effects simultaneously exist in the coronae.Using gyrokinetic theory,we investigate the influence of these effects,examine how they interplay with each other and study the consequent growth of the magnetosonic wave.We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents.The temperature anisotropy with chosen signatures causes further stabilizing effect.The results may prove useful to study the heating mechanism of solar coronal loops,acceleration of particles and confinement of particles in the thermonuclear reactors.

    Key words:solar corona,coronal loops,temperature anisotropy,density inhomogeneity,field-aligned currents,gyrokinetic

    1 Introduction

    Magnetic loops are the basic structural elements of the solar corona,which are actually the closed solar magneticfield lines.Solar coronal heating is still an unresolved puzzle since 1942 when Edl′en,[1]the Swedish physicist,fi rst time predicted the high temperature of the corona in comparison to the lower temperature of the photosphere.The solar corona consists of low-β plasma and is highly structured with a large number of continually developing loops and filaments fabricated by solar magnetic fields as observed by Skylab,SOHO,and TRACE etc.and most of these coronal magnetic loops are current carrying structures.[2?3]

    The dynamical structure of the coronal magnetic loops are the result of various processes including foot point motions of the photosphere,oscillations and tangling of loops.[4?6]The loops contribute significantly in the transformation of photospheric energy in to thermal energy in the corona.[7?9]Continuous motions of the foot points in the photosphere give rise to the field-aligned currents in the loops,[10?11]which in turn is the result of fluid motion in the convective zone.High electrical conductivity of the solar plasma causes convective flows to interact with the magnetic field at the foot points of the coronal loops,which results in twisting of field lines.In the coronal loops the magnetic pressure is much greater than the kinetic pressure,so these are the field free zones and the electric currents flow parallel or anti-parallel to the magnetic field lines.Also the field-aligned currents may be due to the flow of charges,which are gathered in the photosphere.[6,12]The field-aligned currents,which are believed to be an important source of coronal heating in closed magnetic regions,cannot be measured directly and can only be estimated from vector magnetograms and radio observations.[9,13?14]In the current carrying coronal loops,the field-aligned drift velocity of the current carrying electrons can be estimated as u0=(4I/πeneD2f)cm·s?1,where I the loop current in CGS units is found to be 3×1020statA,neis the electron density~ 109cm?3,d is the cross-sectional scale of real current channel,D is the cross-sectional diameter of the loop~108cm and f=(d/D)2?1 is the current filling factor ~ 10?3–10?4.So u0/vAcomes out to be ~ 1.0–10.0.[3,7]

    These fine structures(loops and filaments)play a crucial role in coronal heating.Among several others,the two important coronal heating theories are wave heating theory and the magnetic reconnection(nano-flare heating)theory.[7,15?16]One of the proposed heating mechanisms is through MHD waves.MHD waves are thought to play an important role in coronal plasma heating and solar wind acceleration.We can observe these waves directly in the corona through EUV imaging telescopes on SOHO and TRACE space crafts.Slow magnetosonic waves are inves-tigated by many researchers in the coronal loops.[17?20]The presence of fast magnetosonic waves in the low beta coronal plasma is reported by Thompson et al.[21]Fast magnetosonic wave is an exceptional tool for MHD seismology.

    But the present fluid/MHD models are not appropriate because actual heating occurs at much smaller length scales.So a kinetic treatment is needed.We introduce a model based on kinetic theory of obliquely propagating drift magnetosonic wave.The drift mode generally arises due to gradients in density,magnetic field or temperature.While dealing with kinetic drift wave theory,the most important factor for the heating of corona is the existence of density gradients perpendicular to the magnetic field.For the stimulation of drift waves,density gradients become a source of free energy.Drift modes continue to grow both in collisional and collisionless plasma environments in different regions of solar atmosphere and can be explained byfluid model as well as by kinetic model and therefore called universally growing modes.In a collisionless plasma the growth of the mode is the result of electron resonance accompanied by density inhomogeneity,which is exclusively a kinetic effect and cannot be studied by single fluid or MHD model.Similarly different values of electron and ion temperatures Teand Tiin the corona and large temperature anisotropy with T⊥α>T∥αcan only be explained by kinetic theory.So a kinetic drift mode can abide by all the requirements of coronal heating,i.e.,it provides an energy source at extremely high temperatures,is an efficient method of energy transfer to the particles and is applicable everywhere in the corona.[22?23]

    We are presenting a different model of coronal loops heating through drift wave accompanied by the fieldaligned currents using gyrokinetic theory.The requisite density gradients are observable in the extended magnetic loops in the entire solar atmosphere.A short scale density variations within each coronal loop discretely is observed in the 3D coronal loops analysis.[24?25]As we are considering low-β plasma,the magnetic field gradient as Ln/LB≈ β/2 can be neglected.[26?27]

    With the three free energy sources—field-aligned currents,density inhomogeneity,and temperature anisotropy,we estimate the growth of the drift magnetosonic wave.For clear perception of the problem,we first study their effects on the wave growth and the phase velocity individually,then in pairs and in the end all the three effects together.We observe that the field-aligned currents suppress the kinetic instability generated by the drift in the coronal loops.The stimulation,growth and damping of the kinetic instability is important for understanding the heating of corona and coronal loops and for analyzing the various phenomena,like acceleration of particles,taking place in space,astrophysics and in thermonuclear reactors.

    Regarding fusion applications,it is well known that in low-β toroidal devices,the density and temperature gradients are present that can drive the microinstabilities,which pose a serious threat to efficient confinement.[28?30]Further,the field-aligned currents are also present in tokamaks,which constitute another source of free energy.We notice that the simultaneous presence of the two free energy sources(density gradient and field aligned currents)along with temperature anisotropy,produces a stabilizing effect,which can improve the confinement.Gladd and Krall[31]discussed current driven drift waves in reversedfield pinches.

    The plan of the paper is as follows:Sec.2 describes the mathematical depiction.Section 3 gives graphical analysis and Sec.4 contains summary and results.

    2 Mathematical Depiction

    We consider the propagation of drift magnetosonic wave in a low beta anisotropic plasma with field-aligned currents produced by the field-aligned drift of electrons within a loop.Using gyrokinetic variables,the dispersion relation obtained by following the procedure of Naim et al.[16]is given by

    where α is used for species(ions and electrons).=/2ωcαLαis the diamagnetic drift frequency.Γn(bα)=In(bα)e?bαis the modified Bessel function and bα=is its argument.Z(ξnα)is the plasma dispersion function and ξnα(ξni=(ω ? nωci)/k∥vt∥iand ξne=(ω ? k∥u0? nωce)/k∥vt∥esince we are considering only field-aligned drift of electrons)is the argument of plasma dispersion function.Lnα= ?nα0[dnα0(x)/dx]?1is the scale length of density inhomogeneity,which is directed along x-axis,perpendicular to the ambient magnetic field directed along z-axis.

    Taking large argument expansion of plasma dispersion function ξnα? 1,and small Larmor radii bα? 1,assuming ω2?and after performing some lengthy algebra,[32]we get the ReD(ω,k)and ImD(ω,k)parts of the dispersion relation for anisotropic drift magnetosonic wave with field-aligned currents as

    where ω′= ω ? k∥u0and u0is the field-aligned drift velocity of electrons,

    The growth rate of instability is obtained by using the relationas

    3 Graphical Analysis

    We numerically evaluate the above Eqs.(2)and(4)for the following parameters of solar coronal loops,n0=109cm?3,B0=10 G,T⊥i/T∥i=6.75,T⊥e/T∥e=6,=0.002,and η=k⊥vA.The real dispersion relation Eq.(2)is obtained by putting the real part equal to zero,while Eq.(4)gives the growth rate of drift magnetosonic wave with the field-aligned currents in the presence of temperature anisotropy.Equations(2)and(4)are general expressions,which include all the three effectsparallel drift of electrons,density gradient and temperature anisotropy.For better understanding of the interaction of different effects,we first briefly examine them individually.

    Considering electron drifting alone assuming density gradient and temperature anisotropy to be absent,the growth rate is given by

    which is graphically represented in Fig.1.

    Fig.1 γ/k⊥vAvs.k∥/k⊥,for different values of u0/vA(drift velocity),i.e.,u0/vA=2.0,3.0,5.0 and 7.0.

    As is obvious from Fig.1,both damping and growth depend on the value of k∥u0? ω.We also observe that as the drift velocity is increased,the threshold of growth shifts towards lower values of k∥/k⊥.Further,from the real dispersion relation,it is clear that the field-aligned drift of electrons has no considerable effect on the phase velocity of the wave as shown in Fig.2.

    Fig.2 ωr/k⊥vAvs.k∥/k⊥,for different values of u0/vA,i.e.,u0/vA=2.0,3.0,5.0 and 7.0.

    Likewise,if we examine the effect of temperature anisotropy alone,the expression for the growth rate becomes

    and its graph is obtained in Fig.3.

    Fig.3 γ/k⊥vAvs.k∥/k⊥,for a fixed value of T⊥e/T∥e=6.0(temperature anisotropy).

    We notice that the temperature ratio T⊥e/T∥eis an important factor on which the damping or growth of the wave depends.If T⊥e>T∥e(T∥e>T⊥e)there is damping(growth).The phase velocity of the wave increases with temperature anisotropy as mentioned in our earlier work.[33]

    To investigate the independent effect of density gradient,we neglect temperature anisotropy and electron drift velocity,and get the expression for the growth rate as

    The plot for the growth is shown in Fig.4.

    Fig.4 γ/k⊥vAvs.k∥/k⊥,for different values of η (inhomogeneity factor),i.e.,η=2.0,4.0,6.0 and 8.0.

    It is obvious that the instability condition for growth is?ω>0.We observe that growth increases with the increase of inhomogeneity factor η.We also realize that the growth of the wave reduces with the increase of parallel propagation component k∥.

    The plot of the phase velocity vs.obliqueness k∥/k⊥for different values of η shows that with the increase of density gradient,the phase velocity decreases as shown in Fig.5.

    Fig.5 ωr/k⊥vAvs.k∥/k⊥,for different values of η,i.e.,η=2.0,4.0,6.0 and 8.0.

    Now to observe the effect of two free energy sources and to investigate their relationship with each other,we neglect density inhomogeneity and obtain the following growth rate

    We notice that for growth k∥u0? ω >0(i.e.,the drift velocity u0> ω/k∥the parallel phase velocity)and 2T⊥e/T∥e>1.The temperature anisotropy comes out just as a multiplicative factor and therefore it improves damping or growth of the wave roughly 10 times as is displayed in Fig.6.

    Fig.6 γ/k⊥vA vs.u0/vA,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0.

    Regarding phase velocity,we see that it increases with temperature anisotropy as shown in Fig.7.

    Fig.7 ωr/k⊥vAvs.u0/vA,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0.

    We have seen the effect of temperature anisotropy on drift velocity u0/vA.Now to see the effect of temperature anisotropy on density gradient,we neglect the fieldaligned currents.The growth rate for this case then takes the form

    The plot for the growth rate is depicted in Fig.8.

    The growth of the drift wave is suppressed by the temperature anisotropy by nearly a factor of 100 as Fig.8 displays.

    Fig.8 γ/k⊥vAvs.η,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0 for a fixed value of k∥/k⊥ =0.2.

    The phase velocity vs.density gradient for isotropic and anisotropic cases is also checked and the behavior is shown in Fig.9.

    We see that as η approaches the value near 4,the phase velocity enhances due to the temperature anisotropy.

    Fig.9 ωr/k⊥vAvs.η,for the isotropic case T⊥e/T∥e=1.0 and the anisotropic case T⊥e/T∥e=6.0 for a fixed value of k∥/k⊥ =0.2.

    To see how the density gradient and drift velocity u0/vAinterplay with each other we take Ti=Te.The growth rate then becomes

    Figure 10 shows the plots for the growth rate.

    Fig.10 γ/k⊥vAvs.u0/vA,for different values of η,i.e.,η =2.0,4.0,6.0,and for a fixed value of k∥/k⊥ =0.2.

    The threshold condition for instability in this case is?ω′>0.For<ω′there is damping of the drift magnetosonic wave in the presence of field-aligned currents and when>ω′growth occurs.We also observe that for the values of η=2.0,4.0,6.0,the growth decreases with the increase of η.In the absence of field-aligned currents,the behavior becomes opposite,i.e.,the growth of drift magnetosonic wave boosts with the enhancement in density gradient.The plots are made for the parameter θ~ 11.45?.

    So far as real wave frequency is concerned,we find that the phase velocity of the wave decreases for these values of η as depicted in Fig.11.

    Fig.11 ωr/k⊥vAvs.u0/vA,for different values of η,i.e.,η =2.0,4.0,6.0,and for a fixed value of k∥/k⊥ =0.2.

    The combined effect,when all the three free energy sources are present together,is that for a fixed value of k∥/k⊥=0.2 and temperature anisotropy χ =16.5,the growth occurs after a certain threshold value of u0/vA~3.0 as depicted in Fig.12,which is actually the inverse-Landau damping.Also the growth of the wave reduces with increase of η.Regarding the phase velocity of the wave,it first falls slightly and then becomes constant as seen in Fig.13.We also notice the decrement in the phase velocity with the increase of η.

    The kinetic instability of drift magnetosonic wave is driven by the free energy stored in the density gradient in the presence of field-aligned currents.The growth time of the instability τγshould be less than temperature anisotropy relaxation time τAand the diffusion time τDof plasma in the perpendicular direction.[34]The diffusion coefficient for a fixed k can be calculated by using Dk≈ π2γk/k2and the diffusion time τD=L2n/Dkcomes out to be ~ 1010sec.The growth time of instability τγis very small~ 10?3sec.It is noticed that even minute density gradient can support kinetic drift instability.

    Fig.12 γ/k⊥vAvs.u0/vA,for fixed values of k∥/k⊥ =0.2 and T⊥e/T∥e=6.0 for three different values of η,i.e.,η=2.0,4.0 and 6.0.

    Fig.13 ωr/k⊥vAvs.u0/vA,for fixed values of k∥/k⊥ =0.2 and T⊥e/T∥e=6.0 for three different values of η,i.e.,η=2.0,4.0 and 6.0.

    4 Summary and Results

    In this work,we have examined the propagation characteristics of obliquely propagating drift magnetosonic mode in an anisotropic,low beta plasma with field-aligned currents in coronal loops.Density gradients are the source of free energy,which are all time present in the coronal regime.Electric currents,constitute another free energy source,may play an important role for solar plasma heating.The solar coronal loops are mostly current carrying loops.These loops are similar to the one found in tokamak plasma regime.[7,10]The currents associated with the coronal loops cannot be measured directly because the surface boundary is not obvious.Zaitsev et al.[35]measured the total current in solar plasma loops using an analog LRC-circuit model.The total current in a loop is found to be I? 1012×p?1A1.8×1020statA?4.2×1021statA where p is the period of eigen oscillations(0.7–1.7)sec.We have three free energy sources—parallel drift of electrons,density inhomogeneity,and temperature anisotropy.To facilitate understanding,we have examined their effects one by one,then in pairs and finally all the three effects together.The drift velocity has no prominent influence on the phase velocity but it makes the wave to damp or grow depending on the condition k∥u0?ω <0 or>0.The temperature anisotropy T⊥e>T∥ecauses the magnetosonic wave to damp and increases its phase velocity.While considering density gradient,we find that it reduces the phase velocity of the wave and increases the growth rate of the wave depending on the condition?ω>0.We then investigate these effects in pairs.Regarding field-aligned currents and temperature anisotropy,we observe that as currents cause growth above the point k∥u0?ω and damping below that,the anisotropy just enhances these effects almost 10 times.In the same way,when we consider density gradient and temperature anisotropy,we find that the former shows growth for?ω>0 and the latter suppresses it.When density gradient and drift velocity are considered,we observe the damping of the wave for values?ω′<0 and growth above that.We observe that the growth decreases as η increases.However behavior pattern is different in the absence of field-aligned currents,where the growth increases and the phase velocity decreases with the enhancement of η.

    The overall effect of all the three free energy sources is shown in Figs.12–13.The instability driven by density inhomogeneity is suppressed by the field-aligned currents and is due to resonance interaction between the drifting electrons and the drift wave.The condition for the instability is u0>vA.For our parameters,the critical value of u0/vAis~3.0 below this value we no longer remain in the kinetic regime.For this condition the current filling factor f must be less than 10?3,which is fulfilled in our case.Here we note that with the increase of u0/vAthe phase velocity of the wave initially falls and then saturates.The inhomogeneity reduces the phase velocity as shown in Fig.13.

    We conclude that the instability generated by drift can be suppressed by the field-aligned currents in the presence of temperature anisotropy,which enhances that effect.The results may prove useful to study solar coronal heating and to improve the plasma confinement in nuclear reactors.

    日本黄大片高清| 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 成人综合一区亚洲| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 毛片一级片免费看久久久久| 国产一级毛片在线| 日韩国内少妇激情av| 在线观看av片永久免费下载| 国产国拍精品亚洲av在线观看| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 伦精品一区二区三区| 婷婷色麻豆天堂久久| 国产精品欧美亚洲77777| 一本久久精品| 亚洲精品一区蜜桃| 亚洲国产高清在线一区二区三| 视频区图区小说| av国产精品久久久久影院| 成年免费大片在线观看| 一个人看视频在线观看www免费| 男人舔奶头视频| 久久久国产一区二区| 欧美成人a在线观看| 女的被弄到高潮叫床怎么办| 欧美激情极品国产一区二区三区 | 97热精品久久久久久| 特大巨黑吊av在线直播| 国产在线视频一区二区| 亚洲熟女精品中文字幕| 91久久精品国产一区二区成人| 久久人人爽人人片av| 午夜免费观看性视频| 精品国产露脸久久av麻豆| 一区二区av电影网| 亚洲成人手机| 国产日韩欧美在线精品| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 欧美三级亚洲精品| 高清av免费在线| 国产精品熟女久久久久浪| av在线app专区| 国产高清不卡午夜福利| 亚洲无线观看免费| 自拍偷自拍亚洲精品老妇| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| 秋霞伦理黄片| 亚洲精品,欧美精品| 舔av片在线| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 亚洲精品国产色婷婷电影| 免费黄色在线免费观看| 亚洲久久久国产精品| 亚洲欧美日韩无卡精品| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 国产极品天堂在线| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 一本—道久久a久久精品蜜桃钙片| 一区二区三区乱码不卡18| 老女人水多毛片| 高清午夜精品一区二区三区| 又粗又硬又长又爽又黄的视频| 国产精品嫩草影院av在线观看| 免费少妇av软件| 亚洲欧美精品自产自拍| 激情 狠狠 欧美| 国产视频内射| 一个人看的www免费观看视频| 亚洲美女视频黄频| 在线 av 中文字幕| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 午夜免费鲁丝| 又爽又黄a免费视频| 三级经典国产精品| 十分钟在线观看高清视频www | 国产黄色视频一区二区在线观看| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 免费少妇av软件| 亚洲av欧美aⅴ国产| 亚洲国产欧美人成| 欧美3d第一页| 亚洲经典国产精华液单| 丰满人妻一区二区三区视频av| 毛片女人毛片| 人妻一区二区av| 精华霜和精华液先用哪个| 国产免费视频播放在线视频| 中文字幕人妻熟人妻熟丝袜美| 日本-黄色视频高清免费观看| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 18+在线观看网站| 国产精品成人在线| 能在线免费看毛片的网站| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 日韩强制内射视频| 欧美3d第一页| 免费观看av网站的网址| 久久久国产一区二区| 一级黄片播放器| 高清视频免费观看一区二区| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 欧美精品人与动牲交sv欧美| 免费大片18禁| 一个人免费看片子| 在线观看av片永久免费下载| 精品少妇久久久久久888优播| 久久久久久人妻| 亚洲国产高清在线一区二区三| 有码 亚洲区| 青春草国产在线视频| 日本黄色日本黄色录像| 大片电影免费在线观看免费| 99热全是精品| 久久久久国产网址| 久久久国产一区二区| 久久久久性生活片| 黑丝袜美女国产一区| av又黄又爽大尺度在线免费看| 精品人妻熟女av久视频| 亚洲在久久综合| 亚洲欧洲国产日韩| 国产淫片久久久久久久久| 蜜桃在线观看..| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 精品一区二区三卡| 久久精品国产自在天天线| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 精华霜和精华液先用哪个| 一级毛片我不卡| 在线观看免费视频网站a站| 国产午夜精品久久久久久一区二区三区| 国精品久久久久久国模美| 精品亚洲成国产av| 亚洲真实伦在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产大屁股一区二区在线视频| 午夜福利高清视频| 国精品久久久久久国模美| 一个人免费看片子| 免费人妻精品一区二区三区视频| 亚洲高清免费不卡视频| av视频免费观看在线观看| 久久国产乱子免费精品| 老司机影院成人| 中国美白少妇内射xxxbb| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 大陆偷拍与自拍| 少妇的逼好多水| 久久精品久久久久久久性| 三级经典国产精品| 精品一区在线观看国产| 最近最新中文字幕大全电影3| 亚洲精品视频女| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 亚洲色图综合在线观看| 午夜免费观看性视频| 日韩中字成人| 国产片特级美女逼逼视频| 内射极品少妇av片p| 久久久久久久久大av| 精品人妻熟女av久视频| 欧美日韩综合久久久久久| 国产精品三级大全| 日日啪夜夜爽| 国产精品成人在线| 国产淫片久久久久久久久| 国产在线视频一区二区| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 久久久久久久久久人人人人人人| 国产精品一区二区在线不卡| 国产 一区 欧美 日韩| 午夜日本视频在线| 日本av手机在线免费观看| 国产精品麻豆人妻色哟哟久久| freevideosex欧美| 美女内射精品一级片tv| av专区在线播放| 少妇被粗大猛烈的视频| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 亚洲国产精品一区三区| 亚洲av成人精品一区久久| 精品人妻视频免费看| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| 大码成人一级视频| 国产爽快片一区二区三区| 91久久精品电影网| 欧美xxxx黑人xx丫x性爽| 99久久精品一区二区三区| 26uuu在线亚洲综合色| 下体分泌物呈黄色| 国产中年淑女户外野战色| 大又大粗又爽又黄少妇毛片口| 美女主播在线视频| 97精品久久久久久久久久精品| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区三区| 国产在线一区二区三区精| 午夜福利高清视频| 午夜老司机福利剧场| 在线播放无遮挡| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 王馨瑶露胸无遮挡在线观看| 欧美激情国产日韩精品一区| 五月玫瑰六月丁香| 亚洲av在线观看美女高潮| 日日啪夜夜撸| 久久久色成人| 国产男女超爽视频在线观看| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 七月丁香在线播放| 成人二区视频| 免费高清在线观看视频在线观看| 五月天丁香电影| 亚洲中文av在线| 夫妻午夜视频| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 国产乱来视频区| 全区人妻精品视频| 国产综合精华液| 联通29元200g的流量卡| 亚洲欧洲国产日韩| 青春草国产在线视频| 欧美xxⅹ黑人| 一级毛片我不卡| 国产成人freesex在线| 2018国产大陆天天弄谢| 老女人水多毛片| 精品久久久久久久久亚洲| 久久久久精品性色| 黑丝袜美女国产一区| 天美传媒精品一区二区| 赤兔流量卡办理| 七月丁香在线播放| 久久久久久久久久久丰满| av在线观看视频网站免费| 男人和女人高潮做爰伦理| www.av在线官网国产| 搡老乐熟女国产| 国产高清三级在线| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 午夜福利在线观看免费完整高清在| 久久 成人 亚洲| 亚洲欧美成人精品一区二区| 亚洲自偷自拍三级| 精品亚洲乱码少妇综合久久| 免费播放大片免费观看视频在线观看| 免费看日本二区| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 国产毛片在线视频| 国产高清国产精品国产三级 | 久久人人爽av亚洲精品天堂 | 最近中文字幕高清免费大全6| 午夜视频国产福利| xxx大片免费视频| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 免费黄色在线免费观看| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 久久韩国三级中文字幕| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 久久久欧美国产精品| 国产男人的电影天堂91| 国产色爽女视频免费观看| 免费播放大片免费观看视频在线观看| 亚洲国产成人一精品久久久| av国产免费在线观看| 亚洲精品成人av观看孕妇| 成人毛片60女人毛片免费| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 男女国产视频网站| 赤兔流量卡办理| 国产成人精品婷婷| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看 | av视频免费观看在线观看| 在线观看三级黄色| 亚洲av成人精品一区久久| 日本vs欧美在线观看视频 | 国产黄片美女视频| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| 国产综合精华液| 91精品一卡2卡3卡4卡| 欧美国产精品一级二级三级 | 永久免费av网站大全| 美女cb高潮喷水在线观看| 久久国产精品大桥未久av | 国产久久久一区二区三区| 亚洲天堂av无毛| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 久久人人爽人人片av| 中文字幕av成人在线电影| av女优亚洲男人天堂| 亚洲成人av在线免费| 国精品久久久久久国模美| 伦精品一区二区三区| 国产精品精品国产色婷婷| 久久久精品免费免费高清| 亚洲国产欧美在线一区| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 色哟哟·www| 在线观看一区二区三区激情| 777米奇影视久久| 丝袜喷水一区| 黑人高潮一二区| 国产 一区 欧美 日韩| 色婷婷av一区二区三区视频| videos熟女内射| 精品久久久久久电影网| videos熟女内射| 久久久久久久久大av| 久久久久久久久久久丰满| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 黄片wwwwww| 国产精品蜜桃在线观看| 少妇丰满av| 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 日韩精品有码人妻一区| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 午夜免费男女啪啪视频观看| 欧美一区二区亚洲| 尾随美女入室| 一区二区三区四区激情视频| 性高湖久久久久久久久免费观看| videossex国产| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 亚洲丝袜综合中文字幕| av一本久久久久| 国产精品国产av在线观看| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 精品一区在线观看国产| 国产精品99久久久久久久久| 久久国产亚洲av麻豆专区| 大香蕉久久网| 午夜老司机福利剧场| 国产熟女欧美一区二区| 精品一区二区三区视频在线| 亚洲精品视频女| 三级国产精品片| 国产一区二区三区av在线| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 欧美高清性xxxxhd video| 日本wwww免费看| 亚洲精品一区蜜桃| 在线观看三级黄色| 另类亚洲欧美激情| 一级毛片久久久久久久久女| 欧美激情极品国产一区二区三区 | 国产爱豆传媒在线观看| 两个人的视频大全免费| 久久国内精品自在自线图片| 22中文网久久字幕| 人妻系列 视频| 国产精品福利在线免费观看| 中文字幕免费在线视频6| 亚洲伊人久久精品综合| 一级爰片在线观看| 激情五月婷婷亚洲| 免费看光身美女| 91精品国产国语对白视频| 亚洲成人av在线免费| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 亚洲精品456在线播放app| 久久精品国产自在天天线| 亚洲av在线观看美女高潮| 一本色道久久久久久精品综合| 大又大粗又爽又黄少妇毛片口| 激情五月婷婷亚洲| 亚洲国产日韩一区二区| 插阴视频在线观看视频| 久久热精品热| 美女高潮的动态| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 少妇人妻久久综合中文| 日本欧美视频一区| 久久久久人妻精品一区果冻| 国产精品一区二区三区四区免费观看| 丰满少妇做爰视频| 91久久精品电影网| 国产精品久久久久久精品古装| 日韩伦理黄色片| 国产大屁股一区二区在线视频| 国产国拍精品亚洲av在线观看| 国产又色又爽无遮挡免| 欧美zozozo另类| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 午夜日本视频在线| 纯流量卡能插随身wifi吗| 久久久成人免费电影| tube8黄色片| 97在线视频观看| 伦精品一区二区三区| 91精品伊人久久大香线蕉| av.在线天堂| 欧美精品亚洲一区二区| 免费观看a级毛片全部| 日日啪夜夜爽| 多毛熟女@视频| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 精品国产一区二区三区久久久樱花 | 亚洲国产成人一精品久久久| 亚州av有码| av视频免费观看在线观看| 嫩草影院新地址| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| 国产一级毛片在线| 亚洲伊人久久精品综合| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜 | 欧美一区二区亚洲| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 哪个播放器可以免费观看大片| av在线app专区| 色哟哟·www| 99re6热这里在线精品视频| 欧美成人一区二区免费高清观看| 在线观看av片永久免费下载| 亚洲国产成人一精品久久久| 777米奇影视久久| 中国美白少妇内射xxxbb| av卡一久久| 国产免费福利视频在线观看| 美女高潮的动态| 亚洲国产精品专区欧美| 久久这里有精品视频免费| 精品少妇久久久久久888优播| 99视频精品全部免费 在线| 国产 精品1| 欧美日韩视频精品一区| 精品亚洲成a人片在线观看 | 波野结衣二区三区在线| 熟女人妻精品中文字幕| 在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 青青草视频在线视频观看| 色网站视频免费| 最近的中文字幕免费完整| 少妇被粗大猛烈的视频| 联通29元200g的流量卡| 国产高清有码在线观看视频| 男女免费视频国产| 婷婷色av中文字幕| 亚洲一级一片aⅴ在线观看| 欧美高清成人免费视频www| av卡一久久| 久久久久久九九精品二区国产| 欧美成人精品欧美一级黄| 亚洲自偷自拍三级| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 免费av中文字幕在线| 国产成人精品福利久久| 国产人妻一区二区三区在| 哪个播放器可以免费观看大片| 少妇精品久久久久久久| 亚洲av电影在线观看一区二区三区| av福利片在线观看| 久久精品夜色国产| 亚洲国产av新网站| 成人午夜精彩视频在线观看| 亚洲成人手机| 婷婷色麻豆天堂久久| 精品亚洲乱码少妇综合久久| 狂野欧美激情性xxxx在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲人与动物交配视频| 亚洲怡红院男人天堂| 少妇的逼水好多| 亚洲高清免费不卡视频| 这个男人来自地球电影免费观看 | 男人狂女人下面高潮的视频| av又黄又爽大尺度在线免费看| 99re6热这里在线精品视频| 亚洲四区av| 欧美日韩在线观看h| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 1000部很黄的大片| 纯流量卡能插随身wifi吗| 精品久久久久久久久av| 成人亚洲精品一区在线观看 | 三级国产精品欧美在线观看| 久久久久久久大尺度免费视频| 国产男女内射视频| 国产白丝娇喘喷水9色精品| 51国产日韩欧美| 亚洲国产精品专区欧美| 色5月婷婷丁香| 亚洲四区av| 欧美日韩精品成人综合77777| 国产淫语在线视频| 91久久精品国产一区二区成人| 国产乱人视频| 国产日韩欧美亚洲二区| 久久综合国产亚洲精品| av在线蜜桃| 亚洲人成网站在线播| 欧美国产精品一级二级三级 | 日韩大片免费观看网站| 伦精品一区二区三区| 男人和女人高潮做爰伦理| 3wmmmm亚洲av在线观看| av视频免费观看在线观看| 成人无遮挡网站| 亚洲真实伦在线观看| 少妇精品久久久久久久| 日本vs欧美在线观看视频 | 国产 一区精品| 国产免费又黄又爽又色| 91久久精品国产一区二区成人| 亚洲精品自拍成人| av黄色大香蕉| 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 亚洲精品一区蜜桃| 美女xxoo啪啪120秒动态图| 日本黄大片高清| 熟妇人妻不卡中文字幕| av一本久久久久| 肉色欧美久久久久久久蜜桃| 极品教师在线视频| 欧美另类一区| 国产有黄有色有爽视频| 欧美 日韩 精品 国产| 久久久精品94久久精品| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品古装| 精品久久国产蜜桃| 网址你懂的国产日韩在线| 国产精品一二三区在线看| 又粗又硬又长又爽又黄的视频| 成人亚洲精品一区在线观看 | 看免费成人av毛片| 亚洲综合精品二区| 国产真实伦视频高清在线观看| 日韩一区二区视频免费看| av在线播放精品| 欧美xxⅹ黑人| 色视频www国产| 97超视频在线观看视频| 五月开心婷婷网| 韩国高清视频一区二区三区| 一边亲一边摸免费视频| 久久女婷五月综合色啪小说| 干丝袜人妻中文字幕| 一级a做视频免费观看| 欧美日韩综合久久久久久| 极品教师在线视频|