• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Accuracy Split-Step Finite Difference Method for Schr¨odinger-KdV Equations?

    2018-11-24 07:39:52FengLiao廖鋒andLuMingZhang張魯明
    Communications in Theoretical Physics 2018年10期

    Feng Liao(廖鋒) and Lu-Ming Zhang(張魯明)

    1School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China

    2College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    AbstractIn this article,two split-step finite difference methods for Schr¨odinger-KdV equations are formulated and investigated.The main features of our methods are based on:(i)The applications of split-step technique for Schr¨odingerlike equation in time.(ii)The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii)Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently.Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.

    Key words:split-step method,Schr¨odinger-KdV equations,finite difference method,fast Fourier transform

    1 Introduction

    The nonlinear Schr¨odinger-KdV equations[1?2]

    can be used to model the nonlinear dynamics behavior of one-dimensional Langmuir and ion-asoustic waves in a system of coordinates moving at the ion-acoustic speed.Here ? is a positive constant,u is complex function describing electric field of Langmuir oscillations while v is real function describing low-frequency density perturbation.

    Many works have been concentrated on the numerical studies of this problem.Bai and Zhang[3]formulated a finite element method(FEM)to study Schr¨odinger-KdV equations. Later,Bai[4]developed a split-step quadratic B-spline finite element method(SSQBS-FEM)for Schr¨odinger-KdV equations.Appert and Vaclavik[5]solved the Schr¨odinger-KdV equations using a finite difference method(FDM).Golbabai a Safdari-Vaighani[6]employed a meshless technique based on radial basis function(RBF)collocation method.Zhang et al.did some works concerning Schr¨odinger-KdV equations using average vector field(AVF)method and multi-symplectic Fourier pseudospectral(MSFP)method.[7?8]Some other numerical methods for Schr¨odinger-KdV equations,such as variational iteration method,decomposition method and homotopy perturbation method,readers are reffered to Refs.[9–11]and reference therein.

    The main purpose of this paper is to construct high accuracy split-step finite difference(SSFD)method for Schr¨odinger-KdV equations.Split-step(or time-splitting)method has evolved as a valuable technique for the numerical approximation of partial differential equations(PDE).Wang[12]presented a time-splitting finite difference(TSFD)method for various versions of nonlinear Schr¨odinger equation.To improve the accuracy of TSFD,Dehghan and Taleei[13]constructed a compact time-splitting finite difference scheme,which was proved to be unconditionally stable and preserve some invariant properties.Wang and Zhang[14]proposed an efficient split-step compact finite difference method for the cubicquintic complex Ginzburg-Landau equations both in one dimension and in multi-dimensions.However,all of these methods require to solve tridiagonal linear algebraic equations in implementation,and the computational cost will be increased along with the increment of the spatial accuracy.

    Recently,Wang et al. constructed a time-splitting compact finite difference method for Gross-Pitaevskii equation,which is realized by discrete fast discrete Sine transform,and there is no need to solve linear algebraic equations.[15]Subsequently,Wang[16]considered sixthorder compact time-splitting finite difference method for nonlocal Gross-Pitaevskii equation,the method is of spectral-like accuracy in space,and conserves the total mass and energy of the system in the discretized level.It should be noted that the methods in Refs.[15–16]are notfit for solving the PDE with odd-order partial derivatives.In this paper,we formulate a high accuracy and fast solver for Schr¨odinger-KdV equations based on discrete Fourier transform,which is of sixth or eighth-order accuracy in space and can be realized by FFT efficiently.

    The layout of the paper is as follows:In Sec.2,we formulate a sixth-order split-step finite difference(SSFD-6)method.Then we establish an eighth-order split-stepfinite difference(SSFD-8)method in Sec.3.Numerical investigations of our numerical methods are conducted in Sec.4,and some conclusions are drawn in Sec.5.

    2 Sixth-Order Split-Step Finite Difference Method

    In this paper,we consider the general forms of Schr¨odinger-KdV equations

    with the initial value and periodic-boundary conditions of

    where ? =[xL,xR],γ,ξ,α,ω are known constants,u(0)(x)and v(0)(x)are periodic functions with the period xR?xL.It is easy to verify that problem(2)–(5)preserves the total mass

    and the total energy

    2.1 Sixth-Order Difference Approximation Formula

    Choose a mesh size h:=(xR?xL)/J with J an even positive integer,time step τ,and denote grid points with coordinates(xj,tn):=(xL+jh,nτ)for j=0,1,...,J?1 and n≥0.Define

    For any general periodic function u(x)on ? and a vector u ∈ YJ,let PJ:L2(?)→ XJbe the standard L2-projection operator onto XJ,IJ:C(?) → XJand IJ:YJ→XJbe the trigonometric operator,i.e.

    with

    Obviously,PJand IJare identical operators over XJ.

    For any u,v∈YJ,the inner product and norm are defined as follows:

    Suppose that g(x)is an xR?xLperiodic function,then for the approximation of the first-order derivative gx(x),we have the following formula,i.e.

    where gj=g(xj),=gx(xj)and a,α,β are undetermined parameters,which depend on the accuracy-order constraints.Base on Taylor’s expansion,we have

    The linear equations(9)is unique solvable,i.e.a=1/3,α=7/9,β=1/36.Then we obtain the sixth-order difference approximation for the first-order partial derivative

    Next,we approximate the third-order derivative fxxx(x)via the following formula,i.e.

    It follows from Taylor’s expansion,we obtain

    which is unique solvable,i.e. a=4/9,b=1/126,α= ?40/21,β=20/21.Thus,the sixth-order difference approximation for the third-order partial derivative is given as follows

    Finally,we approximate the second-order derivative fxx(x)as follows

    From Taylor’s expansion,we have

    which is unique solvable and a=2/11,α=12/11,β=3/44.Then the sixth-order difference approximation for the second-order partial derivative is given as follows

    2.2 Split-Step Finite Difference Method

    The discrete Fourier transform for{gj}and its inverse are provided as follows,i.e.

    Similarly,wa can define discrete Fourier transform for,,andand their inverse.

    From Eqs.(10)and(17),we have

    which gives

    Similarly,from Eqs.(13),(16),and(17),we obtain

    In the rest of this section,we formulate a splitstep finite difference(SSFD)method for problem(2)–(5).Firstly,we discrete KdV-like equation(3)in temporal direction as follows

    for j=0,1,...,J?1.Acting the discrete Fourier transform on Eq.(22)and considering the orthogonality of the Fourier basis functions,we obtain

    for l=?J/2,?J/2+1,...,J/2?1,where,,andrepresent the discrete Fourier transform of,,and,respectively.From Eqs.(19),(20)and(23),we obtain

    for n≥ 1 and l= ?J/2,?J/2+1,...,J/2?1,whereandexpress the discrete Fourier transform ofand,respectively.

    Secondly,we utilize split-step method to discrete Schr¨odinger-like equation(2)in time,we obtain

    Directly from the nonlinear subproblem in Eq.(25),we have

    Integrating Eq.(26)from tnto tn+1,and then approximating the integral on[tn,tn+1]via trapezoidal rule,we obtain

    For the linear subproblem in Eq.(25),we discretize it in time as follows

    Followed by discrete Fourier transform and Eq.(21),we have

    From Eqs.(27)and(29),the sequential subproblems(25)can be solved as follows:

    From above discussion,Eqs.(24)and(30)–(32)comprise the details of sixth-order split-step finite difference(SSFD-6)method. However,SSFD-6 is a three-level scheme,which requires a two-level scheme to calculate u1and v1.In this article,we compute u1and v1via the following two-level nonlinear implicit scheme,i.e.

    Above all,the details of SSFD-6 are provided as follows:

    DO

    END WHILE

    WHILE n

    DO

    END WHILE

    Theorem 1 The discretizations Eqs.(30)–(32)for Sch¨odinger-like equation posses the following property:

    where Qn= ∥un∥2.

    Proof Noticing the Parserval’s identity

    thus from Eq.(31),we have

    Directly from Eqs.(30)and(32),we have

    From Eqs.(37)and(38),we can see that the conclusion of this theorem holds. ?

    Remark 1 Theorem 1 implies that SSFD-6 method preserves the total mass in discrete level.We do not expect that SSFD-6 conserves the total energy,but the energy can be discretized as

    Theorem 1 also demonstrates that the complex component unis convergent in the sense of L2-norm.Similar to the methods which have been done in Ref.[17],we can obtain the L2-error estimates of un,i.e.

    where C0is a constant independent of h,τ.For simplicity of this paper,we omit the proof details.Next,we will prove the convergence of vnvia mathematical induction argument method.

    Theorem 2 Let un,vn∈XJbe the numerical approximations of SSFD-6.If u(x,t),v(x,t),and f(·)are sufficiently smooth,there exist two constants h0>0 and C independent of τ(or n)and h,such for any h ≤ h0and τ=o(h),

    Proof See Appendix B. ?

    3 Eighth-Order Split-Step Finite Difference Method

    To construct eighth-order split-step finite difference(SSFD-8)method for Schr¨odinger-KdV equations,we provide the eighth-order finite difference formulas for the first,second and third-order derivatives as follows:

    This together with Eq.(17),we obtain the relationship betweenx?gl,xx?gl,xxx?gl,and?glas follows

    Similar to the analysis in Sec.2,the details of SSFD-8 are provided as follows

    for n ≥ 1,and u1,v1can be calculated iteratively as we have done in Eqs.(33)–(36).

    Comparing with SSFD-6,we can see that the computational complexity of SSFD-8 is identical to SSFD-6,but SSFD-8 is more accurate than SSFD-6 in spatial direction.Thus the computational complexity of our methods will not increase along with the increment of spacial accuracy.Based on this,we can design more higher accurate SSFD method,which can achieve spectral-like accuracy in space when more higher-order finite difference method is investigated.

    4 Numerical Results

    In this section,we will provide some numerical examples to test the performance of SSFD method for Schr¨odinger-KdV equations.Based on the works of Refs.[2,18],we provide two kinds of solitary-wave solutions for problem(2)–(3)with f(v)=θv2.

    Example 1 Let γ=3/2,ξ=1/2,α =1/2,θ=1/2,ω =?1/2,and M=?9/20,δ=27/800.

    Example 2 Let γ=1,ξ=?1,α =1/3,θ=1,ω =?1/2,and M=1,δ=1/4.

    We calculate the L2and L∞norm errors using the formulas

    Table 1 The errors and convergence ratio of SSFD-6 for Example 1 at t=1 with ?=[?128,128].

    Table 2 The errors and convergence ratio of SSFD-6 for Example 2 at t=1 with ?=[?128,128].

    Fig.1 Numerical solutions of Example 1 for t ∈ [0,20]with ? =[?128,128].

    The errors and convergence ratio of SSFD-6 are examined in Tables 1–2,which demonstrate that SSFD-6 has sixthorder accuracy in space.Figures 1 and 2 simulate the numerical solutions of SSFD-6 for Example 1 and Example 2,respectively,with h=1/2 and τ=1/80.

    Fig.2 Numerical solutions of Example 2 for t∈ [0,20]with ? =[?128,128].

    Fig.3 The discretization errors of the conservative quantities for Example 1 with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.4 The discretization errors of the conservative quantities for Example 2 with h=1/2,τ=1/80 and ? =[?128,128].

    From Table 3,we can see that SSFD-8 is of eighth-order accuracy in space.We have compared the accuracy of SSFD-6 and SSFD-8 in Table 4,which indicates that SSFD-8 is more accurate than SSFD-6.

    Table 3 The errors and convergence ratio of SSFD-8 for Example 2 at t=1 with? =[?128,128].

    Fig.5 Numerical solutions of general nonlinearity for t∈ [0,20]with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.6 The discretization errors of the conservative quantities for general nonlinearity with h=1/2,τ=1/80 and? =[?128,128].

    Table 4 Comparison of L2and L∞error norms for numerical solutions of Example 1 at t=1 with ? =[?128,128].

    To validate the conservation properties,we have computed the total mass and energy of Example 1 and Example 2,the discretization errors of the conservative quantities are plotted in Fig.3 and Fig.4,which demonstrate that SSFD-6 preserves the total mass and energy very well.A comparative study has been conducted with some existing methods and the results are reported in Table 5.We choose quadratic spline functions as basis functions of FEM[3]and SSQBSFEM[4]for spacial discretization.From Table 5,we can see that SSFD-6 and SSFD-8 are more efficient and accurate than other three methods.As can be seen from Table 5 that SSFD-8 is more accurate than SSFD-6,but the complexity of SSFD-8 is identical to SSFD-6.It should be pointed that the standard fourth order Runge-Kutta method is used to solve the continuous time system of FEM,[3]hence FEM[3]is expected to spent more CPU time than SSQBS-FEM.[4]Since the coefficient matrix of FDM[5]is time-varying when we evaluate the complex component un,hence FDM[5]requires more computational time than SSFD-6 and SSFD-8.

    Table 5 Comparison of L∞error norms for numerical solutions of Example 1 at t=0.1 with h=1,τ=0.001 and ? =[?64,64].

    To examine SSFD-6 still works for the general nonlinearity,we take in the Schr¨odinger-KdV Eqs.(2)–(3)with f(v)=sin(v).Choosing the parameters γ,ξ,α,ω and the initial data same as Example 1,the corresponding numerical results are shown in Fig.5 and the discretization errors of the conservative quantities are plotted in Fig.6.

    5 Conclusion

    In this paper,two split-step finite difference methods are presented for solving Schr¨odinger-KdV numerically.The merit of our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform.The computational complexity of our methods will not increase along with the increment of spacial accuracy.Numerical results demonstrate the precision and conservation properties of our methods.

    Appendix A

    ProofMaking the complex conjugate inner product of Eq.(2)with u,then taking the imaginary part,we get

    which implies that Eq.(6)holds.

    Computing the the complex conjugate inner product of Eq.(2)with ut,then taking the real part,we have

    Followed by

    then we obtain

    Making the inner product of Eq.(3)with|u|2,f(v)and vxx,respectively,we obtain

    It follows from(A5)–(A7)that(7)is satisfied. ?

    Appendix B

    Denote the trigonometric interpolations of the numerical solutions as

    where un,vn∈ YJ.Define the“error”functions

    Denote the L2-projected solutions as

    Acting L2-projected operator on Eq.(3),using Taylor’s expansion and considering the orthogonality of the basis functions,we have

    Noticing

    With the help of mathematical induction argument,we assume that

    This together with the inverse inequality,triangle inequality and Sobolev inequality,we have

    Considering the conditions of Theorem 2 and(A13),we obtain

    It follows from Parserval’s identity and(A10)–(A13),we have

    Directly from(A15)and induction argument(A12),we have

    where C is a constant independent of τ and h.This completes the proof. ?

    18禁裸乳无遮挡免费网站照片 | www.精华液| 成人手机av| 午夜福利在线观看吧| 99久久无色码亚洲精品果冻| 极品教师在线免费播放| 在线天堂中文资源库| 天堂动漫精品| 十八禁网站免费在线| 久久精品国产清高在天天线| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 精品人妻1区二区| 12—13女人毛片做爰片一| 一区二区三区高清视频在线| 一区二区三区高清视频在线| 亚洲国产高清在线一区二区三 | 午夜福利18| 999久久久国产精品视频| 国产99白浆流出| 女同久久另类99精品国产91| 熟女电影av网| 国产乱人伦免费视频| 国产伦一二天堂av在线观看| 黄色毛片三级朝国网站| xxx96com| 淫妇啪啪啪对白视频| www.精华液| 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 日韩欧美三级三区| 国产一级毛片七仙女欲春2 | 亚洲 欧美一区二区三区| 性欧美人与动物交配| 18禁美女被吸乳视频| 男人舔奶头视频| 日韩欧美在线二视频| 中亚洲国语对白在线视频| 他把我摸到了高潮在线观看| 国语自产精品视频在线第100页| 精品高清国产在线一区| 中文字幕av电影在线播放| 欧美性长视频在线观看| 在线观看www视频免费| 伊人久久大香线蕉亚洲五| 亚洲精品在线观看二区| 亚洲国产精品sss在线观看| 美女免费视频网站| 久久狼人影院| 久久精品夜夜夜夜夜久久蜜豆 | 很黄的视频免费| 国产成人欧美在线观看| 亚洲成人久久爱视频| 18禁裸乳无遮挡免费网站照片 | 黄色片一级片一级黄色片| 人成视频在线观看免费观看| 91成人精品电影| 99热这里只有精品一区 | 亚洲人成网站高清观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久水蜜桃国产精品网| 亚洲一区二区三区不卡视频| 欧美色欧美亚洲另类二区| 亚洲avbb在线观看| 国产精品一区二区免费欧美| 超碰成人久久| 999精品在线视频| 婷婷精品国产亚洲av在线| 他把我摸到了高潮在线观看| 99国产综合亚洲精品| 在线观看免费日韩欧美大片| 久久久久久亚洲精品国产蜜桃av| 女性生殖器流出的白浆| 日韩精品青青久久久久久| 看片在线看免费视频| 日韩欧美三级三区| 中亚洲国语对白在线视频| 99re在线观看精品视频| 少妇粗大呻吟视频| 亚洲真实伦在线观看| 宅男免费午夜| 99精品欧美一区二区三区四区| 女性生殖器流出的白浆| 少妇裸体淫交视频免费看高清 | 性欧美人与动物交配| 久久狼人影院| 亚洲一区中文字幕在线| 午夜久久久久精精品| 美女扒开内裤让男人捅视频| 91成年电影在线观看| 此物有八面人人有两片| 日本熟妇午夜| 亚洲avbb在线观看| 日韩av在线大香蕉| 国产精品久久久人人做人人爽| 黄网站色视频无遮挡免费观看| 免费看a级黄色片| 黄色 视频免费看| 亚洲 国产 在线| 两个人免费观看高清视频| 日韩三级视频一区二区三区| 啦啦啦 在线观看视频| av视频在线观看入口| a级毛片在线看网站| 在线观看免费日韩欧美大片| www.www免费av| 俺也久久电影网| www.999成人在线观看| 天天躁夜夜躁狠狠躁躁| 国产1区2区3区精品| 精品日产1卡2卡| 男女那种视频在线观看| 欧美国产精品va在线观看不卡| 一进一出抽搐gif免费好疼| 日韩欧美一区视频在线观看| 国内毛片毛片毛片毛片毛片| 欧美成狂野欧美在线观看| 一级片免费观看大全| 国内少妇人妻偷人精品xxx网站 | 亚洲av成人av| 岛国视频午夜一区免费看| 亚洲av熟女| 一级作爱视频免费观看| 国产精品久久电影中文字幕| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 成人三级黄色视频| 久久久久久久午夜电影| 国产成人影院久久av| 亚洲成国产人片在线观看| 高潮久久久久久久久久久不卡| 香蕉久久夜色| 身体一侧抽搐| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美在线一区二区| 国产精品自产拍在线观看55亚洲| 1024手机看黄色片| 天堂影院成人在线观看| 看片在线看免费视频| 男女午夜视频在线观看| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 此物有八面人人有两片| 亚洲黑人精品在线| 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 午夜亚洲福利在线播放| 日本在线视频免费播放| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 精品久久久久久成人av| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女| 日韩一卡2卡3卡4卡2021年| 首页视频小说图片口味搜索| 国产av不卡久久| 久久中文字幕人妻熟女| 久久久久国内视频| 黄片大片在线免费观看| 18禁裸乳无遮挡免费网站照片 | 欧美在线一区亚洲| 99在线人妻在线中文字幕| av天堂在线播放| 曰老女人黄片| 亚洲欧洲精品一区二区精品久久久| 成年人黄色毛片网站| 欧美在线一区亚洲| 亚洲人成77777在线视频| 久久午夜亚洲精品久久| 色尼玛亚洲综合影院| 日韩精品中文字幕看吧| www.www免费av| 18禁黄网站禁片午夜丰满| 精品第一国产精品| 婷婷精品国产亚洲av| av欧美777| 精品久久久久久久毛片微露脸| 99riav亚洲国产免费| 老司机福利观看| 免费观看精品视频网站| 国产激情偷乱视频一区二区| 香蕉久久夜色| 动漫黄色视频在线观看| 韩国精品一区二区三区| 国产主播在线观看一区二区| 男女床上黄色一级片免费看| 国产真人三级小视频在线观看| 一进一出抽搐gif免费好疼| 成人特级黄色片久久久久久久| 成人国产综合亚洲| 欧美精品亚洲一区二区| 欧美三级亚洲精品| 日韩 欧美 亚洲 中文字幕| 老司机靠b影院| 每晚都被弄得嗷嗷叫到高潮| 亚洲三区欧美一区| 侵犯人妻中文字幕一二三四区| 人人妻,人人澡人人爽秒播| 一个人免费在线观看的高清视频| 国产成人av教育| 看片在线看免费视频| 好男人电影高清在线观看| 亚洲久久久国产精品| 久久天堂一区二区三区四区| 国产三级在线视频| 悠悠久久av| 999久久久精品免费观看国产| 女人爽到高潮嗷嗷叫在线视频| 久久青草综合色| 美女扒开内裤让男人捅视频| 精品久久久久久久久久久久久 | 亚洲国产精品999在线| 亚洲av电影在线进入| 91国产中文字幕| 久久伊人香网站| 亚洲一区中文字幕在线| 一区福利在线观看| 一卡2卡三卡四卡精品乱码亚洲| 俺也久久电影网| 麻豆av在线久日| 黄频高清免费视频| 精品国产乱码久久久久久男人| 日本a在线网址| 免费在线观看成人毛片| 女人爽到高潮嗷嗷叫在线视频| 久久久国产欧美日韩av| av在线天堂中文字幕| 夜夜夜夜夜久久久久| 欧美乱码精品一区二区三区| 精品久久久久久,| 欧美黑人精品巨大| 国产不卡一卡二| 无遮挡黄片免费观看| 91成人精品电影| 欧美日本亚洲视频在线播放| 99久久久亚洲精品蜜臀av| 身体一侧抽搐| 免费在线观看影片大全网站| 少妇粗大呻吟视频| 欧美一区二区精品小视频在线| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 久久伊人香网站| 9191精品国产免费久久| 亚洲一区中文字幕在线| av免费在线观看网站| 97碰自拍视频| 一进一出好大好爽视频| 在线永久观看黄色视频| 中文字幕人成人乱码亚洲影| 国产又色又爽无遮挡免费看| 美女免费视频网站| 亚洲无线在线观看| 免费看十八禁软件| 一本一本综合久久| 99精品在免费线老司机午夜| 伊人久久大香线蕉亚洲五| 欧美zozozo另类| 午夜免费激情av| 成年人黄色毛片网站| 精品无人区乱码1区二区| 国产亚洲精品av在线| 亚洲五月色婷婷综合| 午夜福利欧美成人| av视频在线观看入口| 校园春色视频在线观看| av免费在线观看网站| 1024香蕉在线观看| 一级片免费观看大全| 级片在线观看| 久久国产精品影院| 久久中文看片网| 两性夫妻黄色片| 久久久久久久久免费视频了| 丝袜在线中文字幕| 国产黄a三级三级三级人| 人人妻人人澡人人看| 国产野战对白在线观看| 成人午夜高清在线视频 | 久久国产精品影院| 日韩精品免费视频一区二区三区| 国产区一区二久久| 亚洲全国av大片| 午夜福利视频1000在线观看| 亚洲一区中文字幕在线| 日韩欧美免费精品| 99国产精品99久久久久| 长腿黑丝高跟| 欧美久久黑人一区二区| 欧美黑人精品巨大| 老司机福利观看| 国产精品影院久久| 女警被强在线播放| 每晚都被弄得嗷嗷叫到高潮| 青草久久国产| 国产乱人伦免费视频| 久久人妻福利社区极品人妻图片| 波多野结衣巨乳人妻| 免费电影在线观看免费观看| 欧美中文综合在线视频| 欧美在线黄色| 少妇的丰满在线观看| 97碰自拍视频| 国产精品美女特级片免费视频播放器 | 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 男人舔女人下体高潮全视频| 成人国语在线视频| 亚洲精品一区av在线观看| 欧美日韩一级在线毛片| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 99精品久久久久人妻精品| 午夜两性在线视频| www.www免费av| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 看黄色毛片网站| 亚洲熟妇熟女久久| 黄片播放在线免费| 亚洲av美国av| 亚洲第一电影网av| 久久99热这里只有精品18| 人妻久久中文字幕网| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 身体一侧抽搐| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 免费搜索国产男女视频| 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 岛国在线观看网站| 亚洲av熟女| 99国产精品一区二区三区| 成在线人永久免费视频| 久久久久免费精品人妻一区二区 | 国产精品一区二区免费欧美| 99热只有精品国产| 久久久久久久久免费视频了| 亚洲久久久国产精品| 制服人妻中文乱码| 日韩欧美三级三区| 亚洲在线自拍视频| 久久精品影院6| 国产在线精品亚洲第一网站| www.999成人在线观看| 黑人欧美特级aaaaaa片| 天堂动漫精品| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 久久久久久久久久黄片| 国产又黄又爽又无遮挡在线| 欧美黑人欧美精品刺激| 午夜免费鲁丝| 国产成年人精品一区二区| 欧美久久黑人一区二区| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址| 国产午夜精品久久久久久| 啦啦啦韩国在线观看视频| 国产精品二区激情视频| 久久青草综合色| 99在线人妻在线中文字幕| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 国产精品电影一区二区三区| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 欧美性猛交╳xxx乱大交人| 亚洲国产欧美网| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 久久精品影院6| 欧美最黄视频在线播放免费| 久久久久久大精品| 国产亚洲精品综合一区在线观看 | 亚洲人成伊人成综合网2020| 免费看a级黄色片| 桃色一区二区三区在线观看| 美女大奶头视频| 国产v大片淫在线免费观看| 欧美在线黄色| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 免费观看精品视频网站| 91成年电影在线观看| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 手机成人av网站| a级毛片在线看网站| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看 | 国产成+人综合+亚洲专区| 香蕉丝袜av| 欧美乱色亚洲激情| 亚洲黑人精品在线| 一区二区三区激情视频| av福利片在线| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 精品国产一区二区三区四区第35| 精品久久久久久成人av| 久久中文看片网| 欧美一级a爱片免费观看看 | 人人妻人人澡人人看| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 一区二区三区国产精品乱码| 香蕉丝袜av| 岛国在线观看网站| 18禁裸乳无遮挡免费网站照片 | 欧美黑人巨大hd| 国产亚洲av高清不卡| 久久午夜亚洲精品久久| 亚洲av成人不卡在线观看播放网| 中出人妻视频一区二区| 一进一出好大好爽视频| 成人一区二区视频在线观看| 欧美性猛交╳xxx乱大交人| 不卡av一区二区三区| 老鸭窝网址在线观看| 亚洲中文字幕日韩| 精品熟女少妇八av免费久了| 婷婷精品国产亚洲av在线| www国产在线视频色| 一区福利在线观看| 精品一区二区三区av网在线观看| 亚洲中文av在线| 美国免费a级毛片| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色片欧美黄色片| 精品久久久久久久人妻蜜臀av| 成在线人永久免费视频| 免费无遮挡裸体视频| 黄片大片在线免费观看| 成人国产一区最新在线观看| 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 亚洲欧洲精品一区二区精品久久久| 天堂动漫精品| 色综合婷婷激情| 51午夜福利影视在线观看| 午夜激情av网站| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 美女午夜性视频免费| 波多野结衣高清无吗| 日韩大码丰满熟妇| www日本在线高清视频| 一本综合久久免费| 亚洲美女黄片视频| av超薄肉色丝袜交足视频| 午夜亚洲福利在线播放| 亚洲第一电影网av| av在线播放免费不卡| 成年女人毛片免费观看观看9| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 亚洲五月色婷婷综合| 欧美日韩乱码在线| 午夜免费鲁丝| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| 亚洲人成网站在线播放欧美日韩| 久久久国产精品麻豆| 欧美久久黑人一区二区| 老汉色∧v一级毛片| 亚洲av电影在线进入| 国产精品 欧美亚洲| 午夜福利高清视频| 欧美日韩乱码在线| 国产人伦9x9x在线观看| 国产爱豆传媒在线观看 | 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 在线观看www视频免费| a在线观看视频网站| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美一区二区综合| 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 亚洲最大成人中文| 久久天堂一区二区三区四区| 国产极品粉嫩免费观看在线| 欧美性长视频在线观看| 波多野结衣高清作品| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 精品第一国产精品| 亚洲国产精品sss在线观看| 国产av又大| 美女国产高潮福利片在线看| 国产三级黄色录像| 国产成人av激情在线播放| 深夜精品福利| 人妻丰满熟妇av一区二区三区| 亚洲成av片中文字幕在线观看| 亚洲人成网站高清观看| 深夜精品福利| 看免费av毛片| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| av中文乱码字幕在线| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 91av网站免费观看| 国产精品一区二区免费欧美| 精品久久久久久,| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 天天添夜夜摸| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 国产色视频综合| av免费在线观看网站| 少妇裸体淫交视频免费看高清 | 最新在线观看一区二区三区| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久久久久 | 亚洲成人久久爱视频| 久久久久亚洲av毛片大全| 成人国语在线视频| 久久欧美精品欧美久久欧美| 午夜精品在线福利| 精品少妇一区二区三区视频日本电影| 亚洲五月天丁香| 757午夜福利合集在线观看| 日韩视频一区二区在线观看| 看片在线看免费视频| 亚洲精品色激情综合| 高清在线国产一区| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 亚洲美女黄片视频| 很黄的视频免费| 亚洲国产欧美日韩在线播放| 在线观看免费午夜福利视频| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片| 91麻豆av在线| av中文乱码字幕在线| 国内精品久久久久久久电影| av天堂在线播放| 在线观看日韩欧美| 国产一区二区三区视频了| 亚洲五月天丁香| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 久久久久精品国产欧美久久久| 午夜视频精品福利| 日日干狠狠操夜夜爽| 欧美 亚洲 国产 日韩一| 91av网站免费观看| 亚洲一区二区三区不卡视频| 国产精品av久久久久免费| 91在线观看av| 叶爱在线成人免费视频播放| 国产精品亚洲美女久久久| av有码第一页| 精品卡一卡二卡四卡免费| videosex国产| 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 久久香蕉精品热| 日本一区二区免费在线视频| 亚洲国产精品999在线| 在线播放国产精品三级| 亚洲精品美女久久av网站| 香蕉久久夜色| a级毛片在线看网站| 丝袜在线中文字幕| 国产区一区二久久| 男女做爰动态图高潮gif福利片| 国内精品久久久久精免费| 黄色视频,在线免费观看| 日本熟妇午夜| 欧美成人一区二区免费高清观看 | 青草久久国产| 国产精品影院久久| 国产亚洲欧美98| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 少妇被粗大的猛进出69影院| 淫妇啪啪啪对白视频| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 中亚洲国语对白在线视频| 欧美亚洲日本最大视频资源| 国产麻豆成人av免费视频|