• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Liquid Flow in a Porous Channel with Electrokinetic Effects?

    2018-11-24 07:39:48HangXu徐航andHuangHuang黃煌
    Communications in Theoretical Physics 2018年10期

    Hang Xu(徐航) and Huang Huang(黃煌)

    Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE),State Key Laboratory of Ocean Engineering,School of Naval Architecture Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    AbstractIn this paper,a fully developed laminar flow in a porous channel between two paralleled flat plates in the presence of a double layer electric field is analyzed.The linear Poisson-Boltzmann equation is suggested to model the double layer electric field near the solid-liquid interface.The equation of motion is extended by including the electrical body force generating from the double layer field and then solved analytically.Different from previous models,our proposed one is continuous in the whole flow field and matches commonly-accepted models in the field of fluid mechanics.Besides,the effects of various physical parameters such as the zeta potential,the electrokinetic separation distance,and the ratio of the streaming current to conduction current on the velocity,the pressure,the apparent viscosity of the fluid,as well as the streaming potential are discussed.Physical explanations on the changing trends of those physical quantities with various parameters are given.

    Key words:microchannel,expanding wall,porous wall,double layer electrical field,laminar flow

    1 Introduction

    Recently,researchers have found that liquid flows in various microchannels have many practical and potential applications in various systems such as Micro-Electro-Mechanical systems(MEMS)and microfluidics such as microchannel heat sinks for cooling micro-chips and laser diode arrays,Lab-On-Chip device for chemical and biomedical analyses,and microfluid pumps.

    Some researchers have devoted them into the understanding the fundamental transport mechanisms of microchannel flow,typical work has been done by Eringen,[1]Pfahler et al.,[2]Mala et al.,[3?4]Ren et al.[5]Particularly,Xu et al.[6]noticed that the electro-viscous flow model used by Mala et al.[3?4]contains a wrong imposed boundary condition for the electrostatic potential in the center of the microchannel,which results in that the distributions of the electrostatic potential and velocity are discontinuous.They also noticed that the constant pressure parameter appeared in the papers of Mala et al.[3?4]and Ren et al.[5]is assumed to be known,which is incompatible with common used models for channel flows.[7?16]They then revised the model and applied it into a liquid flow of a microchannel driven by its upper moving wall and also by the double layer electrical field.

    In this paper,we shall apply the revised mathematical model by Xu et al.[6]to the problem of liquid flow driven along a porous microchannel in the presence of electrokinetic effects.The problem is nondimensionalized and then solved analytically.The accuracy of the solutions is verifi ed.The variations of the velocity,the local skin friction,the pressure constant,the apparent viscosity,as well as the stream potential with different physical parameters are illustrated.The physical mechanisms regarding to the influences of various parameters on those physical quantities are discussed.

    2 Solution of Poisson-Boltzmann Equation

    As shown in Fig.1,the electrical double layer(EDL)denotes the arrangement of the electrostatic charges on the solid surface and the balancing charges in the liquid. Consider a flow containing positive and negative ions through a microchannel between two parallel positively charged plates.The channel walls undergo uniform injection or suction in the transverse direction.The uniform electrostatic potentials ?0are respectively imposed on both surfaces of the channel,which decrease gradually as they are away of the surfaces and minimize at the cross-section of the channel.The electrostatic potential ? at any point in the channel satisfies the Poisson’s equation

    where ρeis the charge density,ε is the dielectric constant of the fluid and ε0is the permittivity of vacuum.

    With the assumptions that the dielectric constant is uniform and the fluctuation is negligible,using the law of the equilibrium Boltzmann distribution,the number of ion distribution in a symmetric electrolyte solution is written as

    where n0iandare respectively the bulk ionic concentration and the valence of type i ions,e denotes the charge of a proton,kbis the Boltzmann’s constant,andis the absolute temperature.

    Fig.1 Physical sketch for electrical double layer at the channel wall.

    On the other hand,the net charge density in a unit volume of the fluid is given,considering the Boltzmann equation,by

    where n0is the average number of positive or negative ions and?z is the valence of positive ions.

    Substituting Eq.(3)into the Poisson equation(1),we obtain

    By defining the Debye-H¨uckel parameter as k2=/()with 1/k being referred to as the thickness of the electrical double layer(EDL),and then introducing the following dimensionless variables

    into Eqs.(1)adn(4),we obtain

    where κ=ak is a constant.The appropriate boundary conditions for this problem are given,taking account of the flow symmetry,by

    When the electrical potential is smaller than the thermal energy of the ions,i.e.,,we are able to use the Debye-H¨uckel linear approximation to transform Eq.(6)into

    Equation(9)subjected to the boundary conditions(8)admits the following analytical solution

    3 Equation of Fluid Motion

    The two-dimensional fully developed laminar flow in a porous microchannel driven by the electric body force generated by the double layer electric field is graphically sketched in Fig.2,in which the y axis is perpendicular to the channel walls and the x axis is in a plane parallel to the channel walls.a is the half distance between the plates,L is the length of the plate.The following assumptions on the flow are enforced:(i)The fluid is incompressible;(ii)the flow is laminar and steady;and(iii)the fluid velocity leaving the channel walls is independent of position.

    Fig.2 Physical sketch for microchannel flow.

    Under those assumptions,the Navier-Stokes equations governing the flows are

    where u and v are the velocity in x and y direction respectively,ρ is the fluid density,p is the pressure,ν is the kinematic viscosity,and Exρeis the electrical body force.Note that the new term Exρeis generated by the electrical double layer(EDL),which is a structure near the wet surface of the microchannel.The EDL composes of two parallel layers of charge surrounding the microchannel.Thefirst layer is the surface charge(either positive or negative),which consists of ions adsorbed onto the object due to chemical interactions.The second layer is composed of ions attracted to the surface charge via the Coulomb force,electrically screening the first layer.It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion.This model can be used to simulate flow in modern microfluidic systems where electro-kinetics(or electro-osmosis)plays a signi ficant role.It has more recently infiltrated into many sophisticated microscale designs including bio-chip systems for drug delivery,biomedical diagnostics and bio-microelectro-mechanical-systems(bioMEMS).

    The associated boundary conditions are

    where vwis the injection or suction speed of the channel walls.

    Define a stream function

    where

    Non-dimensionalizing Eqs.(11),(12),and(13)via Eqs.(5)and(15),the continuity equation(11)is automatically satisfied,the rest equations are written,by emphasizing the pressure related terms,as

    It is known that the right-hand side of Eq.(18)is independent of x,which implies ?2p/?x?y=0.As a result,we obtain

    where K is an unknown constant.

    By now,the electric field strength Exis not yet known,which can be obtained via balancing the streaming current against the electrical conduction current.[3?4]As is known that in the absence of an applied electric field,the streaming current is generated as a liquid is forced through a channel under hydrostatic pressure,which is defined by

    where Acis the cross-sectional area of the flow channel.

    The streaming potential induces a conduction current in the opposite direction,which is given by

    where λ0is the electrical conductivity of the fluid,Esis the streaming potential,and L is a reference length of the channel.

    At the steady state,the net electrical current is zero,we therefore obtain

    Substituting the above defined corresponding nondimensional variables into Eq.(22)via Eqs.(20)and(21),the following connection is established

    Since the terms of the right-hand side of Eq.(23)is independent of x,it is readily to know Exis proportional of x.The last term of the left-hand side of Eq.(19)can be transformed into

    where

    Therefore,Eq.(19)is reduced to

    Due to Eq.(14),the boundary conditions for Eq.(25)are determined as

    where R=vwa/ν is the Reynolds number.

    4 Physical Quantities of Practical Interests

    The volumetric rate of flow through the paralleled flat plates is computed via integration of the velocity distribution over the transversal surface as

    which is non-dimensionalized,by substituting the similarity variables(5)and(9)into Eq.(27),as

    where W is the weigh of the channel.It is clearly seen that the volumetric rate of flow is independent on the EDL effect for this problem.

    As is known that the motion of the ions in the fluid is restricted by the electrical force generated by the EDLfield.Therefore it is of great importance to evaluate the electro-viscous effect on the liquid flow.Besides the definition given in Eq.(27),it is also to measure the volumetric rate of flow of channel flow separated by a distance 2a via the following correlation(refer to Ref.[3])

    whereμais the apparent viscosity taking account for the EDL effect.Taking account of Eqs.(17)and(25),Eq.(29)is written as

    Equalizing Eq.(28)with Eq.(30),i.e.,Q=Qp,we obtain the ratio of the apparent viscosity to bulk viscosity as

    The local skin frictional coefficient is important to quantify the flow phenomena in the microchannels and for the engineering design of microchannels,which is defined,for the upper surface,by

    where

    Substituting Eq.(33)into Eq.(32),we obtain

    Define the local streaming potential Esas

    Using Eq.(23),we obtain

    5 Result Analysis

    The governing equation(25)subjected to the boundary conditions(26)is solved by the homotopy analysis method(HAM).[6]Since the technique has been available in literature,we omit the analytical procedure and just give the absolute error of our results,using the following correlation,

    where M is the HAM computational order.Substituting different orders HAM approximations into Eq.(37),the absolute error at a certain order can be obtained.For example,the computational errors of various orders for the Reynolds number R=±5 are listed in Tables 1 and 2 respectively,very excellent convergence is found.

    Table 1 Computational errors with different order Homotopy-Pad′e approximations under different values of κ in the case of ζ=1,R=20,and G1=10.

    Table 2 Computational errors with different order Homotopy-Pad′e approximations under different values of κ in the case of ζ=1,R= ?10,and G1=10.

    As discussed in Ref.[6],the boundary condition of the electrostatic potential at the center y=0 given by Mala et al.[3?4]was wrongly imposed,which causes discontinuities for both the electrostatic potential and the velocity fields.To avoid their physically unrealistic assumption on this point,we adopt alternative assumption proposed by Xu et al.[6]for model refinement,in which the boundary conditions are only applied on both walls without constraint at the center y=0.

    In the following we check the influences of various physical parameters on distributions of the velocity.It is shown in Fig.3 that the zeta potentialˉζ plays an important role on variation of velocity profiles.For both negative and positive Reynolds numbers,the increase ofˉζ is helpful to enhance the velocity profiles at the channel center,but leads to flow reversal near the side walls.Physically,the electric body force generated by the double layer increases withˉζ enlarging,which assists the fluid motion.However,the increase of the velocity leads to the increase of the skin friction near the walls,which is opposite to the direction of fluid motion.As a result,theflow reversal near the walls occurs as grows sufficiently large.This trend is more clear as the Reynolds number R is negative.

    Fig.3 Distributions of the normalized velocity F′(η)/R for various values of ζ at κ =1 and G1=10.(a)R=5,(b)R=?5.

    The electrokinetic separation distance κ also has significant effect on distribution of the velocity.As shown in Fig.4,the velocity profile decreases as κ increases.This is due to the double layer field exists only in the region close to the channel walls.When κ is adequately large,its effect is constrained into the thin double layer near the walls and almost has no effect on the flow far away from the walls.In this stage,the velocity distribution is almost same as compared with that without the EDL effects.On the contrary,when κ is small enough,the double layer field occupies considerable proportion of the channel cross-sectional area,its effect becomes predominant on fluid motion.Particularly,we notice for negative R,the flow reversal occurs as κ is sufficiently small.

    The coefficient of the streaming potential G1,which characterizes the ratio of the streaming current to conduction current,is a key factor to affect the velocity distributions as well.As shown in Fig.5,the velocity profile at the center enhances as G1evolves.Again here the velocity variation for negative R is more obvious than that for positive one.Similarly,the flow reversal near the side walls appears as G1becomes sufficiently large for both the positive and negative Reynolds numbers.This indicates that the larger the G1,the more predominant is the effect of the streaming current caused by the double layer.Here the flow reversal is due to the skin friction force increases faster than the electric body force in the double layer.

    Fig.4 Distributions of the normalized velocity F′(η)/R for various values of κ at ζ=3 and G1=10.(a)R=5,(b)R=?5.

    We then consider the effects of the physical parameters on important physical quantities.It is known from Eq.(27)that the volumetric rate of flow Q is only dependent on the Reynolds number R.While the ratio of the apparent viscosity to bulk viscosity μa/μ relies on K/R,the skin frictional coefficient Cfxis mainly determined by F′′(1)/R2,the stream potential Escan be computed via Eq.(36).To let the variational trends of those quantities illustrate more clearly,we normalize them by dividing them by their maximum values,i.e.where the values offor different cases are listed in Table 3,Tables 4 and 5 respectively.

    Table 3 Maximum values of the reduced physical quantities for Fig.6.

    Table 4 Maximum values of the reduced physical quantities for Fig.7.

    Table 5 Maximum values of the reduced physical quantities for Fig.8.

    Fig.5 Distributions of the normalized velocity F ′(η)/R for various values of G1at ζ=3 and κ =1.(a)R=5,(b)R=?5.

    Fig.6 Various physical quantities vary with ζ at κ =1 and G1=10.(a)R=5,(b)R= ?5.

    It is seen from Fig.6 that,the increase of the zeta potentialˉζ causes the increment of the variational amplitudes of the reduced local skin friction CfxN,the stream potential EsN,and the reduction of the reduced ratio of the apparent viscosity to bulk viscosity(K/R)N.Physically,the increase ofˉζ indicates the enlargement of the electric body force,which accelerates of the fluid motion(the direction of fluid motion for positive R is opposite to that for negative R).As a result,the variational amplitude of the skin friction becomes large asˉζ evolves owing to the increase of the velocity.Similarly,the changing amplitude for the pressure constant K enlarges withˉζ growing.On the other hand,the stream potential is related to both the velocity and the electrical strength,so that its variational amplitude increases withˉζ evolving.

    Fig.7 Various physical quantities vary with κ at=3 and G1=10.(a)R=5,(b)R=?5.

    As shown in Fig.7,the variational amplitude of CfxNinitially decreases as κ grows,after reaching a peak value,it increases as κ continuously increases.Physically,for very small κ,the viscous force is dominant.As κ gradually increases,owing to the rapid reduction of the viscous force,the electrical body force starts to take action,but it is opposite to the skin friction force.As a result,the amplitude of CfxNreduces as κ increases.As κ is sufficiently large,the electrical body force becomes weak,again the viscus force gains the advantage.The changing amplitude of CfxNincreases as κ grows.While for(K/R)Nand EsN,both of their changing amplitudes reduce as κ increases.This is due to that the increase of κ indicates the increment of the electrokinetic separation distance,which results in the reduction of the electric strength in the channel.

    Is is found in Fig.8 that increase of the coefficient of the streaming potential G1causes the increment of the absolute values of CfxNand(K/R)N,but leads to the decrease of the absolute value of EsN.Physically,the increase of G1means that the ratio of streaming current to conduction current increases,in other words,the fluid motion accelerates.This increment leads to the increase of the skin friction and the pressure,but results in the reduction of the streaming potential.

    Fig.8 Various physical quantities vary with G1at=3 and κ =1.(a)R=5,(b)R= ?5.

    6 Conclusion

    In this paper,a laminar microchannel flow between two paralleled flat plates with porous walls in the presence of the effects of the double layer electric field has been examined in detail.The linear model of the Poisson-Boltzmann type has been proposed to describe the double layer electric field in the vicinity of the solid-liquid interface.The equation of motion has been extended by considering the effect of the electrical body force generating from the double layer field.The fluid motion equation has been solved for the steady-state flow.The effects of various physical parameters such as the zeta potential,the electrokinetic separation distance,and the ratio of the streaming current to conduction current on the velocity,the pressure,the apparent viscosity of the fluid,as well as the streaming potential have been discussed.In summary,the main contributions of this paper are:

    (i)The velocity profiles can be significantly affected by physical parameters such asκ,G1.Flow reversal could be happened if their effects become sufficiently large.

    (ii) The physical quantities such as the local skin friction,the pressure,the apparent viscosity of the fluid,and the streaming potential can be altered remarkably by changingκ,G1.

    (iii) Physical explanations on the changing trends of those physical quantities with various parameters are given.

    男人狂女人下面高潮的视频| 成年女人看的毛片在线观看| 亚洲五月天丁香| 国产欧美日韩精品亚洲av| 97碰自拍视频| 91狼人影院| 亚洲不卡免费看| 亚洲天堂国产精品一区在线| 日本a在线网址| av在线观看视频网站免费| 精品久久久久久久人妻蜜臀av| 99国产精品一区二区蜜桃av| 老熟妇乱子伦视频在线观看| 亚洲久久久久久中文字幕| 欧美性猛交╳xxx乱大交人| 99热网站在线观看| 亚洲国产精品sss在线观看| 三级毛片av免费| a级一级毛片免费在线观看| 久久久成人免费电影| 亚洲精品粉嫩美女一区| www.www免费av| 亚洲精华国产精华精| 午夜免费成人在线视频| av在线蜜桃| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼好多水| 亚洲人与动物交配视频| 亚洲欧美激情综合另类| 精品免费久久久久久久清纯| 亚洲avbb在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲aⅴ乱码一区二区在线播放| 亚洲天堂国产精品一区在线| 成人国产综合亚洲| 丝袜美腿在线中文| 国产精品av视频在线免费观看| 午夜免费男女啪啪视频观看 | 99热这里只有精品一区| 亚洲乱码一区二区免费版| 亚洲三级黄色毛片| 国产精华一区二区三区| 亚洲美女视频黄频| 窝窝影院91人妻| 久久精品影院6| 大型黄色视频在线免费观看| 欧美精品啪啪一区二区三区| 欧美极品一区二区三区四区| 久久久久久久久大av| 99久久精品热视频| 欧美中文日本在线观看视频| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区免费观看 | 色精品久久人妻99蜜桃| 国产精品一区二区性色av| 桃色一区二区三区在线观看| 99国产精品一区二区蜜桃av| 久久久久久九九精品二区国产| 给我免费播放毛片高清在线观看| 亚洲av美国av| 亚洲成人中文字幕在线播放| 男女那种视频在线观看| 亚洲图色成人| 国产私拍福利视频在线观看| 国产三级在线视频| 婷婷亚洲欧美| 在线看三级毛片| 亚洲av免费高清在线观看| 久久久久性生活片| 日本三级黄在线观看| 真人做人爱边吃奶动态| 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 99热网站在线观看| 黄片wwwwww| 欧美另类亚洲清纯唯美| 国内久久婷婷六月综合欲色啪| 97热精品久久久久久| 日本 欧美在线| 国产亚洲欧美98| 精品99又大又爽又粗少妇毛片 | 尤物成人国产欧美一区二区三区| 国产av一区在线观看免费| a级一级毛片免费在线观看| 精品久久久久久久久久久久久| 精品国内亚洲2022精品成人| 在线a可以看的网站| 亚洲专区中文字幕在线| 欧美一区二区精品小视频在线| 三级国产精品欧美在线观看| 国产视频一区二区在线看| 精品人妻1区二区| 日韩欧美一区二区三区在线观看| 国产成人福利小说| bbb黄色大片| 亚洲中文日韩欧美视频| 久久欧美精品欧美久久欧美| 搡老妇女老女人老熟妇| 黄色丝袜av网址大全| 夜夜看夜夜爽夜夜摸| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 日韩人妻高清精品专区| 亚洲av免费在线观看| 国产精华一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| av在线天堂中文字幕| 欧美中文日本在线观看视频| 欧美区成人在线视频| 亚洲一级一片aⅴ在线观看| 毛片女人毛片| 在线观看舔阴道视频| 国产精品无大码| 亚洲av一区综合| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 日本欧美国产在线视频| 久久久久免费精品人妻一区二区| 热99在线观看视频| 日韩 亚洲 欧美在线| 在线播放无遮挡| 精品久久久久久,| 久久6这里有精品| 日本三级黄在线观看| 成年女人看的毛片在线观看| 制服丝袜大香蕉在线| 亚洲美女搞黄在线观看 | 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av香蕉五月| 久久久久久久久久黄片| 久久精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 久久99热这里只有精品18| 亚洲av成人av| 99九九线精品视频在线观看视频| 国内精品宾馆在线| 国产人妻一区二区三区在| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 久久久久久久精品吃奶| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 午夜精品在线福利| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 一边摸一边抽搐一进一小说| 日韩欧美在线乱码| 黄片wwwwww| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 黄色女人牲交| 1024手机看黄色片| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 亚洲精品国产成人久久av| 亚洲人与动物交配视频| 男人和女人高潮做爰伦理| 日韩欧美国产一区二区入口| 特级一级黄色大片| 亚洲 国产 在线| 日韩人妻高清精品专区| 久久精品国产自在天天线| av视频在线观看入口| 免费看日本二区| 国产成人一区二区在线| 成年女人看的毛片在线观看| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 99热这里只有是精品在线观看| 亚洲av不卡在线观看| 成年女人毛片免费观看观看9| 一级a爱片免费观看的视频| 草草在线视频免费看| 国产乱人视频| 内射极品少妇av片p| 国产精品综合久久久久久久免费| 国产精品免费一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 女人被狂操c到高潮| 亚洲成av人片在线播放无| 午夜福利在线观看免费完整高清在 | www日本黄色视频网| 日韩欧美免费精品| 美女 人体艺术 gogo| av专区在线播放| 成人av一区二区三区在线看| 国产精品,欧美在线| 国产精品爽爽va在线观看网站| videossex国产| 国产亚洲av嫩草精品影院| 精品午夜福利视频在线观看一区| 国产伦一二天堂av在线观看| 国产亚洲精品综合一区在线观看| 国语自产精品视频在线第100页| 久久热精品热| 亚洲av美国av| 欧美xxxx性猛交bbbb| 可以在线观看毛片的网站| 两个人的视频大全免费| 亚洲无线在线观看| 三级毛片av免费| 赤兔流量卡办理| 三级国产精品欧美在线观看| 国产主播在线观看一区二区| 国产精品久久久久久精品电影| 最新中文字幕久久久久| 久久久久久国产a免费观看| 亚洲黑人精品在线| 亚洲avbb在线观看| 天天一区二区日本电影三级| 国产 一区精品| 久久99热这里只有精品18| 在线观看午夜福利视频| 91精品国产九色| 国产高清不卡午夜福利| 一级毛片久久久久久久久女| 日本一本二区三区精品| 草草在线视频免费看| 无人区码免费观看不卡| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 午夜a级毛片| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 看免费成人av毛片| 深夜a级毛片| 国产爱豆传媒在线观看| av中文乱码字幕在线| 91av网一区二区| 欧美zozozo另类| 十八禁国产超污无遮挡网站| 亚洲经典国产精华液单| 中文字幕人妻熟人妻熟丝袜美| 最新在线观看一区二区三区| 在线播放国产精品三级| 国产综合懂色| av黄色大香蕉| 丰满乱子伦码专区| 嫩草影院精品99| 精品人妻熟女av久视频| 看片在线看免费视频| 国产精品国产高清国产av| 干丝袜人妻中文字幕| 99久国产av精品| 久久久久久久久中文| 中文字幕av成人在线电影| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 国产亚洲av嫩草精品影院| 久9热在线精品视频| 乱码一卡2卡4卡精品| 国产精品乱码一区二三区的特点| 最好的美女福利视频网| 免费看a级黄色片| 日日撸夜夜添| 日本爱情动作片www.在线观看 | 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 亚洲人成伊人成综合网2020| 中国美白少妇内射xxxbb| av天堂在线播放| 免费高清视频大片| 日本撒尿小便嘘嘘汇集6| 亚洲午夜理论影院| 欧美日韩中文字幕国产精品一区二区三区| 内地一区二区视频在线| 午夜影院日韩av| 日本一二三区视频观看| 国产精品98久久久久久宅男小说| 美女xxoo啪啪120秒动态图| 日韩精品有码人妻一区| 日本黄色片子视频| 三级国产精品欧美在线观看| 精品久久久久久久末码| 亚洲第一电影网av| av在线蜜桃| 亚洲精品456在线播放app | 国产女主播在线喷水免费视频网站 | 亚洲aⅴ乱码一区二区在线播放| aaaaa片日本免费| 午夜日韩欧美国产| 男女啪啪激烈高潮av片| 成人无遮挡网站| 国产亚洲精品av在线| 少妇的逼好多水| 中文在线观看免费www的网站| 日韩中字成人| 中文字幕精品亚洲无线码一区| 全区人妻精品视频| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 亚洲最大成人av| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 色5月婷婷丁香| 亚洲国产欧美人成| 国产精品野战在线观看| 国产精品三级大全| 国产探花在线观看一区二区| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 国产精品福利在线免费观看| 精品人妻熟女av久视频| 久久热精品热| 三级毛片av免费| 亚洲成人久久性| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 男插女下体视频免费在线播放| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| 日本爱情动作片www.在线观看 | 2021天堂中文幕一二区在线观| 日韩 亚洲 欧美在线| av在线蜜桃| 久久国内精品自在自线图片| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 欧美一区二区亚洲| 搞女人的毛片| 亚洲av一区综合| 看黄色毛片网站| 成年女人永久免费观看视频| 赤兔流量卡办理| 女生性感内裤真人,穿戴方法视频| 午夜精品一区二区三区免费看| 美女黄网站色视频| 级片在线观看| 在线观看一区二区三区| 国产真实乱freesex| 老司机深夜福利视频在线观看| 成人特级av手机在线观看| 国产大屁股一区二区在线视频| 男人舔奶头视频| 毛片女人毛片| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 欧美三级亚洲精品| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 中文字幕人妻熟人妻熟丝袜美| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 一区二区三区高清视频在线| 成人性生交大片免费视频hd| 成人国产一区最新在线观看| 在线免费观看不下载黄p国产 | 亚洲精品456在线播放app | 国产大屁股一区二区在线视频| 日韩欧美一区二区三区在线观看| 女的被弄到高潮叫床怎么办 | 高清毛片免费观看视频网站| 联通29元200g的流量卡| ponron亚洲| 我的老师免费观看完整版| 亚洲七黄色美女视频| 国产亚洲精品av在线| 热99在线观看视频| 成人鲁丝片一二三区免费| 日本-黄色视频高清免费观看| 精品免费久久久久久久清纯| 午夜视频国产福利| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 日本成人三级电影网站| 欧美性猛交黑人性爽| 久久久精品大字幕| 深夜a级毛片| 中文字幕精品亚洲无线码一区| 亚洲成人久久性| 禁无遮挡网站| 国产老妇女一区| 中亚洲国语对白在线视频| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| 亚洲在线观看片| 久久久久久伊人网av| 国产69精品久久久久777片| 亚洲成人久久性| 亚洲av熟女| 麻豆一二三区av精品| 婷婷六月久久综合丁香| 三级毛片av免费| 少妇熟女aⅴ在线视频| 免费电影在线观看免费观看| 两人在一起打扑克的视频| 色综合色国产| 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 日本a在线网址| 免费人成在线观看视频色| 在线观看一区二区三区| 久久精品国产鲁丝片午夜精品 | 两人在一起打扑克的视频| 深夜a级毛片| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 尤物成人国产欧美一区二区三区| 亚洲av成人av| 日韩在线高清观看一区二区三区 | 精品久久久久久久久久免费视频| 麻豆国产97在线/欧美| 久久久久久久久中文| 免费看美女性在线毛片视频| 国内精品一区二区在线观看| 中亚洲国语对白在线视频| 一区二区三区激情视频| 亚洲人与动物交配视频| 美女大奶头视频| 国产久久久一区二区三区| 国产精品免费一区二区三区在线| 国产av麻豆久久久久久久| 舔av片在线| 国产免费男女视频| 欧美xxxx黑人xx丫x性爽| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| 国产精品国产三级国产av玫瑰| 级片在线观看| 自拍偷自拍亚洲精品老妇| 一进一出抽搐动态| 精品久久久久久久末码| 一卡2卡三卡四卡精品乱码亚洲| 在线观看午夜福利视频| 韩国av一区二区三区四区| 男女边吃奶边做爰视频| 成人美女网站在线观看视频| 亚洲av免费在线观看| 欧美高清性xxxxhd video| 少妇丰满av| 老司机午夜福利在线观看视频| 深夜a级毛片| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 狂野欧美白嫩少妇大欣赏| av.在线天堂| 97热精品久久久久久| av福利片在线观看| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 在线观看一区二区三区| 99热6这里只有精品| 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 天堂动漫精品| 国产高清三级在线| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 91av网一区二区| 久久国内精品自在自线图片| 国产老妇女一区| 最近最新免费中文字幕在线| 精品福利观看| 男女视频在线观看网站免费| 成人国产综合亚洲| 桃红色精品国产亚洲av| 国产乱人视频| 中出人妻视频一区二区| 免费av毛片视频| 成人综合一区亚洲| 欧美日韩乱码在线| 在线天堂最新版资源| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆| 高清在线国产一区| 成年女人永久免费观看视频| 亚洲国产精品合色在线| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区亚洲精品在线观看| 欧美激情久久久久久爽电影| 午夜福利视频1000在线观看| 免费看a级黄色片| 国产精品永久免费网站| 九色成人免费人妻av| 91狼人影院| 日韩欧美精品免费久久| 久久久午夜欧美精品| 老司机福利观看| 国产精品人妻久久久影院| 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o| 久久热精品热| x7x7x7水蜜桃| www日本黄色视频网| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 亚洲专区国产一区二区| 在线免费观看不下载黄p国产 | 成年免费大片在线观看| 国产不卡一卡二| 啦啦啦观看免费观看视频高清| 我要搜黄色片| 久久精品91蜜桃| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 成人精品一区二区免费| 69av精品久久久久久| 12—13女人毛片做爰片一| 极品教师在线视频| 亚洲av成人av| 黄色一级大片看看| 久99久视频精品免费| avwww免费| 十八禁国产超污无遮挡网站| 亚洲av一区综合| av.在线天堂| 亚洲一区高清亚洲精品| 色吧在线观看| 欧美+日韩+精品| 日韩av在线大香蕉| 91久久精品电影网| 国产精品伦人一区二区| 国产精品免费一区二区三区在线| 欧美日韩国产亚洲二区| 欧美zozozo另类| 国产爱豆传媒在线观看| 日韩欧美在线二视频| 九九热线精品视视频播放| av天堂中文字幕网| xxxwww97欧美| 88av欧美| 欧美日韩瑟瑟在线播放| 乱系列少妇在线播放| 久久精品国产自在天天线| 窝窝影院91人妻| 99久久无色码亚洲精品果冻| 男女啪啪激烈高潮av片| 尤物成人国产欧美一区二区三区| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 国产精品一区www在线观看 | av专区在线播放| 欧美黑人巨大hd| 国产高潮美女av| 欧洲精品卡2卡3卡4卡5卡区| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 很黄的视频免费| 婷婷六月久久综合丁香| 在线播放无遮挡| 美女cb高潮喷水在线观看| 91av网一区二区| 日日夜夜操网爽| 一区二区三区四区激情视频 | 国产高清不卡午夜福利| 夜夜夜夜夜久久久久| 免费av毛片视频| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| av国产免费在线观看| 免费一级毛片在线播放高清视频| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 国产综合懂色| 亚洲av第一区精品v没综合| 麻豆久久精品国产亚洲av| 亚洲人成网站在线播| АⅤ资源中文在线天堂| 黄色配什么色好看| 国产麻豆成人av免费视频| 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 精品久久久久久久末码| 色在线成人网| 男女那种视频在线观看| 美女xxoo啪啪120秒动态图| 小说图片视频综合网站| 男插女下体视频免费在线播放| 国产乱人视频| 婷婷丁香在线五月| 亚洲av美国av| 99精品在免费线老司机午夜| av在线天堂中文字幕| h日本视频在线播放| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 亚洲av不卡在线观看| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| 精品久久久久久久久av| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 日韩欧美免费精品| 亚洲午夜理论影院| 一区二区三区四区激情视频 | a级毛片免费高清观看在线播放| 天堂√8在线中文| 久久午夜亚洲精品久久|