王輝,高玉錄,于夢(mèng),杜遠(yuǎn)鵬,孫永江,翟衡
?
根灌乙酸及葡萄酒對(duì)海水脅迫下葡萄光抑制的影響
王輝,高玉錄,于夢(mèng),杜遠(yuǎn)鵬,孫永江,翟衡
(山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018)
【目的】為了擴(kuò)大鹽漬化土壤的高效利用方式,提高葡萄在鹽漬化土壤上的生長(zhǎng)發(fā)育質(zhì)量,探討乙酸與葡萄酒對(duì)15%海水脅迫下葡萄葉片光抑制的影響,為鹽漬化土壤葡萄栽培技術(shù)改良提供理論依據(jù)和技術(shù)參考?!痉椒ā恳砸荒晟柖嗤摺咸?‘Moldova’)盆栽苗為試材,定植于直徑為20 cm、高度為18 cm的塑料盆內(nèi),每盆土和基質(zhì)的比例為1﹕1,置于日光溫室內(nèi)。培養(yǎng)條件為日均溫在25℃左右,溫室內(nèi)透光率不低于自然光照強(qiáng)度的50%,其中最高光強(qiáng)在800 μmol·m-2·s-1,相對(duì)濕度在40%—60%,正常肥水管理至8—10片完全展開(kāi)葉時(shí),進(jìn)行海水和外源乙酸處理。進(jìn)行15%海水澆灌的同時(shí),分別澆灌30 mmol·L-1乙酸、2%葡萄酒,以澆灌清水為對(duì)照,每個(gè)處理重復(fù)5盆,各處理均澆灌3次,每隔2 d澆灌一次,澆灌量為基質(zhì)持水量的2倍,約1/3的溶液流出,每次澆灌后第2天測(cè)定葉綠素?zé)晒庵笜?biāo),處理到第10天后,解析植株取樣分析二者對(duì)海水脅迫下丙二醛(MDA)含量、葉綠素含量以及根系活力的影響?!窘Y(jié)果】15%海水灌溉顯著增加了葡萄各器官的MDA含量,顯著降低了葡萄葉片葉綠素含量和根系活力,其中,與清水對(duì)照相比,根、莖、葉中MDA含量分別提高了1.10、0.27、0.41倍,葉綠素含量降低了18.5%,根系活力降低了41.9%,而澆灌30 mmol·L-1乙酸及2%葡萄酒處理顯著降低了葡萄各器官中的MDA含量,其中,澆灌乙酸處理的根、莖、葉中MDA含量比海水脅迫分別降低了29.3%、20.6%、15.8%;澆灌葡萄酒處理的根、莖、葉中MDA含量分別比海水脅迫的降低了29.4%、20.2%、25.2%。澆灌乙酸及葡萄酒處理顯著提高了葡萄葉片的葉綠素含量和根系活力,其中,根系活力分別比海水脅迫處理的顯著提高了68.4%和56.9%,葉綠素含量則分別提高了18.8%和20.3%。葉綠素?zé)晒夥治霰砻鳎?5%海水灌溉導(dǎo)致葉片光系統(tǒng)II(PSII)最大光化學(xué)效率(v/m)及最大光氧化P700 (m)明顯下降,其中第3、6、9天的m分別比對(duì)照下降了5.0%、9.6%、13.0%,光化學(xué)淬滅系數(shù)(qP)和PSII實(shí)際光化學(xué)效率Y(II)逐漸下降,而PSII處可調(diào)節(jié)性能量耗散的量子產(chǎn)額Y(NPQ)及非調(diào)節(jié)性能量耗散的量子產(chǎn)額Y(NO)均逐漸升高,PSI供體端側(cè)抑制程度Y(ND)未發(fā)生明顯變化,但是PSI受體側(cè)抑制程度Y(NA)逐漸升高,導(dǎo)致PSI的實(shí)際光化學(xué)效率Y(I)降低。根灌乙酸及葡萄酒可以顯著緩解15%海水脅迫,PSII及PSI實(shí)際光化學(xué)效率顯著升高,而用于熱耗散的能量分配明顯降低,從而提高了葡萄葉片的光合性能,其中以2%葡萄酒處理緩解效果較明顯。【結(jié)論】根灌乙酸及葡萄酒顯著提高15%海水脅迫下葡萄根系活力及葉綠素含量,緩解葉片光抑制程度,從而提高了葡萄對(duì)海水脅迫環(huán)境下的適應(yīng)性,研究結(jié)果為殘次果加工果酒、果渣及醋等的綜合利用改良鹽漬化土壤提供了理論依據(jù)。
葡萄;海水;光抑制;乙酸;葡萄酒;葉綠素?zé)晒?/p>
【研究意義】我國(guó)耕地中鹽漬化面積已達(dá)到920.9萬(wàn)公頃[1]。土壤鹽漬化是影響農(nóng)業(yè)生產(chǎn)和生態(tài)環(huán)境的全球性問(wèn)題[2],鹽漬化耕地中積累的鹽主要來(lái)自海水、鹽堿湖或灌溉水中的氯化鈉[3]。隨著國(guó)家把黃河三角洲開(kāi)發(fā)上升為國(guó)家戰(zhàn)略,濱海鹽漬化土壤改良與高效經(jīng)濟(jì)作物的適應(yīng)性栽培馴化又重新提上研究日程,采用工程技術(shù)進(jìn)行排鹽和洗鹽地,降低地下水位,避免海水倒灌是濱海鹽漬化土地改良及利用的基礎(chǔ),選擇耐鹽的經(jīng)濟(jì)作物,進(jìn)行耐鹽育種及采用一定的技術(shù)措施等成為改良土壤鹽漬化的發(fā)展方向[4]。研究乙酸及葡萄酒緩解海水脅迫的響應(yīng)機(jī)制對(duì)改良鹽堿地具有重要意義,并可為充分利用各種殘次水果及酒糟浸提液來(lái)改良鹽堿地提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】鹽脅迫中產(chǎn)生的離子毒害會(huì)降解葉綠素[5-6],造成植物光合電子傳遞和光系統(tǒng)活力受到抑制[7],研究也發(fā)現(xiàn)鹽脅迫可以下調(diào)參與光反應(yīng)和卡爾文循環(huán)的酶和蛋白活性[8],導(dǎo)致光合受阻,嚴(yán)重的甚至導(dǎo)致植株死亡[9]。對(duì)于鹽漬化土地的改良,研究者也采取了一定的措施,如袁隆平培育成的‘海水稻’;利用栽培技術(shù)措施進(jìn)一步提高了經(jīng)濟(jì)作物在鹽漬化土壤上的生長(zhǎng)發(fā)育,從而提高商品生產(chǎn)水平,如設(shè)施栽培、局部改良土壤的根域限制等。生長(zhǎng)季節(jié)施加外源物質(zhì)是緩解鹽脅迫的一種有效栽培技術(shù)方式,較為常用的外源物質(zhì)有滲透調(diào)節(jié)物質(zhì)、激素類(lèi)等[10-11]。Kim等[12]最新研究發(fā)現(xiàn),通過(guò)澆灌乙酸可以顯著緩解逆境對(duì)擬南芥、水稻、小麥、玉米和油菜生長(zhǎng)發(fā)育的抑制,其結(jié)果為研究者提供了一個(gè)新思路,是否乙酸以及含有較高乙酸含量的葡萄酒也能夠緩解鹽脅迫?【本研究切入點(diǎn)】外源乙酸能夠緩解植物受到的非生物脅迫,但乙酸及葡萄酒對(duì)海水脅迫下葡萄葉片光合作用的影響未見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】探討乙酸以及含有較高乙酸含量的葡萄酒緩解葡萄鹽脅迫的機(jī)制,以期為鹽漬化土壤葡萄園栽培管理提供新思路。
試驗(yàn)于2017年在山東農(nóng)業(yè)大學(xué)葡萄園內(nèi)進(jìn)行。
以一年生‘摩爾多瓦’葡萄(‘Moldova’,×)自根苗為試材,定植于直徑為20 cm、高度為18 cm的塑料盆內(nèi),每盆土和基質(zhì)的比例為1﹕1,置于日光溫室內(nèi)。培養(yǎng)條件:日均溫在25℃左右,溫室內(nèi)透光率不低于自然光照強(qiáng)度的50%,其中最高光強(qiáng)在800 μmol·m-2·s-1,相對(duì)濕度在40%—60%,正常肥水管理至8—10片完全展開(kāi)葉,此時(shí)葉片光合作用的飽和光強(qiáng)在1 100 μmol·m-2·s-1左右,進(jìn)行海水和外源乙酸處理。選取無(wú)病蟲(chóng)害、長(zhǎng)勢(shì)一致的苗子分成4組,處理1為澆灌海水(取自渤海灣,用清水稀釋到15% v/v,各種離子以mg·L-1為單位,稀釋后分別是Na+1 584,Cl-2 847,SO42-384,HCO3-21.3,Ca2+45,Mg2+253.5,pH 7.88,電導(dǎo)率為12.32 ms·cm-1,鹽離子濃度為8.1 mg·L-1);處理2為15%海水+30 mmol·L-1乙酸(購(gòu)于天津市凱通化學(xué)試劑有限公司,預(yù)試驗(yàn)確定適宜濃度);處理3為15%海水+2% v/v葡萄酒(葡萄酒產(chǎn)自筆者實(shí)驗(yàn)室葡萄園,其中乙酸的含量為0.43 g·L-1,酸度為7.3 g·L-1),對(duì)照為清水。每個(gè)處理重復(fù)5盆,各處理均澆灌3次,每隔2 d澆灌一次,澆灌量為基質(zhì)持水量的2倍,約1/3的溶液流出,每次澆灌后第2天測(cè)定葉綠素?zé)晒庵笜?biāo)(從上數(shù)第5片展開(kāi)葉),即第0、3、6、9天測(cè)定;處理到第10天,解析植株取樣測(cè)定丙二醛(malondialdehyde,MDA)含量、根系活力和葉綠素含量,同時(shí)取土測(cè)定土壤pH等指標(biāo)。
1.2.1 土壤pH的測(cè)定 用土壤水浸液法,稱(chēng)取通過(guò)2 mm孔徑篩的風(fēng)干試樣20 g(精確至0.1 g)于50 ml高型燒杯中,加入超純水20 ml,以攪拌器攪拌1 min,使土粒充分分散,放置30 min用PB-10型pH計(jì)(北京賽多利斯科學(xué)儀器有限公司)進(jìn)行測(cè)定。
1.2.2 土壤容重的測(cè)定 用環(huán)刀法測(cè)定,100 cm3取樣烘干后,按公式容重=干土重(g)/體積(cm3)計(jì)算。
1.2.3 土壤含水量的測(cè)定 采用HBN-BXSF型土壤水分速測(cè)儀進(jìn)行測(cè)定。
1.2.4 丙二醛含量、根系活力和葉綠素含量的測(cè)定 參照趙世杰等[13]的硫代巴比妥酸比色法測(cè)定MDA含量;利用氯化三苯基四氮唑法測(cè)定根系活力;按照趙世杰等[13]方法計(jì)算葉綠素含量。
1.2.5 葉綠素?zé)晒鈪?shù)的測(cè)定 使用Dual-PAM100葉綠素?zé)晒鈨x(Walz,Germany)進(jìn)行葉綠素?zé)晒獾幕铙w測(cè)定,測(cè)定前對(duì)葉片進(jìn)行15 min的暗適應(yīng)。先測(cè)定初始熒光產(chǎn)量(o)與最大熒光產(chǎn)量(m),之后遠(yuǎn)紅光照射10 s后,測(cè)定P700最大量子產(chǎn)量(m),對(duì)光下完全光啟動(dòng)的葉片打光強(qiáng)度為600 μmol·m-2·s-1的光化光,待熒光信號(hào)達(dá)到穩(wěn)態(tài)后(大約4—5 min)打開(kāi)飽和脈沖光(8 000 μmol·m-2·s-1),測(cè)定任意時(shí)間的實(shí)際熒光產(chǎn)量(t)、光下最大量子產(chǎn)量(m′)和光適應(yīng)下的最大熒光產(chǎn)量(m′)。根據(jù)以下公式進(jìn)行各參數(shù)的計(jì)算:PSII最大光化學(xué)效率v/m=(m-o)/m,PSII光化學(xué)量子產(chǎn)量Y(II)=(m′-s)/m′,光化學(xué)淬滅系數(shù)qP=(m′-s)/(m'-o'),非調(diào)節(jié)性能量耗散Y(NO)=s/m,調(diào)節(jié)性能量耗散Y(NPQ)=s/m′-s/m,PSI光化學(xué)量子產(chǎn)量Y(I)=(m′-)/m,PSI供體測(cè)抑制程度Y(ND)=/m,受體測(cè)抑制程度Y(NA)=(m-m')/m[14]。
數(shù)據(jù)測(cè)定取3次生物學(xué)重復(fù),分別用Microsoft Excel和Sigma Plot處理數(shù)據(jù)和作圖,用DPS軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析。數(shù)據(jù)以平均值±標(biāo)準(zhǔn)誤表示。
土壤pH是衡量土壤酸堿性的重要指標(biāo),由表1可以看出,澆灌15%海水的土壤pH與清水對(duì)照相比升高了0.67%,但沒(méi)有顯著性影響,澆灌乙酸和葡萄酒的處理土壤pH僅分別比海水處理降低了1.5%和1.2%,也未出現(xiàn)顯著性降低。對(duì)土壤容重以及土壤含水量的測(cè)定表明,澆灌15%海水后,與對(duì)照相比并未出現(xiàn)顯著性變化,澆灌乙酸和葡萄酒后,也未出現(xiàn)顯著性變化。
丙二醛(MDA)是膜脂過(guò)氧化作用的產(chǎn)物之一,可以作為鑒定植物遭受鹽脅迫程度的生理指標(biāo)。由表2可見(jiàn),澆灌3次15%海水后對(duì)‘摩爾多瓦’葡萄造成了明顯脅迫,顯著增加了各器官M(fèi)DA含量,根、莖、葉中MDA含量分別是清水對(duì)照的2.10、1.27、1.41倍,而根灌乙酸及葡萄酒均顯著緩解了海水脅迫下葡萄根、莖、葉中MDA的含量,其中,澆灌乙酸比海水脅迫分別降低了29.3%、20.6%、15.8%;澆灌葡萄酒比海水脅迫分別降低了29.4%、20.2%、25.2%。
表1 澆灌乙酸及葡萄酒對(duì)海水脅迫下土壤理化性狀的影響
同列數(shù)據(jù)后不同小寫(xiě)字母表示處理間差異顯著(<0.05)。下同
Different lowercases in the same column indicate significant difference among treatments (<0.05). The same as below
表2 澆灌乙酸及葡萄酒對(duì)海水脅迫下葡萄根、莖、葉中丙二醛含量的影響
由圖1可以看出,與清水對(duì)照相比,澆灌3次15%海水顯著降低了葡萄的根系活力,比對(duì)照降低了41.9%。根灌30 mmol·L-1乙酸及2%葡萄酒澆灌均顯著升高了根系活力,與15%海水處理相比,分別提高了68.4%、56.9%。
葉綠素含量是反映植物光合能力的重要指標(biāo)[15]。圖2表明,15%海水脅迫顯著降低了葡萄葉片中葉綠素含量,與對(duì)照相比降低了18.5%,而根灌乙酸和葡萄酒后葉綠素含量與海水處理相比分別提高了18.8%、 20.3%,與清水對(duì)照相比沒(méi)有顯著差異。
葉綠素?zé)晒馐欠从持参锕夂闲阅艿挠行结?,最大光化學(xué)效率(v/m)反映了光系統(tǒng)Ⅱ(photosystem II,PSII)反應(yīng)中心受損情況,P700最大量子產(chǎn)額(m)可以反映PSI活性[16]。如圖3所示,15%海水處理下m、v/m呈現(xiàn)下降趨勢(shì)。其中第3、6、9天的m分別比對(duì)照下降了5.0%、9.6%、13.0%;v/m在海水脅迫后第3天出現(xiàn)明顯下降,根灌乙酸和葡萄酒處理均緩解了v/m和m的降低幅度,表明根灌乙酸和葡萄酒可以有效緩解15%海水脅迫下葡萄葉片的光抑制程度,其中以葡萄酒處理效果較明顯。
C:清水對(duì)照Clear water control;S:海水Seawater;A+S:乙酸+海水Acetic acid + seawater;W+S:葡萄酒+海水Wine + seawater。下同The same as below
圖2 澆灌乙酸及葡萄酒處理對(duì)海水脅迫下葡萄葉片葉綠素含量的影響
圖3 澆灌乙酸及葡萄酒處理對(duì)海水脅迫下葡萄葉片F(xiàn)v/Fm、Pm的影響
如圖4所示,15%海水脅迫明顯降低了葡萄葉片光下最大光化學(xué)效率(v′/m′)(圖4-A),并且光化學(xué)淬滅系數(shù)(qP)(圖4-B)逐漸降低,表明PSII反應(yīng)中心在海水脅迫環(huán)境中處于關(guān)閉狀態(tài),從而導(dǎo)致用于光化學(xué)途徑的能量減少,光合作用受到抑制。根灌乙酸及葡萄酒的v′/m′、qP與海水脅迫相比均明顯提高,說(shuō)明乙酸及葡萄酒可以提高PSII的光化學(xué)效率。15%海水灌溉也改變了葡萄葉片PSII和PSI的能量分配,與對(duì)照相比,15%海水灌溉下PSII實(shí)際光化學(xué)效率[Y(II)](圖4-C)明顯下降,但可調(diào)節(jié)性能量耗散[Y(NPQ)](圖4-G)及非調(diào)節(jié)性耗散[Y(NO)](圖4-E)均明顯升高;PSI供體端側(cè)抑制程度[Y(ND)](圖4-H)發(fā)生明顯變化,但PSI受體側(cè)抑制程度[Y(NA)](圖4-F)逐漸升高,導(dǎo)致PSI的實(shí)際光化學(xué)效率[Y(I)](圖4-D)降低。根灌乙酸和葡萄酒明顯提高了15%海水灌溉下葡萄葉片的Y(II)及Y(I),降低了Y(NPQ)及Y(NO)水平。進(jìn)一步表明乙酸及葡萄酒可以緩解15%海水脅迫下葡萄葉片光抑制程度,從而改善能量的分配比例。
圖4 澆灌乙酸及葡萄酒處理對(duì)海水脅迫下葡萄葉片能量分配的影響
眾所周知,乙酸是一種簡(jiǎn)單的基本生物化合物,由于含有的羧基具有較強(qiáng)的絡(luò)合作用,對(duì)土壤理化性質(zhì)、礦物溶解和成土作用、根際營(yíng)養(yǎng)、重金屬毒害等方面產(chǎn)生著深刻的影響,同時(shí)也在植物化感作用方面起著重要的作用[17]。有研究發(fā)現(xiàn),土壤中也存在乙酸[18],且在一定濃度范圍內(nèi)土壤中乙酸濃度越高植物體內(nèi)累積的鈉、鉀離子濃度越低[19],而作為協(xié)調(diào)植物生存能力的初始因子,將植物的基本代謝、表觀遺傳調(diào)控和激素信號(hào)傳導(dǎo)聯(lián)系起來(lái),最終賦予植物抗逆性,Kim等[12]在擬南芥及水稻上的研究表明,外源乙酸對(duì)逆境脅迫的緩解作用與茉莉酸(JA)信號(hào)途徑有關(guān),通過(guò)促進(jìn)JA合成和組蛋白H4乙?;母患瑥亩绊慗A信號(hào)通路對(duì)植物耐逆境性能的啟動(dòng)。這種新穎的醋酸功能在進(jìn)化上是保守的,是植物作為抵抗環(huán)境變化的生存策略。
由于乙酸同時(shí)具有的酸性特征,最直接的考慮是其在鹽漬化土壤上的應(yīng)用,前期調(diào)查發(fā)現(xiàn),黃河三角洲鹽漬化土壤上栽培的葡萄春季發(fā)芽晚,生長(zhǎng)慢,葉色淺淡。前人研究表明,土壤鹽脅迫抑制根系的生長(zhǎng)發(fā)育,會(huì)引起細(xì)胞膜質(zhì)過(guò)氧化[20],增大膜通透性,破壞膜結(jié)構(gòu)的完整性,降低根系活力。本研究發(fā)現(xiàn)海水脅迫導(dǎo)致葡萄根莖葉中的丙二醛含量均顯著升高,根系活力下降,而澆灌乙酸和葡萄酒顯著降低了各器官的膜脂過(guò)氧化,維持了較高的根系活力,與15%海水處理相比,分別提高了68.4%、56.9%。
鹽脅迫對(duì)植物光系統(tǒng)活性產(chǎn)生抑制,嚴(yán)重的會(huì)發(fā)生光破壞,導(dǎo)致植物整株死亡[21]。葉綠素是光合作用的物質(zhì)基礎(chǔ),其含量的高低在一定程度上反應(yīng)了光合作用的強(qiáng)弱[22],鹽脅迫對(duì)葉綠素含量的影響因植物種類(lèi)、鹽類(lèi)型、處理濃度等因素的不同而異,其分別表現(xiàn)為下降[23]、升高[24]或先升高后降低的變化趨勢(shì)[25-26]。本研究表明,15%海水脅迫顯著降低了葉綠素的含量,可能因?yàn)楹K{迫下植物細(xì)胞色素系統(tǒng)遭到破壞,葉綠素酶活性提高,從而加速了葉綠素的降解[27-28]。當(dāng)植物吸收的光能超過(guò)所能利用的光能時(shí),過(guò)剩光能便會(huì)導(dǎo)致光合結(jié)構(gòu)的光抑制,甚至光破壞[29]。本研究中,15%海水處理導(dǎo)致了葉片最大光化學(xué)效率(v/m)及P700量子產(chǎn)額(m)的顯著降低,而澆灌乙酸及葡萄酒均明顯提高了海水脅迫下葉片的熒光參數(shù),緩解了PSII及PSI的光抑制程度[30]。與清水對(duì)照相比,15%海水脅迫明顯改變了葡萄光系統(tǒng)的光能分配,葉片可調(diào)節(jié)的能量耗散[Y(NPQ)]顯著升高,一方面表明其接受的光強(qiáng)過(guò)剩,另一方面說(shuō)明葉片啟動(dòng)了與高能態(tài)淬滅有關(guān)的葉黃素循環(huán)過(guò)程[31-33],但是Y(NPQ)在海水脅迫條件下自身調(diào)節(jié)能力有限,并不能耗散掉所有的光能,隨著鹽脅迫時(shí)間的延長(zhǎng),過(guò)剩光能的比例越來(lái)越高,非調(diào)節(jié)性能量耗散[Y(NO)]逐漸升高,葉片發(fā)生嚴(yán)重光抑制[34]。而澆灌乙酸及葡萄酒后,葡萄葉片Y(NPQ)與Y(NO)均維持在降低水平,從而提高了PSII的實(shí)際光化學(xué)效率[Y(II)]。
不同濃度海水澆灌會(huì)引起土壤中及植物體內(nèi)離子的失衡[35],合理的海水灌溉濃度不會(huì)引起土壤理化性狀的顯著改變[36]。本研究中澆灌15%海水脅迫及用30 mmol·L-1乙酸和2%葡萄酒緩解均未導(dǎo)致土壤pH、土壤容重和土壤含水量的顯著變化,表明15%海水處理可能通過(guò)離子毒害進(jìn)行傷害。
本研究中,澆灌乙酸及葡萄酒均顯著降低了15%海水脅迫下葡萄各器官的膜脂過(guò)氧化程度,緩解了葡萄葉片的光抑制,促進(jìn)了葉片吸收的光能用于光化學(xué)反應(yīng)的比例,對(duì)以后用鹽漬化土壤果園殘次果釀造的葡萄酒、果酒或者果醋等的綜合利用提供了理論支撐。
15%海水灌溉導(dǎo)致葡萄根系活力及葉綠素含量下降,加劇膜脂過(guò)氧化程度,光系統(tǒng)活性受到了抑制。根灌乙酸及葡萄酒可以顯著提高15%海水脅迫下根系活力及葉綠素含量,改善光系統(tǒng)能量分配并提高光能利用效率,從而緩解光抑制程度,提高了葡萄對(duì)鹽環(huán)境的適應(yīng)性。
[1] 王佳麗, 黃賢金, 鐘太洋, 陳志剛. 鹽堿地可持續(xù)利用研究綜述. 地理學(xué)報(bào), 2011, 66(5): 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land., 2011, 66(5): 673-684. (in Chinese)
[2] 劉建新, 王金成, 王瑞娟, 賈海燕. 鹽、堿脅迫對(duì)燕麥幼苗光合作用的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2015, 33(6): 155-160.
Liu J X, Wang J C, Wang R J, Jia H Y. Effects of salt and alkali stress on photosynthesis inseedlings., 2015, 33(6): 155-160. (in Chinese)
[3] 吳運(yùn)榮, 林宏偉, 莫肖蓉. 植物抗鹽分子機(jī)制及作物遺傳改良耐鹽性的研究進(jìn)展. 植物生理學(xué)報(bào), 2014, 50(11): 1621-1629.
Wu Y R, Lin H W, Mo X R. Research progress in the mechanism of plant salt tolerance and genetic engineering of salt resistant crops., 2014, 50(11): 1621-1629. (in Chinese)
[4] 牛東玲, 王啟基.鹽堿地治理研究進(jìn)展. 土壤通報(bào), 2002, 33(6): 449-455.
Niu D L, Wang Q J. Research progress on saline-alkali field control., 2002, 33(6): 449-455. (in Chinese)
[5] Ahmad P, Sharma S. Physio-biochemical attributes in two cultivars of mulberry (L.) under NaHCO3stress., 2010, 4(2): 79-86.
[6] 劉衛(wèi)國(guó), 丁俊祥, 鄒杰, 林喆, 唐立松. NaCl對(duì)齒肋赤蘚葉肉細(xì)胞超微結(jié)構(gòu)的影響. 生態(tài)學(xué)報(bào), 2016, 36(12): 3556-3563.
Liu W G, Ding J X, Zou J, LIN Z, Tang L s. Ultrastructural responses ofto a gradient of NaCl stress., 2016, 36(12): 3556-3563. (in Chinese)
[7] Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, ?ukasik I, Goltsev V, Ladle R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions., 2016, 38: 102.
[8] Cheng T, Chen J, Zhang J, Shi S, Zhou Y, Lu L, Wang P, Jiang Z, Yang J, Zhang S, Shi J. Physiological and proteomic analyses of leaves from the halophytereveals diverse response pathways critical for high salinity tolerance., 2015, 6: 30.
[9] 郭艷超, 王文成, 李克曄, 吳新海, 董文琦, 吳菲. NaCl脅迫對(duì)八棱海棠幼苗生長(zhǎng)及其生理指標(biāo)的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(28): 130-134.
Guo Y C, Wang W C, Li K Y, Wu X H, Dong W Q, Wu F. Effects of NaCl stress on the growth and some physiological indexes ofrehd., 2011, 27(28): 130-134. (in Chinese)
[10] Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai Y S, Wang C, Du J, Xiao S, Yang C. Jasmonate complements the function oflipoxygenase3 in salinity stress response., 2016, 244: 1-7.
[11] Jiang C Q, Cui Q R, Feng K, Xu D F, Li C F, Zheng Q S. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings., 2016, 38: 82.
[12] Kim J M, To T K, Matsui A, Tanoi K, Kobayashi N I, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir K, Rasheed S, Ando M, Takeda H, Kawaura K, Kusano M, Fukushima A, Endo T A, Kuromori T, Ishida J, Morosawa T, Tanaka M, Torii C, Takebayashi Y, Sakakibara H, Ogihara Y, Saito K, Shinozaki K, Devoto A, Seki M. Acetate-mediated novel survival strategy against drought in plants., 2017, 3: Article number 17097.
[13] 趙世杰, 史國(guó)安, 董新純. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo). 北京: 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2015: 55-57, 142-143.
Zhao S J, Shi G A, Dong X C.. Beijing: China Agricultural Science and Technology Press, 2015: 55-57, 142-143. (in Chinese)
[14] Pfündel E, Klughammer C, Schreiber U. Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system., 2008, 1: 21-24.
[15] 蔣金豹, 陳云浩, 黃文江. 用高光譜微分指數(shù)估測(cè)條銹病脅迫下小麥冠層葉綠素密度. 光譜學(xué)與光譜分析, 2010, 30(8): 2243-2247.
Jiang J B, Chen Y H, Huang W J. Using hyperspectral remote sensing to estimate canopy chlorophyll density of wheat under yellow rust stress., 2010, 30(8): 2243-2247. (in Chinese)
[16] Huang W, Fu P L, Jiang Y J, Zhang J L, Zhang S B, Hu H, Cao K F. Differences in the responses of photosystem I and photosystem II of three tree species,andexposed to a prolonged drought in a tropical limestone forest., 2013, 33(2): 211-220.
[17] 趙鵬志, 陳祥偉, 楊小燕, 齊思明, 王恩姮. 低分子有機(jī)酸對(duì)東北黑土酶活性與養(yǎng)分關(guān)系的影響. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 42(1): 105-112.
Zhao P Z, Chen X W, YANG X Y, Qi S M, Wang E H. Relationship between enzyme activities and nutrients of black soil subjected to low molecular organic acid., 2018, 42(1): 105-112. (in Chinese)
[18] 丁永禎, 李志安, 鄒碧. 土壤低分子量有機(jī)酸及其生態(tài)功能. 土壤, 2005, 37(3): 243-250.
Ding Y Z, Li Z A, Zou B. Low-molecular-weight organic acids and their ecological roles in soil.,2005, 37(3): 243-250. (in Chinese)
[19] 吳雪, 楊曉婷, 王冰, 王林, 疏偉慧, 張麗麗, 韓玉林. 外源乙酸和EDTA對(duì)銅尾礦礦砂中蘆葦幼苗生長(zhǎng)及部分金屬元素積累的影響. 植物資源與環(huán)境學(xué)報(bào), 2011, 20(4): 29-34.
Wu X, Yang X T, Wang B, Wang L, Shu W H, Zhang L L, Han Y L. Effects of exogenous acetic acid and EDTA on growth and accumulation of some metal elements ofseedling in copper tailing ore., 2011, 20(4): 29-34. (in Chinese)
[20] 劉建新, 王鑫, 王瑞娟, 李東波. 堿脅迫對(duì)黑麥草幼苗根系活性氧代謝和滲透溶質(zhì)積累的影響. 植物研究, 2011, 31(6): 674-679.
Liu J X, Wang X, Wang R J, LI D B. Effects of alkaline stress on the metabolism of reactive oxygen species and osmotic accumulation inryegrass seedling roots., 2011, 31(6): 674-679. (in Chinese)
[21] 王振興, 呂海燕, 秦紅艷, 趙瀅, 劉迎雪, 艾軍, 曹建冉, 楊義明, 沈育杰. 鹽堿脅迫對(duì)山葡萄光合特性及生長(zhǎng)發(fā)育的影響. 西北植物學(xué)報(bào), 2017, 37(2): 339-345.
Wang Z X, Lü H Y, Qin H Y, Zhao Y, Liu Y X, Ai J, Cao J R, YAng Y M, Shen Y J. Photosynthetic characteristics and growth development of Amur grape (Rupr.) under saline- alkali stress., 2017, 37(2): 339-345. (in Chinese)
[22] 王偉華, 張希明, 閆海龍, 梁少民, 楊小林. 鹽處理對(duì)多枝怪柳光合作用和滲調(diào)物質(zhì)的影響. 干旱區(qū)研究, 2009, 26(4): 561-568.
Wang w h, Zhang x m, Yan h l, Liang S m, Yang X l. Effects of salt stress on photosynthesis and osmoregulation substance ofLedeb., 2009, 26(4): 561-568. (in Chinese)
[23] 王斌. NaCl和Na2SO4脅迫下沼澤小葉樺的生理響應(yīng). 南京林業(yè)大學(xué)學(xué)報(bào) (自然科學(xué)版), 2013, 37(1): 132-136.
Wang B. Effects of NaCl and Na2SO4stress on physiological characteristics in., 2013, 37(1): 132-136. (in Chinese)
[24] 范希峰, 侯新村, 朱毅, 武菊英. 鹽脅迫對(duì)柳枝稷苗期生長(zhǎng)和生理特性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(6): 1476-1480.
Fan x F, Hou x c, Zhu y, Wu J y. Impacts of salt stress on the growth and physiological characteristics ofseedlings., 2012, 23(6): 1476-1480. (in Chinese)
[25] 李宏, 鄧江宇, 張振春, 楊森, 曹林. 鹽脅迫對(duì)鹽樺幼樹(shù)光合特性的影響. 新疆農(nóng)業(yè)科學(xué), 2010, 47(2): 213-217.
Li h, Deng j y, Zhang z c, Yang S, Cao L. Influence of salt stress on physiological adaptability of youngtrees., 2010, 47(2): 213-217. (in Chinese)
[26] 徐靜, 董寬虎, 高文俊, 謝開(kāi)云. NaCl和Na2SO4脅迫下冰草幼苗的生長(zhǎng)及生理響應(yīng). 中國(guó)草地學(xué)報(bào), 2011, 33(1): 36-41.
Xu J, Dong K h, Gao W j, Xie K y. Growth and physiological responses ofseedlings under NaCl and Na2SO4stress., 2011, 33(1): 36-41. (in Chinese)
[27] Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves.2004, 103(1): 93-99.
[28] 王斌, 巨波, 趙慧娟, 張群, 朱義, 崔心紅. 不同鹽梯度處理下沼澤小葉樺的生理特征及葉片結(jié)構(gòu)研究. 林業(yè)科學(xué), 2011, 47(10): 29-36.
Wang B, Ju B, Zhao H j, Zhang Q, ZHU Y, Cui X H. Photosynthetic performance and variation in leaf anatomic structure ofvar.under different saline conditions., 2011, 47(10): 29-36. (in Chinese)
[29] Reinbothe S, Reinbothe C. The regulating of enzymes involved in chlorophyll biosynthesis., 1996, 237(2): 323-343.
[30] Huang W, Yang Y J, Zhang J L, Hu H, Zhang S B. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species., 2017, 132(3): 293-303.
[31] Giimore A M. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves., 1997, 99: 197-209.
[32] Niyogi K K, Grossman A R, Bj?rkman O.mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion., 1998, 10(7): 1121-1134.
[33] Yamamoto H Y, Bugos R C, Hieber A D. Biochemistry and molecular biology of the xanthophyll cycle//.Springer. Dordrecht, 1999: 293-303.
[34] Horton P, Hague A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching.-, 1988, 932: 107-115.
[35] 寇偉鋒, 劉兆普, 鄭宏偉. 海水脅迫對(duì)向日葵苗期生長(zhǎng)及礦質(zhì)營(yíng)養(yǎng)吸收特性的影響. 生態(tài)學(xué)雜志, 2006, 25(5): 521-525.
Kou W f, Liu Z p, Zheng H w. Effects of sea water stress onL. seedlings growth and mineral nutrition., 2006, 25(5): 521-525. (in Chinese)
[36] 王楊. 長(zhǎng)期海水灌溉對(duì)赤霞珠果實(shí)品質(zhì)及土壤性質(zhì)的影響[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2016.
Wang Y. The effect of long term seawater irrigation on the quality of Cabernet Sauvignon fruit and soil properties[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
Effect of root irrigationof acetic acid and wine on photoinhibition of grape under seawater stress
WANG Hui, GAO Yulu, YU Meng, DU Yuanpeng, SUN Yongjiang, ZHAI Heng
(College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong)
【Objective】In order to expand the effective utilization of salinized soil and improve the quality of grape growth and development in salinized soil, the effects of acetic acid and wine on leaf photoinhibition under 15% seawater stress were studied. The result will provide a theoretical basis and technical reference for the improvement of grape cultivation techniques in salinized soil. 【Method】One-year old potted ‘Moldova’ seedlings were grown in plastic pots (with a diameter of 20 cm, and a height of 18 cm). The ratio of soil to substrate in each pot was 1﹕1 and the pots were placed in greenhouse. the culture conditions of the greenhouse were as follows: the average daily temperature was about 25℃, the light transmittance was more than 50% of natural light intensity, the maximum light intensity was 800 μmol·m-2·s-1, the relative humidity was 40%-60%, and the normal fertilizer and water was managed until 8-10 pieces of fully expanded leaves, then the seawater and exogenous acetic acid were used. The plants were irrigated with 15% seawater, 30 mmol·L-1exogenous acetic acid and 2% wine at the same time, each treatment repeated 5 times, the controls were treated with clear water. each treatment was irrigated every 2 days and 3 times, the irrigation amount was 2 times of water holding capacity, and about 1/3 of the solution leaked out, chlorophyll fluorescence indicators were determined on the 2nd day of irrigation, after 10 days treatment, the effects of the two methods on malondialdehyde (MDA) content, chlorophyll content, and root activity under seawater stress were analyzed.【Result】15% seawater treatment significantly decreased the chlorophyll content of leaf and root activity, but increased MDA content of root, stem and leaf. Compared with clear water control, the chlorophyll content decreased by 18.5% and root activity decreased by 41.9%. MDA content of root, stem and leaf increased by 1.10, 0.27 and 0.41 times, respectively. However, 30 mmol·L-1acetic acid and 2% wine treatments significantly decreased the MDA content in grape. the MDA content in root, stem and leaf of grape treated with acetic acid decreased by 29.3%, 20.6% and 15.8%, respectively, compared with that of seawater stress, and the MDA content in root, stem and leaf of grape treated with wine decreased by 29.4%, 20.2% and 25.2%, respectively, compared with that of seawater stress. Irrigated with acetic acid and wine significantly increased the leaf chlorophyll content and root activity. Compared with seawater stress treatment, the root activity increased by 68.4% and 56.9%, and the chlorophyll content increased by 18.8% and 20.3%, respectively.The analysis of chlorophyll fluorescence showed that 15% seawater treatment decreased the levels of photosystem II (PSII) maximum photochemical efficiency (v/m) and the maximum photo-oxidizable P700 (m). Them on the 3rd, 6th, and 9th day decreased by 5.0%, 9.6% and 13.0% compared with the control, the levels of photochemical quenching coefficient (qP) and PSII actual photochemical efficiency (YII) decreased gradually, but the quantum yield of regulated energy dissipation Y (NPQ) and the quantum yield of non-regulated energy dissipation Y (NO) increased gradually. The nonphotochemical quantum yield due to PSI donor side limitation Y (ND) changed little, but the nonphotochemical quantum yield due to PSI acceptor side limitation Y (NA) increased gradually, resulting in the decrease of PSI actual photochemical efficiency Y (I). The irrigation of 30 mmol·L-1acetic acid and 2% wine significantly relieved the stress of 15% seawater. The actual photochemical efficiency of PSI and PSII increased significantly, meanwhile the energy dissipated through heat decreased, then enhanced the efficiency of light energy utilization of grape leaves, in which 2% wine treatment showed a more obvious alleviated effect.【Conclusion】Irrigation of acetic acid and wine significantly improved root activity and chlorophyll content, which alleviated the photoinhibition level and improved the adaptability of grape to saline environment. The results provided a theoretical basis for the use of extract of wine lees to improvement of coastal saline soil.
grape; seawater; photoinhibition; acetic acid; wine; chlorophyll fluorescence
10.3864/j.issn.0578-1752.2018.21.019
2018-05-07;
2018-08-01
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(CARS-29-zp-2)、山東省重大科技創(chuàng)新工程(2018CXG0306)、山東省“雙一流”建設(shè)獎(jiǎng)補(bǔ)資金(SYL2017YSTD10)
王輝,E-mail:1924412287@qq.com。通信作者孫永江,Tel:0538-8241335;E-mail:sunhyongjiang12@163.com。通信作者翟衡,Tel:0538-8241335;E-mail:zhaih@sdau.edu.cn
(責(zé)任編輯 岳梅)