周茜茜,邱化榮,何曉文,王憲璞,劉秀霞,李保華,吳樹敬,陳學(xué)森
?
介導(dǎo)提高蘋果與擬南芥對輪紋病菌的免疫抗性
周茜茜1,邱化榮1,何曉文1,王憲璞1,劉秀霞1,李保華2,吳樹敬1,陳學(xué)森1
(1山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018;2青島農(nóng)業(yè)大學(xué)植物醫(yī)學(xué)學(xué)院,山東青島 266109)
【目的】從‘富士’蘋果中克隆,研究其在水楊酸(SA)誘導(dǎo)條件下的表達(dá)模式及在蘋果輪紋病抗病信號通路中的作用,為進(jìn)一步揭示蘋果的抗病機(jī)制提供理論依據(jù)。【方法】以‘富士’蘋果為試材,克隆的全長CDS序列,對其進(jìn)行生物信息學(xué)分析,采用熒光定量PCR(qRT-PCR)分析其在蘋果各組織中的表達(dá)水平,及對非生物脅迫SA的響應(yīng);研究外源SA處理對蘋果葉片接種輪紋病菌()的影響,并利用qRT-PCR檢測病程相關(guān)蛋白基因的表達(dá);將在擬南芥中進(jìn)行異源表達(dá),對穩(wěn)定表達(dá)的擬南芥幼苗葉片進(jìn)行接菌處理,觀察葉片發(fā)病程度及發(fā)病葉片數(shù)量,并采用qRT-PCR分析病程相關(guān)基因的表達(dá);測量擬南芥幼苗的根系長度,并利用qRT-PCR檢測生長素相關(guān)基因的表達(dá)?!窘Y(jié)果】包含長為858 bp完整的開放閱讀框,編碼286個(gè)氨基酸,預(yù)測其分子量為32.088 kD,等電點(diǎn)為8.15。系統(tǒng)進(jìn)化樹分析表明,MdWRKY40與白梨PbWRKY40序列相似性最高,親緣關(guān)系最近,與擬南芥AtWRKY40在不同的分支上,親緣關(guān)系較遠(yuǎn),利用DANMAN軟件進(jìn)行MdWRKY40與AtWRKY40的多序列比對分析發(fā)現(xiàn),MdWRKY40蛋白與AtWRKY40蛋白雖然都含有一個(gè)WRKYGQK保守結(jié)構(gòu)域,但相似度僅為29.78%。qRT-PCR分析表明,在根中的表達(dá)水平最高,在葉中的表達(dá)水平最低,并且在根、莖、葉中,SA均誘導(dǎo)了的表達(dá),且均呈現(xiàn)先升高后降低的趨勢,在6 h時(shí)表達(dá)量最高;外源SA處理提高了蘋果葉片對輪紋病菌的抗性,未處理的葉片發(fā)病率達(dá)92.59%,SA處理后發(fā)病率降至79.26%,并顯著提高了病程相關(guān)蛋白基因、的表達(dá)量。與野生型相比,在擬南芥中異源過量表達(dá)顯著提高了擬南芥葉片對輪紋病菌的抗性,野生型擬南芥發(fā)病率達(dá)77.5%,而兩個(gè)轉(zhuǎn)基因擬南芥株系發(fā)病率僅為21.5%和17.4%,并顯著提高了病程相關(guān)基因、、的表達(dá)。過表達(dá)的擬南芥植株根系生長受到抑制,培養(yǎng)7 d后轉(zhuǎn)基因擬南芥主根長度分別是野生型擬南芥的39.9%和43.1%,培養(yǎng)10 d后主根長度分別是野生型擬南芥的58.5%和55.4%?;虮磉_(dá)結(jié)果顯示,生長素合成相關(guān)基因和生長素運(yùn)輸相關(guān)基因、的表達(dá)水平在過表達(dá)株系中顯著低于野生型?!窘Y(jié)論】表達(dá)受SA和蘋果輪紋病菌侵染誘導(dǎo);是蘋果中重要的輪紋病抗病基因,該基因過表達(dá)顯著提高對輪紋病菌的抗性;具有調(diào)控植物根系生長發(fā)育的功能,可能通過下調(diào)生長素運(yùn)輸相關(guān)基因的表達(dá)影響植物根系生長發(fā)育。
蘋果;;水楊酸;蘋果輪紋病菌;免疫抗性;根系生長
【研究意義】蘋果味道鮮美,營養(yǎng)豐富,是世界范圍內(nèi)深受消費(fèi)者喜愛的水果之一,但蘋果的產(chǎn)量及其品質(zhì)極易受生物和非生物脅迫的危害[1],蘋果輪紋病菌(葡萄座腔菌,)是兼性菌,既可以營腐生又可以營活體[2],輪紋病是蘋果生產(chǎn)中最重要的病害之一,可危害蘋果的枝干和果實(shí),在田間和貯藏期均可使蘋果發(fā)病[3]。目前生產(chǎn)上主栽品種‘富士’,以及‘元帥’‘嘎啦’等均為輪紋病易感品種,給蘋果生產(chǎn)造成巨大的經(jīng)濟(jì)損失。近年來,果實(shí)套袋技術(shù)和化學(xué)藥劑防治是蘋果輪紋病主要的防治措施,但果實(shí)套袋無法解決枝干輪紋病危害,化學(xué)藥劑的使用又會(huì)對環(huán)境造成影響。進(jìn)行具有抑菌功能的有效藥劑與生防菌篩選,是目前研究者試圖解決蘋果果實(shí)及枝干輪紋病的重要嘗試[4-5]。但迄今為止,一直沒有低毒環(huán)保并能夠有效防治蘋果枝干及果實(shí)輪紋病的有效藥劑。因此,抗病品種培育是解決輪紋病對蘋果產(chǎn)業(yè)造成巨大危害的另一重要嘗試。而對于蘋果抗病信號轉(zhuǎn)導(dǎo)途徑進(jìn)行研究,揭示和鑒定蘋果抗病基因,是利用抗病基因資源進(jìn)行蘋果抗病品種培育和種質(zhì)資源選育的前提條件?!厩叭搜芯窟M(jìn)展】WRKY轉(zhuǎn)錄因子作為植物中最大的轉(zhuǎn)錄因子家族之一,其中一個(gè)主要功能是與植物的抗病和生長發(fā)育有關(guān),在植物的抗病反應(yīng)調(diào)控網(wǎng)絡(luò)中起著關(guān)鍵作用[6-7]。WRKY轉(zhuǎn)錄因子可以調(diào)控抗病信號通路中的關(guān)鍵基因,如在擬南芥中,通過與啟動(dòng)子中的W-box結(jié)合來調(diào)控下游基因的表達(dá),進(jìn)而調(diào)控植物的抗病性[8]。WRKY轉(zhuǎn)錄因子還可以通過與蛋白的直接結(jié)合來調(diào)控植物的抗病性,如大麥中和編碼的蛋白則通過與MLA(mildew- resistance locus A)互作來調(diào)控大麥對白粉病的抗性[9]。近年來,越來越多的研究發(fā)現(xiàn),WRKY轉(zhuǎn)錄因子參與植物的各種生理過程,包括生長和發(fā)育[10-11]、非生物脅迫響應(yīng)[12-14]和生物脅迫響應(yīng)[15-19]。WRKY轉(zhuǎn)錄因子通過結(jié)合靶基因啟動(dòng)子中的順式作用元件W-box(TTGACC/T)來調(diào)控基因表達(dá)[20]。除了W-box外,WRKY轉(zhuǎn)錄因子還可以結(jié)合其他元件,如糖響應(yīng)(SURE)順式作用元件(TAAAGATTACTAATAGG AA)和病原體響應(yīng)元件PRE4(TGCGCTT),表明其功能機(jī)制的多樣性[21]。進(jìn)一步的研究顯示,WRKY轉(zhuǎn)錄因子的主要生物學(xué)功能是調(diào)控植物的抗病反應(yīng)及參與信號轉(zhuǎn)導(dǎo)途徑的建立。在本氏煙中,沉默降低了本氏煙對半活體營養(yǎng)型寄生疫霉Pp025菌株和死體營養(yǎng)型灰霉病菌的抗性[22],Xu等研究表明和雙突變體和三重突變體提高了擬南芥對丁香假單胞菌DC3000的抗性,但降低了擬南芥對灰霉病菌的抗性[23],雙突變體也提高了擬南芥對白粉病菌的抗性[24]。除了參與生物脅迫外,WRKY轉(zhuǎn)錄因子還廣泛參與了非生物脅迫,在擬南芥中,受E-2-己烯醛誘導(dǎo)[14],羅昌國等[25]研究發(fā)現(xiàn),水楊酸(SA)可以強(qiáng)烈誘導(dǎo)的表達(dá)。WRKY轉(zhuǎn)錄因子在植物的根系生長發(fā)育中也發(fā)揮著重要作用,如在水稻中,過表達(dá)顯著降低了植株的株高并增加了根的長度[26]?!颈狙芯壳腥朦c(diǎn)】在蘋果輪紋病抗病信號通路中的具體功能和作用機(jī)制尚未見報(bào)道?!緮M解決的關(guān)鍵問題】通過鑒定的生物學(xué)功能,闡明其在抵御蘋果輪紋病菌侵染中的作用,為進(jìn)一步揭示蘋果的抗病機(jī)制以及培育抗病新品種提供理論依據(jù)。
試驗(yàn)于2016—2017年在山東農(nóng)業(yè)大學(xué)作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
分別以山東農(nóng)業(yè)大學(xué)植物生長室生根28 d的‘嘎啦’蘋果組培苗的根、莖、葉,山東農(nóng)業(yè)大學(xué)南校區(qū)果樹實(shí)驗(yàn)站培育的‘富士’蘋果果實(shí)和在22℃,相對濕度60%,10 h/14 h光暗周期條件下培養(yǎng)的哥倫比亞野生型擬南芥幼苗為試材。蘋果輪紋病菌所使用株系為No.040301[27]。
總RNA的提取按照康為世紀(jì)生物科技有限公司的OminiPlant RNA Kit(DNaseI)提取試劑盒說明書進(jìn)行,從‘富士’蘋果果皮中提取總RNA,應(yīng)用RevertAid First Strand cDNA Synthesis Kit(Thermo Scientific)反轉(zhuǎn)錄試劑盒并參照其說明書反轉(zhuǎn)錄為cDNA,-20℃保存?zhèn)溆谩?/p>
熒光定量儀器為伯樂CFX96分析儀,總反應(yīng)體系為5 μL FastStart Universal SYBR Green Master(Roche),上下游引物各0.3 μL(10 μmol·L-1),模板1 μL,ddH2O補(bǔ)足至10 μL。反應(yīng)程序:95℃預(yù)變性10 min,95℃變性15 s,60℃退火30 s,72℃延伸30 s,40個(gè)循環(huán)。內(nèi)參基因?yàn)樘O果肌動(dòng)蛋白基因(序列號為GQ339778),基因相對表達(dá)量通過2-△△CT法計(jì)算,每個(gè)PCR反應(yīng)3次重復(fù)。使用SPSS17.0軟件進(jìn)行基因表達(dá)差異的顯著性分析(<0.05)。所使用qRT-PCR引物如表1所示。
根據(jù)在GDR網(wǎng)站(https://www.rosaceae.org/)中檢索到的序列設(shè)計(jì)引物:MDP0000263349()-HI-F:5′- CGGGATCCATGGATGC TCGTACGCCTAAC-3′;MDP0000263349()-I-R:5′-GAAGGCCTATTTGGCCTGTCTGCAGGT C-3′。以‘富士’蘋果果皮cDNA為模板,進(jìn)行PCR擴(kuò)增。反應(yīng)程序:98℃預(yù)變性3 min;98℃變性30 s,56℃退火30 s,72℃延伸30 s,35個(gè)循環(huán);72℃延伸10 min。應(yīng)用HI、I酶切PCR產(chǎn)物和pCB302二元表達(dá)載體,PCR產(chǎn)物與表達(dá)載體骨架用1.5%瓊脂糖凝膠電泳分別回收,然后將回收的PCR產(chǎn)物與載體利用T4 DNA連接酶在16℃條件下連接8 h以上,轉(zhuǎn)化大腸桿菌,進(jìn)行克隆的篩選鑒定并測序。所用限制性內(nèi)切酶和T4 DNA連接酶均購自NEW ENGLAND Biolabs公司。
通過Expasy網(wǎng)站(http://web. expasy.org/protparam/)對MdWRKY40蛋白進(jìn)行理化性質(zhì)分析,利用DANMAN軟件進(jìn)行多序列比對分析,采用MEGA5.0軟件neighbor-joining(NJ)法構(gòu)建系統(tǒng)進(jìn)化樹,建樹參數(shù)No. Of Bootstrap Replications為1 000,其他參數(shù)默認(rèn)。
表1 熒光定量PCR引物序列
將構(gòu)建的過表達(dá)載體轉(zhuǎn)化農(nóng)桿菌GV3101,PCR篩選獲得陽性農(nóng)桿菌,然后采用農(nóng)桿菌介導(dǎo)的浸花法進(jìn)行擬南芥的遺傳轉(zhuǎn)化[28]。
選取生長30 d,生長狀態(tài)一致的離體‘嘎啦’葉片,將其浸泡在0.5 mmol·L-1的SA中6 h,然后使用在28℃暗培養(yǎng)7 d后的蘋果輪紋病菌進(jìn)行接種。將接菌后的葉片放在黑暗、28℃恒溫培養(yǎng)箱內(nèi)發(fā)病3 d,之后觀察記錄葉片發(fā)病情況,并分別提取發(fā)病葉片的RNA,進(jìn)行病程相關(guān)蛋白基因的定量表達(dá),重復(fù)3次。葉片的輪紋病菌接種方法參照文獻(xiàn)[29]。
將轉(zhuǎn)基因擬南芥經(jīng)過噴施除草劑(5 mg·L-1)篩選以后,PCR檢測得到陽性轉(zhuǎn)基因植株,收集種子,將陽性轉(zhuǎn)基因植株播種到MS+除草劑(8 mg·L-1)的抗性培養(yǎng)基上,經(jīng)過連續(xù)3代篩選獲得T3代純合體,收取種子。
將野生型擬南芥和轉(zhuǎn)基因株系的種子播種到MS培養(yǎng)基上,豎直培養(yǎng)7 d,10 d后測量幼苗的根長,野生型擬南芥和轉(zhuǎn)基因株系各取30株計(jì)算其平均值,3次重復(fù)。整株取樣,用液氮凍存,進(jìn)行生長素合成和運(yùn)輸相關(guān)基因的定量表達(dá)。
選取生長30 d,生長狀態(tài)相同的轉(zhuǎn)基因和非轉(zhuǎn)基因擬南芥葉片,使用在28℃暗培養(yǎng)5 d后的蘋果輪紋病菌進(jìn)行接種。將接菌后的葉片放在黑暗、24℃恒溫培養(yǎng)箱內(nèi)發(fā)病3 d,之后觀察記錄葉片發(fā)病情況,并分別提取接種2 d后轉(zhuǎn)基因和非轉(zhuǎn)基因擬南芥發(fā)病葉片的RNA,進(jìn)行病程相關(guān)蛋白基因的定量表達(dá),重復(fù)3次。
以‘富士’果皮的cDNA為模板,經(jīng)PCR擴(kuò)增獲得了一條大小約為900 bp的條帶(圖1-A),測序分析表明該基因包含一個(gè)長為858 bp完整的開放閱讀框,編碼286個(gè)氨基酸。將回收的條帶連接到pCB302二元表達(dá)載體,挑取陽性克隆應(yīng)用HI、I進(jìn)行酶切驗(yàn)證,切出一條長為858 bp的條帶,與預(yù)期完全一致(圖1-B),因此,開放閱讀框序列已成功克隆到表達(dá)載體pCB302-35S-2HA中。
Expasy預(yù)測其分子量為32.088 kD,等電點(diǎn)為8.15,用DANMAN軟件進(jìn)行多序列比對分析發(fā)現(xiàn),MdWRKY40蛋白與擬南芥AtWRKY40蛋白相似度為29.78%,都含有一個(gè)WRKYGQK保守結(jié)構(gòu)域(圖1-C)。
從蘋果基因組數(shù)據(jù)庫中下載的基因序列,從擬南芥基因組數(shù)據(jù)庫(http://www.arabidopsis. org/index.jsp)中下載的基因序列,在NCBI(https://www.ncbi.nlm.nih.gov/)上用MdWRKY40蛋白序列進(jìn)行Blast分析,得到白梨、桃、棗等20個(gè)不同物種的WRKY40同源蛋白序列,利用MEGA5.0 軟件將以上22個(gè)蛋白序列構(gòu)建系統(tǒng)進(jìn)化樹,發(fā)現(xiàn)蘋果MdWRKY40與白梨PbWRKY40在同一個(gè)分支上,親緣關(guān)系最近(圖2)。
A:MdWRKY40編碼區(qū)全長的PCR擴(kuò)增PCR amplification of the full length of MdWRKY40;B:pCB302-35S-MdWRKY40-2HA表達(dá)載體酶切驗(yàn)證Digestion result of pCB302-35S-MdWRKY40-2HA expression vector;C:MdWRKY40與AtWRKY40蛋白序列比對MdWRKY40 and AtWRKY40 protein sequence alignment
圖2 MdWRKY40與其他物種WRKY40系統(tǒng)進(jìn)化樹分析
qRT-PCR分析表明,在根中的表達(dá)水平最高,在葉中的表達(dá)水平最低(圖3-A)?!吕病O果葉片接種蘋果輪紋病菌3 d后,提取發(fā)病葉片的RNA做qRT-PCR后發(fā)現(xiàn),與對照相比,的表達(dá)量顯著升高,表明蘋果輪紋病菌可誘導(dǎo)的表達(dá)(圖3-B)。用0.5 mmol·L-1的SA噴施生根四周的‘嘎啦’組培苗,植株無明顯變化,在0、3、6、12、24、36、48 h時(shí)取樣,熒光定量結(jié)果顯示,在根、莖、葉中,SA強(qiáng)烈誘導(dǎo)了的表達(dá),且均呈現(xiàn)先升高后降低的趨勢,在6 h時(shí)表達(dá)量最高(圖3-C)。
用0.5 mmol·L-1的SA處理生長30 d的‘嘎啦’葉片6 h后接種蘋果輪紋病菌,3 d后發(fā)現(xiàn),與對照相比,用SA處理的‘嘎啦’葉片發(fā)病程度輕,未處理的葉片有48.15%基本全部發(fā)黃腐爛,處理后的葉片只有22.96%基本全部發(fā)黃腐爛,大部分葉片只有輕微黃化腐爛現(xiàn)象,且處理后發(fā)病葉片少,未處理的葉片發(fā)病率達(dá)到了92.59%,用SA處理后發(fā)病率降至79.26%(圖4-A、4-B)。熒光定量結(jié)果顯示,用SA處理后,與病程相關(guān)蛋白基因、的表達(dá)量顯著高于對照(圖4-C),表明SA處理可以提高蘋果葉片對輪紋病菌的抗性,并且可能參與了SA抗病信號途徑。
柱上不同小寫字母表示差異顯著(<0.05);**表示差異極顯著(<0.01)。下同Different lowercase letters on the column indicate significant differences (<0.05); ** indicates extremely significant difference (<0.01). the same as below
A:的組織表達(dá)分析Expression analysis of;B:輪紋病菌處理‘嘎啦’葉片對表達(dá)的影響Effect ofinfection on the expression of;C:SA處理‘嘎啦’組培苗對表達(dá)的影響Effect of SA on the expression of
圖3的組織表達(dá)分析及對水楊酸、輪紋病菌侵染誘導(dǎo)后的表達(dá)
Fig. 3 Expression analysis ofdifferent tissues of apple and expression after induced by salicylic acid andinfection
2.5.1 轉(zhuǎn)基因擬南芥的鑒定 將構(gòu)建的過表達(dá)載體轉(zhuǎn)化農(nóng)桿菌GV3101,然后用浸花法侵染擬南芥,利用35S啟動(dòng)子引物35SProsequencing:5′-CCTCTCACCTTTTCGCTGTAC-3′和克隆引物MDP0000263349()-I-R:5′-GAAGGCCT ATTTGGCCTGTCTGCAGGTC-3′進(jìn)行PCR鑒定獲得陽性轉(zhuǎn)基因植株(圖5-A),然后利用半定量和定量PCR進(jìn)一步驗(yàn)證陽性轉(zhuǎn)基因植株,半定量結(jié)果表明在轉(zhuǎn)基因株系7#、12#中的表達(dá)量顯著高于野生型擬南芥(圖5-B),qRT-PCR結(jié)果顯示,轉(zhuǎn)基因擬南芥中的表達(dá)量分別為野生型擬南芥的585倍和545倍,與半定量結(jié)果一致,證明已轉(zhuǎn)入擬南芥中,并成功表達(dá)(圖5-C)。
A:SA處理蘋果葉片接種輪紋病菌表型,SA代表僅用SA處理后的葉片,CK代表未做任何處理的葉片,SA-B. dothidea代表用SA處理后接種輪紋病菌的葉片,B. dothidea代表僅接種輪紋病菌的葉片SA treatment of apple leaves inoculated with B. dothidea phenotype, SA represents the leaves treated only with SA, CK represents the leaves without any treatment, SA-B. dothidea represents the leaves of inoculated with B. dothidea after treatment with SA, and B. dothidea represents the leaves of inoculated only with B. dothidea;B:SA處理蘋果葉片接種輪紋病菌發(fā)病葉片統(tǒng)計(jì),縱軸表示發(fā)病葉片占總?cè)~片的比例,橫軸表示病斑面積占葉片總面積的百分比SA treatment of apple leaves inoculated with B. dothidea leaf incidence statistics, the vertical axis indicates the proportion of diseased leaves to total leaves, and the horizontal axis indicates the percentage of lesion area to the total area of the leaves;C:qRT-PCR分析MdWRKY40和病程相關(guān)基因的表達(dá)水平qRT-PCR analysis of MdWRKY40 and disease-associated gene expression levels
A:PCR鑒定轉(zhuǎn)基因擬南芥,7#、12#是兩個(gè)轉(zhuǎn)基因株系,Col代表野生型擬南芥,CK代表未加模板,質(zhì)粒代表pCB302-35S-MdWRKY40-2HA Identification of transgenic A. thaliana by PCR, 7# and 12# are two transgenic lines, Col represents wild type A. thaliana,CK represents no template, and plasmid represents pCB302-35S-MdWRKY40-2HA;B:RT-PCR分析野生型擬南芥和異源表達(dá)株系中MdWRKY40的表達(dá)量RT-PCR analysis of MdWRKY40 expression in wild type A. thaliana and heterologous expression lines;C:qRT-PCR分析野生型擬南芥和異源表達(dá)株系中MdWRKY40的表達(dá)量qRT-PCR analysis of MdWRKY40 expression in wild type A. thaliana and heterologous expression lines
2.5.2 超表達(dá)擬南芥葉片接種蘋果輪紋病菌表型 選取生長狀態(tài)相同的轉(zhuǎn)基因和非轉(zhuǎn)基因擬南芥葉片,進(jìn)行蘋果輪紋病菌接種,發(fā)病3 d后發(fā)現(xiàn)轉(zhuǎn)基因擬南芥的發(fā)病程度明顯比野生型擬南芥輕,野生型擬南芥發(fā)病葉片全部發(fā)黃腐爛,轉(zhuǎn)基因擬南芥葉片只有輕微黃化現(xiàn)象,并未出現(xiàn)腐爛狀況(圖6-A),且轉(zhuǎn)基因擬南芥比野生型擬南芥發(fā)病葉片少,野生型擬南芥發(fā)病率達(dá)到了77.5%,而轉(zhuǎn)基因擬南芥發(fā)病率 只有21.5%和17.4%(圖6-B)。
2.5.3 超表達(dá)對接菌后擬南芥葉片中PR基因表達(dá)水平的影響 為了進(jìn)一步研究在蘋果輪紋病抗病信號通路中的作用,通過qRT-PCR方法檢測發(fā)病葉片中病程相關(guān)蛋白基因的表達(dá)水平,結(jié)果顯示轉(zhuǎn)基因擬南芥中病程相關(guān)蛋白基因、、的表達(dá)量顯著高于野生型擬南芥(圖7)。
A:野生型擬南芥及轉(zhuǎn)基因株系葉片接種輪紋病菌表型Phenotype of wild type and transgenic A. thaliana leaves after inoculation with B. dothidea;B:野生型和轉(zhuǎn)基因擬南芥葉片接種輪紋病菌發(fā)病統(tǒng)計(jì)Incidence statistics of wild type and transgenic A. thaliana leaves after inoculation with B. dothidea
圖7 轉(zhuǎn)基因擬南芥葉片中病程相關(guān)基因的表達(dá)水平
Fig. 7 Expression of disease-associated genes in transgenic
2.6.1 對擬南芥主根的影響 將野生型擬南芥和兩個(gè)轉(zhuǎn)基因株系的種子播種到MS培養(yǎng)基上,培養(yǎng)7、10 d后測量幼苗的根長,發(fā)現(xiàn)與野生型擬南芥相比,轉(zhuǎn)基因擬南芥的根系生長明顯受到抑制(圖8-A),培養(yǎng)7 d后主根長度分別是野生型擬南芥的39.9%和43.1%,培養(yǎng)10 d后主根長度分別是野生型擬南芥的58.5%和55.4%(圖8-B)。
2.6.2 對擬南芥生長素相關(guān)基因表達(dá)的影響 為了進(jìn)一步研究調(diào)控?cái)M南芥根系生長發(fā)育的機(jī)理,通過qRT-PCR檢測轉(zhuǎn)基因株系中生長素相關(guān)基因的表達(dá)情況,結(jié)果顯示生長素合成相關(guān)基因和生長素運(yùn)輸相關(guān)基因的表達(dá)量顯著低于野生型擬南芥(圖9)。
A:轉(zhuǎn)基因擬南芥和野生型擬南芥根系生長狀況,7 d中標(biāo)尺為0.5 cm,10 d中標(biāo)尺為1.2 cm The root growth status of transgenic and wild type A. thaliana, Scale bar is 0.5 cm in 7 d and 1.2 cm in 10 d;B:轉(zhuǎn)基因擬南芥和野生型擬南芥根長統(tǒng)計(jì)Statistical analysis of root length of transgenic and wild type A. thaliana
為了適應(yīng)外界環(huán)境,植物進(jìn)化出多種防御機(jī)制 來抵抗病原菌侵染。研究表明,WRKY轉(zhuǎn)錄因子廣泛參與植物的生物和非生物脅迫響應(yīng),在抗病信號通路中發(fā)揮至關(guān)重要的作用。不同植物中WRKY轉(zhuǎn)錄因子數(shù)量不同,而WRKY轉(zhuǎn)錄因子在各種抗病信號通路中所起的作用也不盡相同,在辣椒中,與促進(jìn)了植物對青枯病菌的抗性[30],但抑制了植物對青枯病菌的抗性[31]。在擬南芥中,作為腐生性真菌黑斑病菌和灰霉病菌的正向調(diào)節(jié)因子起作用[32],而在富士蘋果中,可能作為白粉病菌的負(fù)調(diào)節(jié)因子起作用[25]。由此可見,WRKY轉(zhuǎn)錄因子在響應(yīng)生物脅迫過程中的作用復(fù)雜,而且值得注意的是,植物激素如脫落酸(ABA)、水楊酸(SA)、茉莉酸(JA)和乙烯(ETH),在調(diào)節(jié)植物生長發(fā)育和防御各種生物和非生物脅迫中發(fā)揮著關(guān)鍵作用[33-35],如外源SA處理可增強(qiáng)蘋果果實(shí)對灰霉病的抗性[33]。已有研究證實(shí)WRKY轉(zhuǎn)錄因子的調(diào)控作用與多種植物激素介導(dǎo)的信號途徑密切相關(guān),如在擬南芥中,和SA信號傳導(dǎo)途徑,作為負(fù)調(diào)節(jié)因子調(diào)控JA信號傳導(dǎo)途徑[36]。其在擬南芥、煙草和水稻等模式植物中已有較深入研究,但在蘋果等多年生木本植物中的研究較少。近年來,主栽蘋果品種,尤其是‘富士’,輪紋病的發(fā)生呈逐年上升的趨勢,本研究中SA和蘋果輪紋病菌都強(qiáng)烈誘導(dǎo)了的表達(dá),并且SA可快速誘導(dǎo)的表達(dá),呈現(xiàn)先升高后降低的趨勢,此結(jié)果與邱化榮等[37]的研究結(jié)果一致,這可能與WRKY轉(zhuǎn)錄因子的反饋調(diào)節(jié)機(jī)制有關(guān),如在擬南芥中,可抑制其自身啟動(dòng)子的活性[38]。本研究還發(fā)現(xiàn)在擬南芥中異源表達(dá)后顯著提高了擬南芥葉片對蘋果輪紋病菌的抗性以及病程相關(guān)蛋白基因PR的表達(dá)量,外源SA處理蘋果葉片后也提高了其對輪紋病菌的抗性及病程相關(guān)蛋白基因PR的表達(dá)量,這表明可能在SA介導(dǎo)的抗病信號通路中具有至關(guān)重要的作用,蘋果基因編碼區(qū)保守性較高,不同品種之間差別較小,而根據(jù)能夠被抗性激素SA強(qiáng)烈誘導(dǎo)表達(dá),并且該基因在擬南芥葉片中過表達(dá)能夠顯著提高對輪紋病菌侵染抗性的這一研究結(jié)果,該基因有望成為在蘋果育種中進(jìn)行抗病品系篩選的重要標(biāo)志性基因,及進(jìn)行蘋果抗病品種培育的重要候選基因。而闡明在‘嘎啦’的抗病信號通路中的具體作用,有利于進(jìn)一步揭示蘋果的抗病機(jī)制。在SA介導(dǎo)的抗病信號通路中的具體作用機(jī)制有待進(jìn)一步研究。
圖9 轉(zhuǎn)基因擬南芥和野生型擬南芥生長素相關(guān)基因的表達(dá)水平
Fig. 9 Expression of auxin-related genes in transgenic and wild type
WRKY轉(zhuǎn)錄因子不僅在抗病過程中具有重要作用,許多研究已經(jīng)明確WRKY轉(zhuǎn)錄因子在種子萌發(fā)[39]、側(cè)根形成[40]、開花時(shí)間[41]、果實(shí)成熟[42]、葉片衰老[38]和代謝過程等各種生理過程中也具有重要作用。例如,沉默大豆中的和嚴(yán)重的發(fā)育不良和植株矮小[43],在水稻中,過表達(dá)可減少側(cè)根的形成和延伸,并可能改變了生長素的應(yīng)答和轉(zhuǎn)運(yùn)[40],在擬南芥中,沉默后,側(cè)根的長度和數(shù)量以及根毛的數(shù)量都顯著增加[44]。本研究中,在擬南芥中異源表達(dá)后明顯抑制了擬南芥主根的伸長和生長素合成相關(guān)基因以及生長素運(yùn)輸相關(guān)基因的表達(dá),說明很可能是通過調(diào)控生長素相關(guān)基因的表達(dá)來抑制擬南芥主根的伸長,與Zhang等[40]在水稻中的研究結(jié)果相似。
本研究中,MdWRKY40與白梨PbWRKY40親緣關(guān)系最近,與擬南芥AtWRKY40蛋白相似度為29.78%。在擬南芥中,作為蘋果輪紋病抗性的正向調(diào)節(jié)因子起作用,并抑制擬南芥的根系發(fā)育,但蘋果與擬南芥還有較大差別,在蘋果中的功能是否與擬南芥一致?其在蘋果中的具體作用機(jī)制還有待進(jìn)一步研究。
表達(dá)受水楊酸(SA)和蘋果輪紋病菌侵染所誘導(dǎo);是蘋果中重要的輪紋病抗病基因,該基因過表達(dá)顯著提高對輪紋病菌的抗性;具有調(diào)控植物根系生長發(fā)育的功能,可能通過下調(diào)生長素運(yùn)輸相關(guān)基因的表達(dá)影響植物根系生長發(fā)育。
[1] 國立耘, 李金云, 李保華, 張新忠, 周增強(qiáng), 李廣旭, 王英姿, 李曉 軍, 黃麗麗, 孫廣宇, 文耀東. 中國蘋果枝干輪紋病發(fā)生和防治情況. 植物保護(hù), 2009, 35(4): 120-123.
Guo L Y, Li J Y, Li B H, Zhang X Z, Zhou Z Q, Li G X, Wang Y Z, Li X J, Huang L L, Sun G Y, Wen Y D. Investigations on the occurrence and chemical control ofcanker of apple in China., 2009, 35(4): 120-123. (in Chinese)
[2] 張芮. 蘋果基因在輪紋病抗性形成中的作用機(jī)制研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2015.
Zhang R. The research on the mechanism ofmediated disease resistance against the apple ring rot pathogenic fungi[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[3] Tang W, Ding Z, Zhou Z Q, Wang Y Z, Guo L Y. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is., 2012, 96(4): 486-496.
[4] Li H Y, Cao R B, Mu Y T.inhibition ofand, and chemical control of gummosis disease of Japanese apricot and peach trees in Zhejiang Province, China., 1995, 14(3): 187-191.
[5] Li Y, Han L R, Zhang Y, Fu X, Chen X, Zhang L, Mei R, Wang Q. Biological control of apple ring rot on fruit by9001., 2013, 29(2): 168-173.
[6] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling., 2007, 10(4): 366-371.
[7] 薛華, 張紅巖, 李小艷, 趙云, 王茂林. 油菜矮稈突變WRKY轉(zhuǎn)錄因子cDNA克隆及表達(dá)分析. 西北植物學(xué)報(bào), 2008, 28(3): 452-458.
Xue H, Zhang H Y, Li X Y, Zhao Y, Wang M L. cDNA cloning and expression analysis of a dwarfism related WRKY transcription factor inL., 2008, 28(3): 452-458. (in Chinese)
[8] Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation ofgene expression., 2001, 13(7): 1527-1540.
[9] Shen Q H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, ülkerB, Somssich I E, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses., 2007, 315(5815): 1098-1103.
[10] Han M, Kim C Y, Lee J, Lee S K, Jeon J S.repressesand induces reactive oxygen species and leaf senescence in rice., 2014, 37(7): 532-539.
[11] Dai X, Wang Y, Zhang W H., a WRKY transcription factor, modulates tolerance to phosphate starvation in rice., 2016, 67(3): 947-960.
[12] Kim C Y, Vo K T X, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J K, Jeon J S. Functional analysis of a cold-responsive rice WRKY gene,., 2016, 10(1): 13-23.
[13] Raineri J, Wang S, Peleg Z, Blumwald E, Chan R L. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress., 2015, 88(4/5): 401-413.
[14] Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou E A, de Vries M, Boersma M R, Breit T M, Haring M A, Schuurink R C.andact downstream of the green leaf volatile E-2-hexenal in., 2015, 83(6): 1082-1096.
[15] Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel J, Piffannelli P, Faivre-Rampant O., a monocot WRKY gene, plays a role in the resistance response to blast., 2012, 13(8): 828-841.
[16] Choi C, Hwang S H, Fang I R, Kwon S I, Park S R, Ahn I, Kim J B, Hwang D J. Molecular characterization of, which binds to W-box-like element 1 of thepathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens., 2015, 208(3): 846-859.
[17] Han M, Ryu H S, Kim C Y, Park D S, Ahn Y K, Jeon J S.is a transcription activator that enhances rice resistance to thepathovar., 2013, 56(4): 258-265.
[18] Hwang S H, Kwon S I, Jang J Y, Fang I R, Lee H, Choi C, Park S R, Ahn I, Bae S, Hwang D J. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response againstpv.., 2016, 35(9): 1975-1985.
[19] Lan A, Huang J, Zhao W, Peng Y, Chen Z, Kang D. A salicylic acid-induced rice (L.) transcription factor OsWRKY77 is involved in disease resistance of., 2013, 15(3): 452-461.
[20] Ciolkowski I, Wanke D, Birkenbihl R P, Somssich I E. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function., 2008, 68(1/2): 81-92.
[21] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors., 2010, 15(5): 247-258.
[22] 馬麗娜, 張雄, 竇道龍, 柴春月. 本氏煙NbWRKY40亞家族轉(zhuǎn)錄因子抗病相關(guān)功能研究. 植物病理學(xué)報(bào), 2016, 46(6): 791-802.
Ma L N, Zhang X, Dou D L, Chai C Y. Functional analysis ofNbWRKY40 transcription factors of., 2016, 46(6): 791-802. (in Chinese)
[23] Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-inducedWRKY18, WRKY40, and WRKY60 transcription factors., 2006, 18(5): 1310-1326.
[24] Pandey S P, Roccaro M, Sch?n M, Logemann E, Somssich I E. Transcriptional reprogramming regulated byWRKY18 and WRKY40 facilitates powdery mildew infection of., 2010, 64(6): 912-923.
[25] 羅昌國, 袁啟鳳, 裴曉紅, 吳亞維, 鄭偉, 章鎮(zhèn). 富士蘋果基因克隆及其對白粉病的抗性分析. 西北植物學(xué)報(bào), 2013, 33(12): 2382-2387.
LUO C G, YUAN Q F, PEI X H, WU Y W, ZHENG W, ZHANG Z. Cloning ofgene in Fuji apple and its response to powdery mildew stress., 2013, 33(12): 2382-2387. (in Chinese)
[26] 劉威, 張駿, 顧冕, 徐國華. 水稻轉(zhuǎn)錄因子WRKY-P1對地上部株型和根系構(gòu)型的影響. 中國科技論文在線, 2016.
Liu W, Zhang J, Gu M, Xu G H. The effect of a rice transcription factorWRKY-P1 on shoot and root architecture. Sciencepaper Online, 2016. (in Chinese)
[27] 張高雷, 李保華, 董向麗, 王彩霞, 李桂舫, 國立耘. 蘋果輪紋病瘤組織形態(tài)研究. 植物病理學(xué)報(bào), 2011, 41(1): 98-101.
Zhang G l, Li B h, Dong X l, Wang C x, Li G f, Guo L y. Microanatomy conformation of apple branch tumors caused by., 2011, 41(1): 98-101. (in Chinese)
[28] Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H.-mediated transformation ofusing the floral dip method., 2006, 1(2): 641-646.
[29] Wu S, Lu D, Kabbage M, Wei H L, Swingle B, Records A R, Dickman M, He P, Shan L. Bacterial effector HopF2 suppressesinnate immunity at the plasma membrane., 2011, 24(5): 585-593.
[30] Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, Qiu A, Lai Y, Mou S, Guan D, Huang R, He S.transcriptionally activates, regulatesresistance, and confers high-temperature and high-humidity tolerance in pepper., 2015, 66(11): 3163-3174.
[31] Wang Y, Dang F, Liu Z, Wang X, Eulgem T, Lai Y, Yu L, She J, Shi Y, Lin J, Chen C, Guan D, Qiu A, He S., encoding a group I WRKY transcription factor of, negatively regulates resistance toinfection., 2013, 14(2): 131-144.
[32] Zheng Z Y, Qamar S A, Chen Z X, Mengiste T.WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens., 2006, 48(4): 592-605.
[33] 石亞莉, 周會(huì)玲, 唐永萍, 賀軍花, 馬利菁. 水楊酸誘導(dǎo)蘋果采后灰霉病抗性研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版) , 2018, 46(2): 84-91, 103.
SHI Y l, ZHOU H l, TANG Y P, HE J h, MA L j. Induced resistance of postharvest apples toinduced by salicylic acid treatment., 2018, 46(2): 84-91, 103. (in Chinese)
[34] Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance., 2015, 20(4): 219-229.
[35] Khan M I, Fatma M, Per T S, Anjum N A, Khan N A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants., 2015, 6: 462.
[36] Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments., 2008, 49(6): 865-879.
[37] 邱化榮, 周茜茜, 何曉文, 張宗營, 張世忠, 陳學(xué)森, 吳樹敬. 基于轉(zhuǎn)錄組分析蘋果水楊酸特異響應(yīng)基因的啟動(dòng)子鑒定. 中國農(nóng)業(yè)科學(xué), 2017, 50(20): 3970-3990.
QIU H R, ZHOU Q Q, HE X W, ZHANG Z Y, ZHANG S Z, CHEN X S, WU S J. Identification ofpromoter specific response to salicylic acid by transcriptome sequencing., 2017, 50(20): 3970-3990. (in Chinese)
[38] ROBATZEK S, SOMSSICH I E. Targets ofregulation during plant senescence and pathogen defense., 2002, 16(9): 1139-1149.
[39] Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, CHEN Q, LAI Y, HE C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size., 2017, 68(11): 2717-2729.
[40] Zhang J, Peng Y, Guo Z. Constitutive expression of pathogen- inducibleenhances disease resistance and affects root growth and auxin response in transgenic rice plants., 2008, 18(4): 508-521.
[41] Wei L, Wang H, Yu D.WRKY transcription factorsWRKY12 and WRKY13 oppositely regulate flowering under short- day conditions., 2016, 9(11): 1492-1503.
[42] Cheng Y, Ahammed G J, Yu J, Yao Z, Ruan M, Ye Q,Li Z, Wang R, Feng K, Zhou G, Yang Y, Diao W, Wan H. Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper., 2016, 6: 39000.
[43] Yang Y, Chi Y, Wang Z, Zhou Y, Fan B, Chen Z. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development., 2016, 67(15): 4727-4742.
[44] Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in., 2007, 143(4): 1789-1801.
Mediated improvement of the immune Resistance of Apple andto
ZHOU QianQian1, QIU HuaRong1, HE XiaoWen1, Wang XianPu1, LIU XiuXia1, LI BaoHua2, WU ShuJing1, CHEN XueSen1
(1College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong;2College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong)
【Objective】The objective of this study is to clonefrom ‘Fuji’ apple, research its expression pattern under salicylic acid (SA)-induced conditions and its role in the disease resistance pathway of, and to provide a theoretical basis for further revealing the disease resistance mechanism of apple.【Method】The full-length CDS sequence ofwas cloned from ‘Fuji’ apple, and its bioinformatics analysis was carried out. Fluorescence quantitative PCR (qRT-PCR) was used to analyze the expression level in different apple tissues and the response to abiotic stress SA, to study the effect of exogenous SA treatment on apple leaves inoculated with pathogenic fungi, and to detect the expression of pathogenesis-related protein gene by qRT-PCR.was expressed heterologous in, and the stably expressedseedlings were treated withto observe the degree of disease and the number of infected leaves. The expression of disease-associated genes was analyzed by qRT-PCR. The root length ofseedlings was measured and the expression of auxin-related genes was detected by qRT-PCR.【Result】contains a complete open reading frame of 858 bp in length and encodes 286 amino acids. The predicted molecular weight is 32.088 kD and the isoelectric point is 8.15. Phylogenetic tree analysis showed that MdWRKY40 has the highest similarity with the PbWRKY40 sequence, and its genetic relationship is closest. MdWRKY40 and AtWRKY40 locate in different branches, and its genetic relationship is far from that of AtWRKY40. The multiple sequence alignment analysis of MdWRKY40 and AtWRKY40 by using DANMAN software revealed that both MdWRKY40 protein and AtWRKY protein contain a WRKYGQK conserved domain, but similarity is only 29.78%. qRT-PCR analysis showed that the expression level ofwasthe highest in root and lowest in leaf. SA inducedexpression in root, stem and leaf, and the expression all increased first and then decreased, reached the highest level at 6 h. Exogenous SA enhanced the resistance of apple leaves to, the incidence of untreated leaves reached 92.59%, and the incidence after SA treatment decreased to 79.26%, and significantly increased the expression of disease-associated protein genesand. Compared with the wild type, the overexpression ofsignificantly increased the resistanceofleaves toThe incidence of wild typereached 77.5%, while the incidence of two transgeniclines was only 21.5% and 17.4%,and significantly increased the expression of,, andgenes associated with disease progression. The root growth ofplants with overexpression ofwas inhibited. after 7 days of culture, the length of main root of transgenicwas 39.9% and 43.1% respectively of that of wild type. after 10 days of culture, the length of main root of transgenicwas 58.5% and 55.4% respectively of that of wild type. The expression level of the auxin synthesis-related geneand auxin transport-related genesandwas significantly lower in theoverexpression lines than in the wild type.【Conclusion】The expression ofwas induced by the infection of SA and the pathogenic fungi.is an important disease resistance gene in apple. The overexpression ofsignificantly increased the resistance to.has the function of regulating the growth and development of plant roots, which may affect the growth and development of plant roots by down-regulating the expression of auxin transport-related genes.
apple;; salicylic acid (SA);; immune resistance; root growth
10.3864/j.issn.0578-1752.2018.21.005
2018-05-14;
2018-06-19
國家自然科學(xué)基金(31272132)、山東省泰山學(xué)者工程啟動(dòng)基金(tshw20120712)、作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室導(dǎo)向性課題(dxkt201713)
周茜茜,E-mail:18763829703@163.com。通信作者吳樹敬,Tel:0538-8246220;E-mail:wushujing666@163.com。通信作者陳學(xué)森, Tel:0538-8249338;E-mail:chenxs@sdau.edu.cn
(責(zé)任編輯 岳梅)