• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-wide detection of selective signatures in a Duroc pig population

    2018-11-06 08:19:14DlAOShuqiLUOYuanyuMAYunlongDENGXiHEYingtingGAONingZHANGHaoLlJiaqiCHENZanmouZHANGZhe
    Journal of Integrative Agriculture 2018年11期

    DlAO Shu-qi, LUO Yuan-yu , MA Yun-long, DENG Xi HE Ying-ting GAO Ning ZHANG Hao Ll Jia-qi CHEN Zan-mou ZHANG Zhe

    1 Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, P.R.China

    2 Liupanshui Academy of Agricultural Sciences, Liupanshui 553001, P.R.China

    3 Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education/College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China

    Abstract The Duroc pig has high adaptability and feeding efficiency, making it one of the most popular pig breeds worldwide. Over long periods of natural and artificial selection, genetic footprints, i.e., selective signatures, were left in the genome. In this study, a Duroc pig population (n=715) was genotyped with the Porcine SNP60K Bead Chip and the GeneSeek Genomic Profiler (GGP) Porcine Chip. The relative extended haplotype homozygosity (REHH) method was used for selective signature detection in a subset of the population (n=368), selected to represent a balanced family structure. In total, 154 significant core regions were detected as selective signatures (P<0.01), some of which overlap with previously reported quantitative trait loci associated with several economically important traits, including average daily gain and backfat thickness. Genome annotation for these significant core regions revealed a variety of interesting candidate genes including GATA3, TAF3,ATP5C1, and FGF1. These genes were functionally related to anterior/posterior pattern specification, phosphatidylinositol 3-kinase signaling, embryonic skeletal system morphogenesis, and oxidation-reduction processes. This research provides knowledge for the study of selection mechanisms and breeding practices in Duroc and other pigs.

    Keywords: Duroc, selective signature, candidate genes, REHH

    1. lntroduction

    Pigs have been domesticated and artificially selected over approximately 10 thousand years to provide animal-based protein for human consumption (Groenen et al. 2012).Duroc, one of the most popular worldwide commercial swine breeds, has been subjected to strong artificial selection for their productivity, reproduction, and product quality. Genes play an important role during the process of domestication and evolution. Revealing the underlying selection mechanisms would not only benefit future pig breeding, but also facilitate the identification of porcine genes related to biological processes and traits of interest.

    Rapid developments in the field of high-throughput sequencing and genotyping makes it possible to explore genomic evidence of selection, and detect candidate genes associated with economically important traits. Current approaches to detect selective signatures include the methods based on: (1) single point frequencies of select mutations such as Fay and Wu’s H-test (Fay and Wu 2000)and Tajima’s D test (Tajima 1989), (2) linkage disequilibrium(LD) such as the integrated haplotype score (iHS) (Voight et al. 2006) and the extended haplotype homozygosity (EHH)test (Pardi et al. 2002), and (3) population differentiation such as the FSTtest (Weir and Cockerham 1984). Among these methods, EHH can effectively detect positive selective signatures in a single population (Walsh et al. 2006; Zhang et al. 2006) and putative core regions by characteristics of haplotypes without ancestor allele genotypes (Qanbari et al.2010). Core regions are regions of interest in genomes can be genotyped to identify haplotypes with high EHH and high population frequencies (Sabeti et al. 2002). Furthermore,the relative extended haplotype homozygosity (REHH) test overcomes limitations of the heterogeneous recombination among chromosomal regions, which may potentially cause some false positives in EHH detection (Qanbari et al.2010). Many recent studies focused on genome-wide selective signature detection were conducted in various pig breeds, including Chinese indigenous breeds and western commercial breeds (Ai et al. 2013, 2014; Wilkinson et al.2013; Li M Z et al. 2014; Li X et al. 2014; Ma et al. 2014,2015; Wang et al. 2014; Yang et al. 2014; Moon et al.2015). Wilkinson et al. (2013) reported several genes associated with reproduction, growth, and fat deposition traits in European breeds using FSTtests. Li M Z et al.(2014) reported a number of strong signatures of selection related to disease resistance, pork yield, fertility, tameness,and body length through Tajima’s D test. Using REHH test, Wang et al. (2014) found many candidate genes in biological categories associated with brain development,metabolism, growth, and olfaction in Yorkshire and Landrace pigs.

    However, only a few studies have focused on the Duroc pig (Ai et al. 2013; Wilkinson et al. 2013; Bosse et al.2014; Choi et al. 2015). These studies reported that the quantitative trait locus (QTL) harboring the ELOVL3 gene was identified by selective signature detection (Westerberg et al. 2006), which is involved in fatty acid biosynthesis(Sanchez et al. 2007; Uemoto et al. 2012), and overlaps with previously reported QTL on Sus scrofa chromosome 14(SSC14) in the Duroc pig. In addition, the Class III myosin B(MYO3B) gene was found on SSC15 by selective detection(Wilkinson et al. 2013). The aim of this study was to detect specific signatures of recent selection in the Duroc pig genome. In this study, the REHH test was implemented to scan the whole genome for detecting selective signatures in Duroc with the Illumina Porcine SNP60K Bead Chip (Ramos et al. 2009) and the GeneSeek Genomic Profiler (GGP)Porcine Chip. Our findings identify important candidate functional genes that underwent positive selection in Duroc pig.

    2. Materials and methods

    2.1. Population and genotypes

    The Duroc pig population used in this study was maintained as a breeding herd in a farm located in the Fujian Province of China. Ear tissue of 368 Duroc pigs (348 females and 20 males) selected from 715 unrelated pigs (no common ancestor within three generations) was collected for DNA extraction. The selection criteria were as follows: (1) divide all individuals into different families based on paternity; (2)remove individuals with inconsistent pedigree records; (3)retain at least one full-sib from each family; and (4) exclude individuals from each family with more than three half-sibs.Genomic DNA was extracted using the MiniBEST Universal Genomic DNA Extraction Kit (Ver. 4.0, TaKaRa, USA)following a routine phenol/chloroform protocol. In order to identify whether genomic DNA was contaminated by RNA or proteins, the OD260/280ratio and DNA concentration of these samples were quantified with a NanoDrop 2000(ThermoFisher Scientific, USA). Samples with an OD260/280ratio between 1.7 and 2.0 and a concentration of at least 50 ng μL-1were used for genotyping.

    The Illumina Porcine SNP60K Bead Chip and the GGP Porcine Chip, which contain 61 565 single nucleotide polymorphisms (SNPs; Ramos et al. 2009) and 50 697 SNPs respectively, were used for whole genome genotyping.Beagle (Ver. 3.3.1) Software (Browning and Browning 2007)was used to impute missing genotypes and infer haplotypes.SNPs with unknown positions or those located on sex chromosomes were removed from the dataset. Quality control on genotypes was performed with PLINK Software(Ver. 1.07) (Purcell et al. 2007). The criteria for quality control were: minor allele frequency (MAF)>0.01, call rate for SNP>0.90, call rate for individuals>0.90, and P-values of Hardy-Weinberg equilibrium>0.000001.

    2.2. Selective signature detection

    EHH is defined as the probability that two randomly chosen haplotypes carrying the candidate core haplotype are homozygous for the entire interval spanning the core region for a given locus (Sabeti et al. 2002). The EHH of a tested core haplotype t is:

    Where, ctis the number of samples for a particular core haplotype t, etiis the number of samples of a particular extended haplotype i, and s is the number of unique extended haplotypes.

    Where, n is the number of different core haplotypes.

    In this study, the REHH test (Sabeti et al. 2002) was used to detect selective signatures. The REHH test, which is an extended version of the EHH test, was proposed by Sabeti et al. (2002). The REHH score is calculated as:

    Where, the marker H value is the degree to which each added marker at a further distance causes the extended haplotype to decay for all core haplotype, and can be calculated as ‘a(chǎn)ll EHH’. Previous studies have shown that the LD extent of commercial pigs is much higher than many Chinese pig breeds (Nsengimana et al. 2004; Amaral et al.2008; Ai et al. 2013). In our study, the marker H value was assigned as 0.1 following Li X et al. (2014). The REHH values were calculated using Sweep Software (Ver. 1.0)(Sabeti et al. 2002). A core haplotype with a frequency>0.25 and REHH P-value<0.01 was treated as a significant core region.

    2.3. Genome annotation

    For each detected selective signature, a target region was defined by extending 250 kb both upstream and downstream of the region. Genes located within this target region were treated as candidate genes. Genome positions of candidate genes were identified based on the annotation of Sus scrofa 10.2 (https://www.animalgenome.org/blast/). RNAs and unconfirmed genes were excluded from annotated candidate genes. To further explore the biological functions of the detected selection regions, trait specific QTL were retrieved from the animal QTL database (Hu et al. 2016)for each target region.

    2.4. GO terms and KEGG pathway enrichment analysis

    The Database for Annotation, Visualization, and Integrated Discovery (DAVID) Version 6.8 (https://david.ncifcrf.gov/)(Huang et al. 2009; Wei et al. 2009) was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway(Kanehisa and Goto 1999) and Gene Ontology (GO)(Ashburner et al. 2000) enrichment analyses. The GO terms and KEGG pathways with P-value<0.05 were considered significant.

    3. Results

    3.1. Marker and core haplotype statistics

    A total of 65 742 SNPs were subjected to quality control. Of these, 646 SNPs were excluded due to HWE test P-values less than 0.000001. A total of 17 581 SNPs with MAF below 0.01 were filtered out. Finally, 47 515 SNPs were retained and were divided into 3 693 core regions. Descriptive statistics of the genome-wide markers are listed in Table 1.

    3.2. Genome-wide REHH tests

    Altogether, 3 693 core regions with total length of 523.57 Mb covering 21.36% (523.57/2 450.72) of the swine genome were defined. Among these core regions, the highest distribution was observed on SSC1, SSC9, and SSC13,representing 22.94% of the detected core regions[(295+285+267)/3 693]. In addition, these core regions contained 47 515 SNPs, with an average of 12.87 SNPs(ranging from 3 to 20) within each core region.

    After filtering, 172 EHH tests and 154 cores remained(Figs. 1 and 2). For all 3 693 core regions, 20 577 EHH tests were performed. The distribution of REHH values vs.haplotype frequencies across the swine genome is shown in Fig. 1. Fig. 2 shows the distribution of REHH values across the whole genome. According the EHH test results,the average haplotype frequency was 0.29.

    3.3. Genome annotation

    Within the 154 significant core regions, 551 candidate genes were annotated in the NCBI database. A majority of the detected regions were distributed on SSC2, SSC6, and SSC10. The total length of the 154 significant core regions was 16.52 Mb. The top 20 significant core regions are shown in Table 2 and additional details of the 154 significant core regions are shown in Appendix A.

    QTL that overlapped with these core regions were found to be associated with important economic traits such as body weight, average daily gain, and teat number. A total of 5 268 QTLs were reported within the significant core regions(Appendix B). The times of reported QTL in each significant core regions are shown in Table 2.

    Table 1 Summary of genome-wide markers and core region (CR) distribution in Duroc pigs1)

    Fig. 1 The distribution of relative extended haplotype homozygosity (REHH) vs. core haplotype frequency in a Duroc pig population. Different P-value ranges are marked by different colors. The vertical dashed line=0.25. Log10REHH was calculated using H=0.1.

    3.4. GO terms and KEGG pathway enrichment analysis

    Fig. 2 Manhattan plot with P-values of core haplotypes on the whole genome of the Duroc pig. The hollow data points are cores haplotypes with a frequency>0.25 and REHH P-values<0.01 (-log10(REHH P-value)>2).

    Nine KEGG pathways and five GO terms involved 73 candidate genes were targeted (Table 3). The most significant GO term was GO: 0009952, which is defined as anterior/posterior or pattern specification. A total of 15 candidate genes were enriched in the ssc04151:PI3K-Akt signaling pathway, which enriched most of candidate genes.

    4. Discussion

    The identified significant core regions in this study overlapped with QTLs that were previously associatedwith several economically important traits (e.g., average daily gain, backfat, marbling, teat number, meat quality,and carcass traits). In this study, 154 significant core regions were identified, with overlap between 106 regions under selection (Appendices A and B) and QTL previously reported to be associated with average daily gain.Additional candidate genes were enriched in the GO term GO: 0048704, which is defined as embryonic skeletal system morphogenesis. The QTL mapping and selective signature detection results together suggest that the detected regions in the Duroc genome are reliable.

    Table 2 Summary of the top 20 significant core genome regions in a Duroc pig population1)

    The most significant GO term in the biological process category detected in this study was GO: 0009952, which is defined as anterior/posterior pattern specification(P-value=0.00002). Anterior/posterior pattern specification was previously reported as genes specifying terminal domains (Strecker and Lengyel 1988). The candidate genes involved in this biological process are homeobox, which were first discovered to be conserved between many homeotic genes in Drosophila (Regulski et al. 1985). The proteins containing this DNA binding motif were typically transcription factors (Freund and Mcinnes 1995). These candidate genes can be used to study evolution in wild boars by comparing to bred Duroc populations, and potentially offers new ways to explore evolutionary mechanisms.

    As a commercial pig breed, Duroc was once reported for its high intramuscular fat content compared to other widespread commercial pigs (Warriss et al. 1996). In this study, the QTL associated with muscle fat content were found to overlap with five out of 154 significant core regions.Within these 154 significant core regions, QTL associated with muscle tissue were reported 108 times. However,the gene ELOVL3 was not enriched in the significant core regions as reported in Wilkinson et al. (2013).

    It is noteworthy that there was one QTL associated with the age at puberty, which overlapped with nine significant core regions. Moreover, age at puberty in Duroc pigs is later than other commercial breeds, like Landrace, Yorkshire(Tummaruk et al. 2014), and Wuzhishan pigs (Min et al.2014). The Duroc pig can serve as a reference population to compare with Chinese indigenous breeds in future studies.

    Table 3 GO terms and KEGG pathways enriched with candidate genes

    A QTL associated with Actinobacillus pleuropneumoniae susceptibility was reported located in 44 out of the 154 significant core regions, and it may relate to the Duorc origin. These genome regions were not found in other selective signature studies focused on Duroc pigs (Ai et al.2013; Wilkinson et al. 2013; Bosse et al. 2014). Several loci have been proven to be specific in Duroc populations,such as the red coat related gene MC1R (Kijas et al. 1998;Fang et al. 2009), which was not detected in our study.Possible reasons include: (1) the limitation of statistical methods, selection criteria, and pig population size; (2) the pig genome annotation was incomplete at the time of this study; and (3) the low density of the currently available SNP chips. A total of 551 genes reported in a previous study where sequencing data were used to identify selected genes in Duroc population (Choi et al. 2015), were also identified in this study. Therefore, more density marker panels,sequencing data, and larger population sizes are necessary to detect additional genes under selection and to enhance the accuracy of selective signature detection.

    5. Conclusion

    In this study, 154 significant core regions and some important functional candidate genes were detected in a Duroc pig population. Moreover, these regions overlap with previously reported QTL that are associated with several economically important traits including average daily gain and backfat thickness. Candidate genes annotated within these regions were enriched in several biology pathways such as anterior/posterior pattern specification and the PI3KAkt signaling pathway. This study may provide knowledge for selection mechanisms and breeding practices in Duroc and other pigs.

    Acknowledgements

    This research was supported by the earmarked fund for the China Agriculture Research System (CARS-35), the National Natural Science Foundation of China (31772556),the Basic Work of Science and Technology Project, China(2014FY120800), the Pearl River S&T Nova Program of Guangzhou, China (201506010027), and the Guangdong S&T Project, China (2017A020208043).

    Appendicesassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    国产成+人综合+亚洲专区| 99精品久久久久人妻精品| 老司机午夜福利在线观看视频| 成人欧美大片| 大型黄色视频在线免费观看| 99热只有精品国产| 性色avwww在线观看| 欧美成人免费av一区二区三区| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 国产精品久久久久久亚洲av鲁大| 五月玫瑰六月丁香| 久久久久国内视频| 精品久久久久久久久久免费视频| 日韩中文字幕欧美一区二区| 久久久久久久久久黄片| 超碰av人人做人人爽久久| 久99久视频精品免费| 国产aⅴ精品一区二区三区波| 黄色一级大片看看| 搡女人真爽免费视频火全软件 | 赤兔流量卡办理| 在线a可以看的网站| 国产一区二区在线观看日韩| 老鸭窝网址在线观看| aaaaa片日本免费| 麻豆一二三区av精品| av在线蜜桃| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| 99热这里只有精品一区| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久亚洲 | 亚洲一区高清亚洲精品| 久久精品国产亚洲av涩爱 | 黄色丝袜av网址大全| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 97热精品久久久久久| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 日本与韩国留学比较| 中文字幕熟女人妻在线| 国产精品亚洲av一区麻豆| 免费av观看视频| 中文字幕av成人在线电影| 长腿黑丝高跟| 99热6这里只有精品| 午夜视频国产福利| 久久人人精品亚洲av| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲av一区麻豆| 亚洲无线观看免费| 精品久久久久久久久亚洲 | 精品99又大又爽又粗少妇毛片 | 久久精品国产自在天天线| 日韩欧美免费精品| 久久九九热精品免费| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 12—13女人毛片做爰片一| 精品国产三级普通话版| 观看美女的网站| 精品人妻熟女av久视频| 99久久成人亚洲精品观看| 国产熟女xx| 日韩免费av在线播放| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 色精品久久人妻99蜜桃| 男人的好看免费观看在线视频| xxxwww97欧美| 国产日本99.免费观看| 亚洲不卡免费看| 日韩欧美在线乱码| .国产精品久久| 人人妻,人人澡人人爽秒播| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 久久久久久久精品吃奶| 99精品久久久久人妻精品| 性欧美人与动物交配| 国产 一区 欧美 日韩| 搞女人的毛片| ponron亚洲| 亚洲av.av天堂| 嫩草影院新地址| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 香蕉av资源在线| 一边摸一边抽搐一进一小说| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 我要搜黄色片| 亚洲av不卡在线观看| 国产白丝娇喘喷水9色精品| 热99在线观看视频| 麻豆国产av国片精品| 国产成人福利小说| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 97超视频在线观看视频| 午夜激情欧美在线| 国产白丝娇喘喷水9色精品| 亚洲综合色惰| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区在线观看日韩| 久久午夜亚洲精品久久| 91狼人影院| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 一级毛片久久久久久久久女| 国产av一区在线观看免费| 夜夜看夜夜爽夜夜摸| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 宅男免费午夜| 麻豆成人午夜福利视频| 一本综合久久免费| 香蕉av资源在线| av女优亚洲男人天堂| 午夜日韩欧美国产| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 午夜日韩欧美国产| 3wmmmm亚洲av在线观看| 青草久久国产| 一本综合久久免费| 男女床上黄色一级片免费看| 精品无人区乱码1区二区| 久久精品国产亚洲av涩爱 | 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 久久国产乱子免费精品| 国产亚洲精品久久久com| 赤兔流量卡办理| 美女免费视频网站| 久久午夜福利片| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 欧美黑人巨大hd| 精品久久久久久久久久免费视频| 久久国产乱子免费精品| 99riav亚洲国产免费| 国产激情偷乱视频一区二区| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| 亚洲一区二区三区不卡视频| 亚洲,欧美精品.| 热99re8久久精品国产| 一个人看视频在线观看www免费| 日韩欧美一区二区三区在线观看| 99在线视频只有这里精品首页| 国产亚洲精品av在线| 热99在线观看视频| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 90打野战视频偷拍视频| 日本在线视频免费播放| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站 | 3wmmmm亚洲av在线观看| 一级作爱视频免费观看| 国产黄片美女视频| 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 18+在线观看网站| 午夜福利欧美成人| 国产精品美女特级片免费视频播放器| 在线a可以看的网站| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| 日韩精品青青久久久久久| 亚洲av熟女| 日韩大尺度精品在线看网址| 搡女人真爽免费视频火全软件 | 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 999久久久精品免费观看国产| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 亚洲乱码一区二区免费版| 久久久久国内视频| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 日日干狠狠操夜夜爽| 又黄又爽又刺激的免费视频.| 日本五十路高清| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 少妇被粗大猛烈的视频| 99在线视频只有这里精品首页| 日本熟妇午夜| a级毛片a级免费在线| 国产精品久久电影中文字幕| 午夜影院日韩av| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 极品教师在线免费播放| 成人欧美大片| 亚洲av美国av| 精品久久久久久成人av| 此物有八面人人有两片| 国产精品嫩草影院av在线观看 | 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频| 国产精品不卡视频一区二区 | 久久久久久久久中文| 国产精品av视频在线免费观看| 午夜激情欧美在线| 国产免费一级a男人的天堂| 久久6这里有精品| 免费观看精品视频网站| 宅男免费午夜| 免费黄网站久久成人精品 | 校园春色视频在线观看| 成人毛片a级毛片在线播放| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 久久人人爽人人爽人人片va | 最好的美女福利视频网| 久久久久九九精品影院| 欧美不卡视频在线免费观看| 欧美性猛交黑人性爽| 欧美国产日韩亚洲一区| 中文字幕人成人乱码亚洲影| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| 欧美在线一区亚洲| 欧美乱色亚洲激情| a级毛片a级免费在线| 国产大屁股一区二区在线视频| 日韩成人在线观看一区二区三区| x7x7x7水蜜桃| 国产精华一区二区三区| 又黄又爽又刺激的免费视频.| 日韩成人在线观看一区二区三区| 简卡轻食公司| 身体一侧抽搐| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 丰满的人妻完整版| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| 欧美精品国产亚洲| 国产 一区 欧美 日韩| 搡老岳熟女国产| 少妇人妻精品综合一区二区 | 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 香蕉av资源在线| 欧美成人免费av一区二区三区| 成人国产一区最新在线观看| 久久九九热精品免费| 少妇高潮的动态图| 一区二区三区四区激情视频 | 精品久久久久久久末码| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 热99在线观看视频| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 精品熟女少妇八av免费久了| 两个人的视频大全免费| 欧美成狂野欧美在线观看| 精品福利观看| 成人午夜高清在线视频| 在线十欧美十亚洲十日本专区| 琪琪午夜伦伦电影理论片6080| 国产大屁股一区二区在线视频| 国产不卡一卡二| 久久99热6这里只有精品| 国产精品综合久久久久久久免费| 日韩高清综合在线| 波野结衣二区三区在线| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 一本综合久久免费| 免费看美女性在线毛片视频| 99久久99久久久精品蜜桃| 亚州av有码| 国内久久婷婷六月综合欲色啪| 亚洲美女黄片视频| 欧美3d第一页| 欧美日本亚洲视频在线播放| 无人区码免费观看不卡| 成人国产一区最新在线观看| 麻豆国产av国片精品| h日本视频在线播放| 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 久久亚洲精品不卡| 国产成人啪精品午夜网站| 日韩欧美精品v在线| 99精品久久久久人妻精品| 久久香蕉精品热| 精品久久久久久久末码| 一级黄色大片毛片| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 欧美黑人巨大hd| 国产毛片a区久久久久| 国产黄色小视频在线观看| netflix在线观看网站| 亚洲国产欧美人成| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 久久久久久久久中文| 国产一区二区激情短视频| 免费人成在线观看视频色| 国产高清视频在线观看网站| 国产探花在线观看一区二区| 亚洲国产欧美人成| 9191精品国产免费久久| 听说在线观看完整版免费高清| 赤兔流量卡办理| 久久久久久国产a免费观看| 99热精品在线国产| 精品久久久久久久久av| 国产激情偷乱视频一区二区| or卡值多少钱| 欧美日韩国产亚洲二区| 我要搜黄色片| 黄色一级大片看看| 最近最新免费中文字幕在线| 在线观看66精品国产| 精品久久久久久久末码| 国产视频一区二区在线看| 国产精品久久视频播放| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 免费av不卡在线播放| 最近最新免费中文字幕在线| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 给我免费播放毛片高清在线观看| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 成熟少妇高潮喷水视频| 国产不卡一卡二| 亚洲久久久久久中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 宅男免费午夜| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 国产高清有码在线观看视频| av天堂中文字幕网| 日本一二三区视频观看| 日本成人三级电影网站| 亚洲欧美清纯卡通| 亚洲成人久久性| 熟女人妻精品中文字幕| 91午夜精品亚洲一区二区三区 | 国产亚洲精品av在线| 国产精品女同一区二区软件 | 国产三级在线视频| 一级av片app| 午夜影院日韩av| 欧美3d第一页| 五月伊人婷婷丁香| 老司机午夜十八禁免费视频| 久久精品人妻少妇| 一级av片app| 少妇丰满av| 亚洲第一电影网av| 亚洲av免费在线观看| 亚洲国产精品久久男人天堂| 亚洲精品日韩av片在线观看| 亚洲成人精品中文字幕电影| 免费高清视频大片| 日韩欧美在线二视频| 色在线成人网| 国产麻豆成人av免费视频| 在线免费观看不下载黄p国产 | 国产探花在线观看一区二区| 中文字幕人成人乱码亚洲影| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 国产毛片a区久久久久| 九九久久精品国产亚洲av麻豆| 欧美成人性av电影在线观看| 欧美国产日韩亚洲一区| 国产白丝娇喘喷水9色精品| 宅男免费午夜| 亚洲国产色片| 午夜激情福利司机影院| 少妇熟女aⅴ在线视频| 99久久精品热视频| 欧美黄色淫秽网站| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 久久草成人影院| 亚洲国产高清在线一区二区三| 亚洲av一区综合| 成人欧美大片| 男人舔女人下体高潮全视频| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久 | 老熟妇乱子伦视频在线观看| 国产高清视频在线观看网站| 男人狂女人下面高潮的视频| 老熟妇仑乱视频hdxx| 欧美成人a在线观看| 一本综合久久免费| a级毛片免费高清观看在线播放| 99热这里只有是精品50| 午夜a级毛片| 亚洲第一欧美日韩一区二区三区| 91午夜精品亚洲一区二区三区 | 狠狠狠狠99中文字幕| 午夜福利高清视频| а√天堂www在线а√下载| 成人一区二区视频在线观看| 久久精品国产清高在天天线| 国产精品久久久久久久久免 | 俄罗斯特黄特色一大片| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 老司机福利观看| 亚洲乱码一区二区免费版| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 亚洲人成电影免费在线| 我的老师免费观看完整版| 真人一进一出gif抽搐免费| 51国产日韩欧美| 欧美日韩综合久久久久久 | 激情在线观看视频在线高清| 亚洲av熟女| h日本视频在线播放| 久久天躁狠狠躁夜夜2o2o| 成人国产综合亚洲| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 成人三级黄色视频| 欧美极品一区二区三区四区| 午夜a级毛片| 99久久成人亚洲精品观看| 亚洲av.av天堂| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| bbb黄色大片| 国产精品综合久久久久久久免费| 禁无遮挡网站| 精品国产亚洲在线| 毛片一级片免费看久久久久 | 国产人妻一区二区三区在| 久久热精品热| 好男人在线观看高清免费视频| 亚洲专区中文字幕在线| 免费观看的影片在线观看| 国产精品综合久久久久久久免费| 老司机午夜十八禁免费视频| 国产三级在线视频| 欧美极品一区二区三区四区| 久久婷婷人人爽人人干人人爱| 国产色爽女视频免费观看| 哪里可以看免费的av片| av专区在线播放| 国产精品爽爽va在线观看网站| 亚洲一区二区三区不卡视频| 一夜夜www| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 88av欧美| 国产中年淑女户外野战色| 2021天堂中文幕一二区在线观| 特大巨黑吊av在线直播| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 天堂动漫精品| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| h日本视频在线播放| 亚洲欧美清纯卡通| 午夜福利高清视频| 欧美丝袜亚洲另类 | 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 中文字幕熟女人妻在线| 国产探花极品一区二区| 俄罗斯特黄特色一大片| 免费看光身美女| 日本 欧美在线| 欧美高清成人免费视频www| 亚洲欧美日韩卡通动漫| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| 国产乱人视频| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 禁无遮挡网站| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| 一区二区三区高清视频在线| 桃色一区二区三区在线观看| 久久精品国产自在天天线| 久久伊人香网站| 亚洲av成人av| 9191精品国产免费久久| 日日干狠狠操夜夜爽| 国产老妇女一区| 成人av在线播放网站| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 午夜免费成人在线视频| 51国产日韩欧美| 久久国产乱子免费精品| 久久伊人香网站| 国产主播在线观看一区二区| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 国产av一区在线观看免费| АⅤ资源中文在线天堂| 国产伦在线观看视频一区| 淫秽高清视频在线观看| 日韩国内少妇激情av| 久久久久国内视频| 动漫黄色视频在线观看| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 亚洲美女视频黄频| 日韩大尺度精品在线看网址| 有码 亚洲区| 亚洲欧美日韩东京热| 老鸭窝网址在线观看| 亚洲电影在线观看av| 51国产日韩欧美| 国产69精品久久久久777片| 亚洲成人久久性| 欧美色欧美亚洲另类二区| 少妇人妻一区二区三区视频| 亚洲第一欧美日韩一区二区三区| 黄色女人牲交| 久久久精品大字幕| 亚洲av日韩精品久久久久久密| 99久久99久久久精品蜜桃| 欧美zozozo另类| 两个人的视频大全免费| 首页视频小说图片口味搜索| www.色视频.com| 国产精品电影一区二区三区| 国产伦人伦偷精品视频| 欧美日韩综合久久久久久 | 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 青草久久国产| 自拍偷自拍亚洲精品老妇| av黄色大香蕉| 女生性感内裤真人,穿戴方法视频| 内射极品少妇av片p| 免费观看的影片在线观看| 人人妻人人澡欧美一区二区| 色尼玛亚洲综合影院| 色综合站精品国产| 国产乱人伦免费视频| 国产淫片久久久久久久久 | 日韩欧美精品免费久久 | 国产精品美女特级片免费视频播放器| 亚洲精品日韩av片在线观看| av在线老鸭窝| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| 久久午夜亚洲精品久久| 国产真实伦视频高清在线观看 | 欧美日本视频| 国产高清有码在线观看视频| 国产免费一级a男人的天堂|