• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley

    2018-11-06 08:19:08WANGXiaodongBIWeishuaiGAOJingYUXiumeiWANGHaiyanLIUDaqun
    Journal of Integrative Agriculture 2018年11期

    WANG Xiao-dong, BI Wei-shuai, GAO Jing, YU Xiu-mei, WANG Hai-yan, LIU Da-qun,

    1 College of Plant Protection/Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University,Baoding 071000, P.R.China

    2 College of Life Sciences, Hebei Agricultural University, Baoding 071000, P.R.China

    3 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

    Abstract In Arabidopsis, systemic acquired resistance (SAR) is established beyond the initial infection by a pathogen or is directly induced by treatment with salicylic acid (SA) or its functional analogs, 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole(BTH). NPR1 protein is considered the master regulator of SAR in both SA signal sensing and transduction. In wheat(Triticum aestivum) and barley (Hordeum vulgare), both pathogen infection and BTH treatment can induce broad-spectrum resistance to various diseases, including powdery mildew, leaf rust, Fusarium head blight, etc. However, three different types of SAR-like responses including acquired resistance (AR), systemic immunity (SI), and BTH-induced resistance (BIR)seem to be achieved by activating different gene pathways. Recent research on wheat and barley NPR1 homologs in AR and SI has provided the initial clue for understanding the mechanism of SAR in these two plant species. In this review,the specific features of AR, SI, and BIR in wheat and barley were summarized and compared with that of SAR in model plants of Arabidopsis and rice. Research updates on downstream genes of SAR, including pathogenesis-related (PR) and BTH-induced genes, were highlighted.

    Keywords: systemic acquired resistance, NPR1, pathogenesis-related genes, wheat, barley

    1. Introduction

    Systemic acquired resistance (SAR) is an inducible form of plant defense that confers broad-spectrum immunity to secondary infections beyond the initial infection site.In Arabidopsis, SAR can be induced by either pathogen infection or treatment with salicylic acid (SA) or its functional analogs 2,6-dichloroisonicotinic acid (INA)and benzothiadiazole (BTH), which is associated with transcriptional activation of pathogenesis-related (PR)genes (Zheng and Dong 2013). The Arabidopsis NPR1 protein (Non-expresser of PR genes 1, also known as NIM1 and SAI1) is a master regulator required for SAR.Upon pathogen infection or SA/INA/BTH treatment, NPR1 translocates from the cytoplasm into the nucleus, where it interacts with the TGA2 transcription factor to promote the expression of multiple PR genes (Cao et al. 1994; Delaney et al. 1995; Ryals et al. 1997; Shah et al. 1997; Mou et al.2003). The endogenous SA level during plant defense response is largely dependent on the strength of cell death triggered by the pathogen (Fu and Dong 2013). The NPR1 paralogs NPR3 and NPR4 are involved in the degradation of NPR1 in a SA concentration-dependent manner (Fu et al.2012). At a low SA level, NPR1 is targeted for degradation in proteasomes by binding to NPR4. As the SA level increases after pathogen infection during basal resistance, SA binds to NPR4 and releases more NPR1, which activates the SAR.At an extremely high SA level during the hypersensitive response (HR), SA binds to NPR3 and promotes its interaction with NPR1, which finally leads to the turnover of NPR1 (Fu et al. 2012; Moreau et al. 2012). Interestingly, a bacterial Type III effector AvrPtoB was reported to mediate the degradation of NPR1 in the presence of SA via the host 26S proteasome (Chen et al. 2017).

    In rice, a SAR-like enhanced resistance to Magnaporthe oryzae (Mo) can be induced by either BTH treatment or Pseudomonas fluorescens infection in a PR genes-involved manner (Smith and Métraux 1991; Schweizer et al. 1999;Oostendorp et al. 2001). In contrast to Arabidopsis, the endogenous level of SA in rice is relatively high and not elevated by pathogen infections (Silverman et al. 1995; Chen et al. 1997). Nevertheless, protein interactions between the rice homolog of NPR1 (NH1) and TGAs are conserved(Chern et al. 2001). The overexpression of Arabidopsis NPR1 (AtNPR1) in rice could enhance its resistance against multiple pathogens, including Xanthomonas oryzae pv.oryzae (Xoo), Mo, Fusarium verticillioides, and Erwinia chrysanthemi (Chern et al. 2001; Quilis et al. 2008; Xu et al.2017). Further studies indicate that the overexpression of NH1 leads to a higher level of resistance to Xoo and hypersensitivity to light and BTH (Chern et al. 2005; Bai et al. 2011). Interestingly, a WRKY transcription factor,OsWRKY45, was reported as another key regulator in the SA/BTH signaling pathway independent from NH1 in rice(Shimono et al. 2007; Nakayama et al. 2013).

    Fig. 1 Models of systemic acquired resistance (SAR)-like responses in wheat and barley in comparison with SAR in Arabidopsis. In wheat and barley, both pathogen infection and benzothiadiazole (BTH) treatment can induce broad-spectrum resistance to various pathogens. Compared with SAR in Arabidopsis, three different types of SAR-like responses, including the acquired resistance(AR), systemic immunity (SI), and BTH-induced resistance (BIR), seem to be achieved by activating different gene pathways. Psj,Pseudomonas syringae pv. japonica; Mo, Magnaporthe oryzae; Xtc, Xanthomonas translucens pv. cerealis; SA, salicylic acid;MeJA, jasmonic acid methyl ester; ABA, abscisic acid.

    However, SAR in wheat and barley is obviously different from those described above for Arabidopsis and rice (Fig. 1).In this review, the specific features of SAR in wheat and barley were summarized in comparison to SAR in model plants of Arabidopsis and rice. Our current knowledge on wheat/barley NPR1 homologs and downstream genes of SAR was highlighted.

    2. SAR in wheat and barley

    In wheat and barley, both the initial pathogen infection and BTH treatment can enhance plant resistance to secondary pathogen infection. However, different from SAR in Arabidopsis, three types of induced resistance have been reported in wheat and barley. These three biological processes show similarities with SAR, but they seem to be achieved by activating different gene pathways (Fig. 1).

    Acquired resistance (AR) to secondary pathogen Mo can be induced in the area adjacent to the initial infection of Pseudomonas syringae pv. syringae DC3000 in a PR genesinvolved manner. Nevertheless, unlike SAR in Arabidopsis,this type of resistance is not systemic (Colebrook et al.2012). A previous study showed that the levels of both free and conjugated SA were significantly upregulated in barley leaves infiltrated with P. syringae but not in those infected with Blumeria graminis f. sp. hordei (Bgh) or Blumeria graminis f. sp. tritici (Bgt) (Vallélianbindschedler et al. 1998).Taken together, AR triggered by P. syringae DC3000 seems to be mediated by analogous pathways such as SAR in Arabidopsis and rice.

    Systemic immunity (SI) in uninfected leaves of barley against secondary infection of Xanthomonas translucens pv. cerealis (Xtc) can be induced by Pseudomonas syringae pv. japonica (Psj) or Xtc (Dey et al. 2014). Different from SAR in Arabidopsis and rice, SI is associated with a local accumulation of abscisic acid (ABA), but not SA. It can also be induced by a local application of jasmonic acid methyl ester (MeJA) or ABA, but not SA or BTH. The same study also indicated that SI was not associated with NPR1, but with several WRKY and ERF transcription factors.

    Several studies have demonstrated the presence of BTH-induced resistance (BIR) in wheat and barley to various pathogens, including Bgt and Puccinia triticina (Pt) (Gorlach et al. 1996; Hafez et al. 2014). However, most of the PR genes in wheat and barley were not induced by treatment with SA/INA/BTH (Vallélianbindschedler et al. 1998; Molina et al.1999). On the other hand, another group of BTH-induced genes, designated as wheat chemical-induced (WCI) and barley chemical-induced (BCI) genes, may be responsible for the BIR (Gorlach et al. 1996; Be?er et al. 2000).

    3. Function of NPR1 in wheat and barley

    Recent studies on wheat and barley NPR1 homologs have provided the initial clue to understand the signal sensing and transduction mechanisms of the previously described SAR-like responses. Wheat NPR1 homolog (wNPR1)showed protein interactions with four basic-region leucine zipper (bZIP) transcription factors (also known as TGAs),as well as two wheat orthologous copies of the rice NRR(Negative Regulator of Resistance) protein (Cantu et al.2013). Protein interactions between NPR1 and TGAs are critical for the functioning of NPR1 in Arabidopsis and rice(Chern et al. 2001; Després et al. 2003). In one of our recent studies, inductions of several barley PR genes,including HvPR1b, HvPR2, HvPR3_Chit2b, and HvPR5,were closely associated with the expression level of NPR1 in barley transgenic lines overexpressing wheat NPR1(wNPR1-OE) or suppressing barley NPR1 (HvNPR1-RNAi)during AR triggered by P. syringae DC3000 (Wang et al.2016). In the same study, a virulent effector protein from Puccinia striiformis f. sp. tritici (Pst) directly targeting wheat wNPR1 protein was discovered by a yeast two-hybrid screening assay. The NPR1-mediated PR gene inductions were suppressed by this effector possibly via its competitive effect on the protein interaction between NPR1 and TGA2.Interestingly, wheat transgenic lines overexpressing AtNPR1 or Secale cereal NPR1 (ScNPR1) showed enhanced resistance to Fusarium head blight (Makandar et al. 2006;Gao et al. 2013; Yu et al. 2017).

    4. PR and BTH-induced genes in wheat and barley

    We have summarized our current knowledge on the possible downstream genes of SAR in wheat and barley, including all the cloned PR and BTH-induced genes in Table 1. A neighbor-joining polygenetic tree was generated by MEGA Software using sequences of corresponding proteins aligned by MUSCLE method (Fig. 2).

    So far, a total of 18 gene families from plant species were designated as PR genes in response to various pathogens(Loon et al. 2006; Ferreira et al. 2007; Sels et al. 2008).

    PR1:Two genes in this gene family (PR1a and PR1b)have been cloned from both wheat and barley. PR1 showed induction by various pathogens (Gorlach et al.1996; Vallélianbindschedler et al. 1998; Molina et al. 1999;Gao et al. 2015) and was also reported as downstream of NPR1 in AR triggered by P. syringae DC3000 (Wang et al.2016). The expression level of wheat TaPR1b was much higher than that of TaPR1a in different tissues (Molina et al.1999). PR1 became sensitive to BTH treatment only in a wheat transgenic line overexpressing AtNPR1 (Molina et al.1999; Makandar et al. 2006), which indicates the presence of different signal sensing mechanisms between wNPR1 and AtNPR1. PR1 protein interacted physically with ToxA and potentially mediated ToxA-induced necrosis in sensitive wheat (Lu et al. 2014). A recent study provided genetic and biochemical evidence for the capacity of PR1 protein to bind sterols and inhibit pathogen growth (Gamir et al. 2017).

    PR2:This gene family encodes β-1,3-glucanase and has been characterized in detail using immunolocalization method during the infection of wheat by Pst, Puccinia graminis tritici (Pgt), and Fusarium culmorum (Fc) (Sock et al. 1990; Kang and Buchenauer 2002; Liu et al. 2010).Barley HvPR2 showed clear involvement in NPR1-mediated AR triggered by P. syringae DC3000 (Wang et al. 2016).Wheat TaPR2 was also reported as a potential target of a virulent factor microRNA-like RNA 1 (Pst-milR1) from Pst(Wang et al. 2017).

    ?

    PR3, PR8, and PR11 (chitinase):Different types of chitinases were classified into three gene families as PR3(Type I, II, IV, VI, and VII), PR8 (Type III), and PR11 (Type V).Currently one chitinase from wheat (TaChit2) and three chitinases from barley (HvChit2a, HvChit2b, and HvChit2) were designated as PR3 (Gregersen et al.1997; Vallélianbindschedler et al. 1998;Gao et al. 2013). Transgenic tomato plants overexpressing wheat TaPR3_Chit2 showed enhanced resistance to F. oxysporum f. sp. lycopersici (Girhepuje and Shinde 2010). In addition, barley HvPR3_Chit2a has been validated as a downstream gene of NPR1 during AR triggered by P. syringae DC3000(Wang et al. 2016). Although PR8 and PR11 have not yet been designated in wheat or barley, several wheat/barley chitinases have shown involvement in the resistance to various pathogens.For instance, TaChit4 and HvChit26 were reported to be involved in wheat/barley resistance to F. graminearum(Fg) (Li et al. 2001; Shin et al. 2008).Induction of TaChitIb was discovered in wheat seedlings infected with Pgt (Yu et al. 1994). A purified barley chitinase expressed by Escherichia coli exerted antifungal activity against Alternaria alternate, F. oxysporium, and F. solani(Elhamid et al. 2010). In the polygenetic tree constructed in the review, we found that AtPR3 from Arabidopsis was closely clustered with HvChit26 and TaChitIb, but not with the designated wheat/barley PR3 proteins (Fig. 2).

    PR4:This gene family encodes a chitin-binding protein and is reported to be sensitive to BTH treatment (Bertini et al.2003). The recombinant wheat TaPR4 protein expressed by E. coli inhibited the growth of Fc in vitro (Caruso et al. 2001).Barley HvPR4b also showed induction in AR triggered by P. syringae DC3000(Wang et al. 2016). Interestingly, a recent study in pepper (Capsicum annuum)indicated that PR4b was a cell death inducer and interacted with a leucine-rich repeat (LRR) protein (Sun et al. 2014).

    Fig. 2 Polygenetic tree of pathogenesis-related (PR), barley chemical-induced (BCI), and wheat chemical-induced (WCI) proteins.Asterisk (*) indicates expressed sequence tag (EST) or nucleotide accessions.

    PR5:Genes encoding thaumatin-like proteins (TLP) are designated as PR5.This gene family showed induction by various pathogens in wheat and barley(Vallélianbindschedler et al. 1998; Reiss and Horstmann 2001; Wang et al. 2010;Li et al. 2015). A barley HvPR5_TLP6 has been confirmed as downstream of NPR1 during AR triggered by P. syringae DC3000 (Wang et al. 2016). Interestingly, wheat transgenic lines overexpressing or co-expressing TaPR2, TaPR3 and TaPR5 showed moderate resistance to Fg in both greenhouse and the field (Anand et al. 2003). In the polygenetic tree, wheat TaPR5 was clustered with barley HvPR5_TLP1, HvPR5_TLP2 and HvPR5_TLP4, whereas HvPR5_TLP5, HvPR5_TLP6, HvPR5_TLP7, and HvPR5_TLP8 were clustered together with PR5 proteins from Arabidopsis and Brachypodium (Fig. 2).

    PR6:This gene family encodes a proteinase-inhibitor and has been cloned in both wheat and barley (Gaddour et al. 2001; Gao et al. 2013). Barley HvPR6 gene showed induction by several abiotic stimuli (Gaddour et al. 2001).The gene expression of wheat TaPR6 was slightly induced by F. asiaticum in a wheat transgenic line overexpressing AtNPR1 at the spike stage (Gao et al. 2013).

    PR7:Genes encoding subtilisin-like proteinase from tomato were originally designated as PR7 (Jordá et al.2000). This gene family has not been cloned yet from wheat or barley. We have found the closest homolog of tomato SlPR7e and SlPR7f in barley from GenBank and temporarily designated as HvPR7 in our polygenetic analysis.

    PR9:This gene family encodes peroxidase and was reported to be induced by various pathogens in wheat and barley including Bgt, Bgh and P. syringae(Thordal-Christensen et al. 1992; Gregersen et al. 1997;Vallélianbindschedler et al. 1998).

    PR10:A gene family encoding ribonuclease-like protein was designated as PR10. A previous study revealed that barley HvPR10 was induced by Rhynchosporium secalis(Rs) (Steinerlange et al. 2003).

    PR12:A group of small cysteine-rich antifungal proteins(AFP) from radish were originally designated as PR12(Terras et al. 1995). Although PR12 homologs in wheat or barley have not been cloned yet, a wheat transgenic line overexpressing radish RsPR12 showed enhanced resistance to Rhizoctonia cerealis without changing any agronomic traits (Lu et al. 2009). The closest homolog of radish RsPR12 in barley in the GenBank database was temporarily designated as HvPR12 in the polygenetic tree.

    PR13:This gene family encodes thionins and was first designated in Arabidopsis (Epple et al. 1995). The closest homolog of Arabidopsis AtPR13 in barley in the GenBank database was temporarily designated as HvPR13 in the polygenetic tree.

    PR14:A Bgh-induced barley lipid-transfer protein gene HvLTP4 was first designated as PR14 (Molina and García-Olmedo 1993; Garcíaolmedo et al. 1995). The expression levels of HvLTP2, HvLTP3, and HvLTP4 were induced by Bgh, but not by SA or INA (Molina and García-Olmedo 1993). Arabidopsis and tobacco transgenic lines overexpressing barley HvLTP2 showed enhanced tolerance to bacterial pathogens (Molina and García-Olmedo 1997).In another study, wheat TaLTP5 was used as a transgenic resource to improve wheat resistance to Cochliobolus sativus and Fg (Zhu et al. 2012). In contrast, another wheat LTP gene TaDIR1-2 was reported as a negative regulator in wheat resistance against Pst (Ahmed et al. 2017). A purified wheat lipid transfer protein expressed by E. coli exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea, and Sarocladium oryzae (Kirubakaran et al. 2008).

    PR15 and PR16:These two gene families encode oxalate oxidase and oxalate oxidase-like proteins,respectively, which are essential for the H2O2production during the HR triggered by Bgh in barley (Gregersen et al.1997; Zhou et al. 1998).

    PR17:Members of this gene family have been cloned in barley and showed induction by Bgh (Christensen et al.2002). A recent study indicated that both barley HvPR1 and HvPR17c might be potential targets of a Bgh effector candidate CSEP0055. Further characterization of HvPR17c revealed that it was localized on the Bgh-induced papillae and exerted important functions in the defense response of barley (Zhang et al. 2012).

    PR18:This gene family encodes fungus- and SA-inducible carbohydrate oxidases and was first discovered in sunflower (Custers et al. 2004). So far, the name of “PR18”has not been widely used (Loon et al. 2006). The closest homolog of the sunflower carbohydrate oxidases in barley from GenBank was temporarily designated as HvPR18 in the polygenetic tree.

    BCI and WCI:A total of nine barley BCI and five wheat WCI genes were designated in previous investigations using BTH to enhance plant resistance to various pathogens(Table 1) (Gorlach et al. 1996; Be?er et al. 2000). Most of the barley BCI genes showed upregulation by BTH treatment (downregulation for HvBCI8), but none of them was sensitive to Bgh infection (Be?er et al. 2000). Whereas,all of the wheat WCI genes showed upregulation by both BTH treatment and Bgt infection (Gorlach et al. 1996). We have noticed some interesting relationships among PR, BCI,and WCI proteins in our polygenetic analysis (Fig. 2). For instance, both HvBCI1 and TaWCI2 are lipoxygenase and are clustered closely. For thionins or thionin-like proteins,HvPR13 and HvBCI2 are clustered closely. Moreover,TaWCI5 is clustered closely with PR17, especially with HvPR17a.

    5. Conclusion

    SAR-like responses observed in wheat and barley (AR, SI and BIR) show novel differences from SAR in Arabidopsis and rice. Recent studies on wheat and barley NPR1 homologs have provided the initial clue to understand the molecular mechanism behind these phenomena.Functions of key regulators in SAR, including NPR3,NPR4, and WRKY transcription factors, in wheat and barley require further exploration. More studies should be carried out to broaden our knowledge on the NPR1-mediated AR in the adjacent region of P. syringae DC3000 infection, WRKY and ERF transcription factors-mediated SI in uninfected leaves triggered by Psj or Xtc, as well as the molecular mechanism controlling BIR. Downstream genes involved in these biological processes, especially PR genes, have shown a great potential for use as transgenic resources for the improvement of the broad-spectrum resistance of wheat and barley to various pathogens. More efforts might need to be put in cloning and characterizing novel PR genes.It would be rather difficult but meaningful to explore the network of gene pathways among these different SAR-like responses.

    Acknowledgements

    We would like to acknowledge the National Natural Science Foundation of China (31701776, 31301649) and the Young Talents Project of Hebei Education Department, China(BJ2016028).

    成年女人毛片免费观看观看9| 最近在线观看免费完整版| 久久久国产成人免费| 在线播放国产精品三级| 伦理电影大哥的女人| 午夜福利在线在线| 噜噜噜噜噜久久久久久91| 国产精华一区二区三区| 成人美女网站在线观看视频| 动漫黄色视频在线观看| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添小说| 成年女人看的毛片在线观看| 日韩欧美三级三区| 一本一本综合久久| 天堂影院成人在线观看| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 欧美一区二区亚洲| 男人狂女人下面高潮的视频| 真人做人爱边吃奶动态| 久久精品人妻少妇| 最近视频中文字幕2019在线8| 99精品久久久久人妻精品| 国内久久婷婷六月综合欲色啪| 免费看光身美女| 午夜影院日韩av| a级毛片a级免费在线| 国产人妻一区二区三区在| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 免费av毛片视频| 天天躁日日操中文字幕| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 亚洲精品色激情综合| 国产精品久久视频播放| 免费黄网站久久成人精品| 免费看光身美女| 少妇人妻一区二区三区视频| 我要搜黄色片| 亚洲avbb在线观看| 日本成人三级电影网站| 亚洲av免费在线观看| 俺也久久电影网| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 18禁黄网站禁片免费观看直播| 极品教师在线免费播放| 老司机福利观看| 特级一级黄色大片| 黄色女人牲交| 久久久久国内视频| 精品久久久久久久久久久久久| 亚洲色图av天堂| 日韩中字成人| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 久久精品综合一区二区三区| 色视频www国产| 国产亚洲精品av在线| 男人舔奶头视频| 成年女人永久免费观看视频| 久久99热6这里只有精品| 中文字幕高清在线视频| 日韩欧美精品v在线| 亚洲av一区综合| 国产单亲对白刺激| 黄色日韩在线| 国产欧美日韩精品亚洲av| 精品欧美国产一区二区三| 久久久久久久亚洲中文字幕| 色哟哟哟哟哟哟| 免费高清视频大片| 午夜激情欧美在线| 特级一级黄色大片| 黄片wwwwww| 欧美激情在线99| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 香蕉av资源在线| 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 国产熟女欧美一区二区| 久久久久久国产a免费观看| 人妻少妇偷人精品九色| 中国美白少妇内射xxxbb| 自拍偷自拍亚洲精品老妇| 免费av观看视频| 悠悠久久av| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 九九久久精品国产亚洲av麻豆| 一区二区三区四区激情视频 | 精品午夜福利在线看| 禁无遮挡网站| 色综合婷婷激情| 午夜影院日韩av| 两个人视频免费观看高清| 色av中文字幕| 一个人看的www免费观看视频| www日本黄色视频网| 久久6这里有精品| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 成人国产综合亚洲| 色吧在线观看| 久99久视频精品免费| 在线国产一区二区在线| 国产不卡一卡二| 性插视频无遮挡在线免费观看| 99久久成人亚洲精品观看| 国产午夜福利久久久久久| 国产精品三级大全| 91精品国产九色| 国产精品98久久久久久宅男小说| 国产精品一区二区三区四区久久| 美女高潮的动态| 国产乱人伦免费视频| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 亚洲精华国产精华精| 老女人水多毛片| 国内精品美女久久久久久| 琪琪午夜伦伦电影理论片6080| 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看| 麻豆国产97在线/欧美| 两人在一起打扑克的视频| 人妻制服诱惑在线中文字幕| 美女高潮喷水抽搐中文字幕| x7x7x7水蜜桃| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清专用| 日韩,欧美,国产一区二区三区 | 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| or卡值多少钱| 一本精品99久久精品77| 2021天堂中文幕一二区在线观| 91在线精品国自产拍蜜月| 日本三级黄在线观看| 亚洲第一区二区三区不卡| 精品久久国产蜜桃| 人妻久久中文字幕网| 熟女电影av网| 我要看日韩黄色一级片| 亚洲国产精品久久男人天堂| 一区二区三区高清视频在线| 天美传媒精品一区二区| 国产探花在线观看一区二区| 一a级毛片在线观看| a在线观看视频网站| 亚洲三级黄色毛片| 无遮挡黄片免费观看| 最近最新免费中文字幕在线| 色综合婷婷激情| 少妇丰满av| 久久午夜亚洲精品久久| 久久久久久久久久成人| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 亚州av有码| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片| 国产一区二区激情短视频| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 99在线人妻在线中文字幕| 51国产日韩欧美| 天天一区二区日本电影三级| 九色成人免费人妻av| 欧美3d第一页| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件 | 床上黄色一级片| 欧美3d第一页| 国产高潮美女av| 九九热线精品视视频播放| 中文字幕免费在线视频6| 日韩精品中文字幕看吧| 国产黄a三级三级三级人| 女人被狂操c到高潮| 在线a可以看的网站| 精品久久久久久久久av| 国产精品永久免费网站| 人人妻人人澡欧美一区二区| 午夜福利视频1000在线观看| 国产午夜精品论理片| 99久久中文字幕三级久久日本| 99热6这里只有精品| 婷婷亚洲欧美| 久久人人爽人人爽人人片va| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 亚洲av免费高清在线观看| 伦精品一区二区三区| 99热网站在线观看| 免费看av在线观看网站| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| av在线观看视频网站免费| 最近最新免费中文字幕在线| 欧美激情国产日韩精品一区| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 国产 一区精品| 亚洲综合色惰| av在线天堂中文字幕| 国产亚洲av嫩草精品影院| 免费看日本二区| 天堂网av新在线| 日韩欧美国产在线观看| 欧美日韩瑟瑟在线播放| www日本黄色视频网| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 亚洲人成伊人成综合网2020| 黄色欧美视频在线观看| 国产精品亚洲美女久久久| 亚洲专区中文字幕在线| 国产 一区精品| 我要看日韩黄色一级片| 成年免费大片在线观看| 国产色爽女视频免费观看| 欧美日韩黄片免| 久久久久久久久久黄片| 男人和女人高潮做爰伦理| 真实男女啪啪啪动态图| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 国内精品久久久久久久电影| 国产一区二区三区视频了| 日本爱情动作片www.在线观看 | aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩无卡精品| 毛片女人毛片| 国产精品98久久久久久宅男小说| 欧美日韩乱码在线| 麻豆一二三区av精品| 免费av毛片视频| 成人鲁丝片一二三区免费| 两个人的视频大全免费| 99久久精品国产国产毛片| 又黄又爽又免费观看的视频| 制服丝袜大香蕉在线| 欧美潮喷喷水| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 免费看a级黄色片| 久久九九热精品免费| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| 赤兔流量卡办理| 国产精品免费一区二区三区在线| 亚洲人成网站在线播| 午夜福利在线在线| 国产成人av教育| 九九在线视频观看精品| 91久久精品国产一区二区成人| 窝窝影院91人妻| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| x7x7x7水蜜桃| 91午夜精品亚洲一区二区三区 | 日日啪夜夜撸| 乱系列少妇在线播放| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 日韩欧美在线乱码| 欧美性猛交黑人性爽| 久久国产精品人妻蜜桃| 高清日韩中文字幕在线| 老司机福利观看| 国产男靠女视频免费网站| 在线免费十八禁| 亚洲成人免费电影在线观看| videossex国产| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 中文资源天堂在线| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 国产成人福利小说| 国产精品电影一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲avbb在线观看| 最新中文字幕久久久久| 老司机午夜福利在线观看视频| 久久热精品热| 日韩 亚洲 欧美在线| 成人特级黄色片久久久久久久| 久久6这里有精品| 国产伦一二天堂av在线观看| 久久久久久久午夜电影| 窝窝影院91人妻| 99热只有精品国产| 亚洲图色成人| 搡女人真爽免费视频火全软件 | 午夜久久久久精精品| 午夜福利18| 国产美女午夜福利| 成人av一区二区三区在线看| 成人av在线播放网站| 全区人妻精品视频| 一本久久中文字幕| 亚洲国产高清在线一区二区三| 免费人成视频x8x8入口观看| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 国产伦精品一区二区三区四那| 99热网站在线观看| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 欧美成人免费av一区二区三区| 村上凉子中文字幕在线| 国产日本99.免费观看| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 欧美日本视频| 日日撸夜夜添| 久久九九热精品免费| 桃红色精品国产亚洲av| 亚洲美女搞黄在线观看 | 亚洲18禁久久av| 日本一二三区视频观看| 赤兔流量卡办理| eeuss影院久久| videossex国产| 中文字幕av在线有码专区| 国产午夜福利久久久久久| 亚洲成人久久性| 有码 亚洲区| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 极品教师在线免费播放| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 超碰av人人做人人爽久久| 99热这里只有是精品50| 久久精品国产自在天天线| 欧美色欧美亚洲另类二区| 国产一区二区三区视频了| 亚洲精华国产精华精| 国产激情偷乱视频一区二区| 99国产极品粉嫩在线观看| 午夜老司机福利剧场| 天堂av国产一区二区熟女人妻| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 国产极品精品免费视频能看的| 精品免费久久久久久久清纯| 日日夜夜操网爽| 搡女人真爽免费视频火全软件 | 成人av一区二区三区在线看| 听说在线观看完整版免费高清| 日本三级黄在线观看| 久久精品人妻少妇| 亚洲av第一区精品v没综合| 十八禁国产超污无遮挡网站| 九九在线视频观看精品| 变态另类丝袜制服| 一级黄片播放器| 九九在线视频观看精品| 色播亚洲综合网| 最近最新中文字幕大全电影3| 成人av一区二区三区在线看| 欧美在线一区亚洲| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 禁无遮挡网站| 精品福利观看| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 俺也久久电影网| 免费看光身美女| 在线a可以看的网站| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 日本一本二区三区精品| 精品久久久久久,| 久9热在线精品视频| 日韩欧美在线二视频| 韩国av一区二区三区四区| 日日撸夜夜添| 桃色一区二区三区在线观看| 伦理电影大哥的女人| 97超视频在线观看视频| 免费看a级黄色片| 狂野欧美激情性xxxx在线观看| 午夜久久久久精精品| 一a级毛片在线观看| 热99re8久久精品国产| 国产精品电影一区二区三区| 在线观看66精品国产| 国产精品自产拍在线观看55亚洲| 极品教师在线视频| av中文乱码字幕在线| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区三区| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 成人无遮挡网站| 国内精品一区二区在线观看| 嫩草影院新地址| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 乱码一卡2卡4卡精品| 国产一区二区三区av在线 | 日韩 亚洲 欧美在线| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| av在线亚洲专区| 久久久久久国产a免费观看| 精品一区二区三区av网在线观看| 黄片wwwwww| x7x7x7水蜜桃| av天堂中文字幕网| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 午夜日韩欧美国产| 久久精品影院6| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| 一夜夜www| 欧美日韩国产亚洲二区| 国内毛片毛片毛片毛片毛片| 国产精品不卡视频一区二区| 少妇的逼好多水| 日日摸夜夜添夜夜添小说| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 88av欧美| 国产综合懂色| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 精品人妻熟女av久视频| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 少妇的逼水好多| 国产私拍福利视频在线观看| 毛片女人毛片| 精品福利观看| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添av毛片 | 天堂av国产一区二区熟女人妻| 免费看a级黄色片| 日本欧美国产在线视频| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 日韩在线高清观看一区二区三区 | 国产美女午夜福利| 日韩一本色道免费dvd| 精品欧美国产一区二区三| 中文亚洲av片在线观看爽| 免费观看人在逋| 特级一级黄色大片| 久久久国产成人精品二区| 俺也久久电影网| 亚洲av五月六月丁香网| 少妇猛男粗大的猛烈进出视频 | 国产高清视频在线播放一区| 99久久精品国产国产毛片| 变态另类成人亚洲欧美熟女| 欧美bdsm另类| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 91麻豆精品激情在线观看国产| 亚洲美女搞黄在线观看 | 国产精品国产高清国产av| 性插视频无遮挡在线免费观看| 免费无遮挡裸体视频| 国产精品精品国产色婷婷| 国产精品99久久久久久久久| 天美传媒精品一区二区| 国产精品一区二区三区四区免费观看 | 欧美三级亚洲精品| 久久九九热精品免费| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 国产高潮美女av| 嫁个100分男人电影在线观看| 免费观看在线日韩| 男人和女人高潮做爰伦理| 成人特级黄色片久久久久久久| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 欧美性感艳星| 亚洲中文日韩欧美视频| 热99在线观看视频| 久久久久性生活片| 亚洲av中文av极速乱 | 国产伦一二天堂av在线观看| 哪里可以看免费的av片| 别揉我奶头 嗯啊视频| 欧美日韩精品成人综合77777| 中文字幕免费在线视频6| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 18+在线观看网站| 国产一区二区激情短视频| 日韩在线高清观看一区二区三区 | 男女之事视频高清在线观看| 国产伦在线观看视频一区| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 精品午夜福利在线看| 91麻豆av在线| 国产精品综合久久久久久久免费| 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 男女视频在线观看网站免费| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 国产精品女同一区二区软件 | 日本 av在线| 精品午夜福利视频在线观看一区| 在线观看av片永久免费下载| 18禁黄网站禁片午夜丰满| 三级男女做爰猛烈吃奶摸视频| 国产精品女同一区二区软件 | 亚洲国产欧洲综合997久久,| 亚洲在线观看片| 精品一区二区免费观看| 一级av片app| 精品久久久久久,| 亚洲av电影不卡..在线观看| 黄色女人牲交| 在线播放国产精品三级| 此物有八面人人有两片| 久久精品国产亚洲网站| 身体一侧抽搐| 午夜激情欧美在线| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲四区av| 午夜福利高清视频| 国内精品久久久久久久电影| 自拍偷自拍亚洲精品老妇| 国产亚洲欧美98| 日韩欧美精品v在线| 一级黄片播放器| 亚洲精品成人久久久久久| 精品午夜福利视频在线观看一区| 一a级毛片在线观看| 国产av一区在线观看免费| 色噜噜av男人的天堂激情| 97热精品久久久久久| 可以在线观看毛片的网站| 九色成人免费人妻av| 18+在线观看网站| 99国产精品一区二区蜜桃av| 在线天堂最新版资源| 18禁黄网站禁片午夜丰满| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 日韩欧美三级三区| 久久精品国产亚洲av天美| 欧美人与善性xxx| 久久久久久大精品| 波多野结衣巨乳人妻| а√天堂www在线а√下载| 在线观看66精品国产| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区 | 国产黄片美女视频| 毛片女人毛片| 91午夜精品亚洲一区二区三区 | 天堂影院成人在线观看| 亚洲国产精品合色在线| 欧美黑人巨大hd| 亚洲一区二区三区色噜噜| 国产日本99.免费观看| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 久久精品影院6| 久久久久久久久中文| 一个人免费在线观看电影| 一级黄色大片毛片| bbb黄色大片| 黄片wwwwww| 精品久久久久久久久久免费视频| 丰满乱子伦码专区| 欧美日本视频| 久久亚洲真实| 国产精品综合久久久久久久免费| 男人狂女人下面高潮的视频| 国产91精品成人一区二区三区| 真人做人爱边吃奶动态| 嫩草影院新地址| 99视频精品全部免费 在线|