申慧慧 陳軍輝 徐秀麗 潘蕾 何秀平 王小如
摘 要 針對海產(chǎn)貝類存在多種脂溶性貝毒素復(fù)合污染的現(xiàn)狀,采用高效液相色譜-串聯(lián)質(zhì)譜聯(lián)用技術(shù)(HPLC-MS/MS)對海產(chǎn)貝類中的常見脂溶性貝毒素進(jìn)行同步檢測,結(jié)合多種毒素復(fù)合污染的風(fēng)險評估方法,用于市售海產(chǎn)貝類的食用安全風(fēng)險評價。結(jié)果表明,在選定的實驗條件下,8種典型脂溶性貝毒素加標(biāo)回收率在63.2%~88.8%之間,方法的精密度(相對標(biāo)準(zhǔn)偏差(RSD)≤14.5%)和靈敏度(檢出限為0.5~2.7 ng/g)良好,能滿足海產(chǎn)貝類樣品的檢測要求。在采集的105個市售海產(chǎn)貝類樣品中,42.86%的樣品中至少檢出了一種脂溶性貝毒素,其中鰭藻毒素-1(DTX1)的含量均值最高,為47.6 μg/kg,對海產(chǎn)貝類污染最嚴(yán)重。根據(jù)每日人均貝類攝入量(TDI)和各種脂溶性貝毒素的急性中毒參考劑量(ARfD),通過計算綜合風(fēng)險指數(shù)∑ERI進(jìn)行市售海產(chǎn)貝類食用安全性評價,結(jié)果表明,在所檢測的樣品中,存在食用安全隱患和高風(fēng)險的市售海產(chǎn)貝類比率為19.05%,其中扇貝的食用安全風(fēng)險最大。本研究建立的基于海產(chǎn)貝類中脂溶性貝毒素物質(zhì)組復(fù)合污染的風(fēng)險評價方法,與歐盟的海產(chǎn)品貝毒素限量標(biāo)準(zhǔn)評價方法(單指標(biāo)法)相比更加嚴(yán)格,可以使貝類食用者更好地規(guī)避中毒風(fēng)險。
關(guān)鍵詞 高效液相色譜-串聯(lián)質(zhì)譜; 海產(chǎn)貝類; 脂溶性貝毒素; 復(fù)合污染; 食品安全
1 引 言
海產(chǎn)貝類種類繁多,味道鮮美,是人們餐桌上常見的海洋食品。由于近海環(huán)境富營養(yǎng)化加劇,有害藻華時有發(fā)生,加之海產(chǎn)貝類獨(dú)特的濾食習(xí)性,對海洋有害藻中的毒素具有很強(qiáng)的蓄積能力[1,2]。因此,世界各地的海產(chǎn)貝類消費(fèi)者均不同程度地遭受染毒海產(chǎn)品帶來的健康威脅。目前已發(fā)現(xiàn)的海洋貝毒素及其衍生物有200多種,其中脂溶性貝毒素約占90%[3],常見的脂溶性貝毒素主要包括大田軟海綿酸(OA)及其衍生物鰭藻毒素-1(DTX1)、蝦夷扇貝毒素(YTX)、原多甲藻酸毒素(AZAs)、米氏裸甲藻毒素(GYM)、螺環(huán)內(nèi)酯毒素(SPX1)、扇貝毒素-2(PTX2)等。食用脂溶性貝毒素污染的貝類而引起的中毒事件,在全球范圍內(nèi)時有發(fā)生。我國海產(chǎn)貝類也正遭受不同種類脂溶性貝毒素的污染威脅[4],中毒事件屢有發(fā)生[5,6]。因此,需加強(qiáng)對市售海產(chǎn)貝類中脂溶性貝毒素的檢測及其食用安全風(fēng)險評價,保護(hù)食用者的健康。
目前,用于海產(chǎn)品中脂溶性貝毒素檢測的方法主要包括小鼠生物法[7]、酶聯(lián)免疫吸附法[8]、高效液相色譜法[9]和液相色譜-質(zhì)譜/多級質(zhì)譜法[10]等。與前幾種方法相比,液相色譜-串聯(lián)質(zhì)譜法具有檢測速度快、準(zhǔn)確性高、檢出限低以及可以同時檢測多種類型貝毒素的優(yōu)點(diǎn)而被廣泛應(yīng)用[10~12],也是目前檢測貝類中脂溶性貝毒素的最佳方法。然而,僅憑海產(chǎn)貝類中幾種主要脂溶性貝毒素的含量測定結(jié)果,仍然無法準(zhǔn)確評價貝類的食用安全風(fēng)險,特別是對于被多種脂溶性貝毒素復(fù)合污染的海產(chǎn)品,仍需發(fā)展適用性較強(qiáng)的食用安全風(fēng)險評價方法。
目前,在國際上針對海產(chǎn)品中的幾種常見脂溶性貝毒素,基于其小鼠毒理實驗數(shù)據(jù)[13],制定了相關(guān)的限量標(biāo)準(zhǔn),用于指導(dǎo)管理部門進(jìn)行海產(chǎn)品食用安全性評價。例如,歐盟食品安全局(European Food Safety Authority, EFSA)對貝類中的OA、DTX、AZA、PTX毒素的限量標(biāo)準(zhǔn)均設(shè)定為160 μg/kg,YTX的限量標(biāo)準(zhǔn)為1000 μg/kg[14,15]; GYM和SPX毒素目前還沒有設(shè)定限量標(biāo)準(zhǔn)。但是,我國僅針對OAs系列脂溶性貝毒素設(shè)定了限量標(biāo)準(zhǔn),其它脂溶性貝毒素均未設(shè)定限量標(biāo)準(zhǔn)。然而,采用EFSA制定的限量標(biāo)準(zhǔn)法,僅適用于評價受一種或少數(shù)幾種高含量(超過限量值)毒素污染海產(chǎn)品的食用安全性,對于被低濃度或中等濃度的多種脂溶性貝毒素復(fù)合污染的海產(chǎn)品,則無法給出可靠的食用安全性評價結(jié)果。因此,針對海產(chǎn)貝類存在多種脂溶性貝毒素復(fù)合污染的現(xiàn)狀,發(fā)展基于多種脂溶性貝毒素污染綜合評價的海產(chǎn)貝類食用安全風(fēng)險方法極為緊迫。本研究采用高效液相色譜-多級質(zhì)譜分析海產(chǎn)貝類中多種脂溶性貝毒素, 建立一種基于多種脂溶性貝毒素污染綜合評價的海產(chǎn)貝類食用安全風(fēng)險評估新方法,并用于市售海產(chǎn)貝類的食用安全風(fēng)險評價。
4 結(jié) 論
采用本研究建立的基于脂溶性貝毒素物質(zhì)組HPLC-MS/MS分析的海產(chǎn)貝類食用安全風(fēng)險評價方法,可以得出多種脂溶性貝毒素復(fù)合污染造成的總和食用安全風(fēng)險,與歐盟食品安全局的限量標(biāo)準(zhǔn)法相比,能夠更嚴(yán)苛地評價市售海產(chǎn)品的食用安全質(zhì)量,降低消費(fèi)者食用海產(chǎn)貝類的中毒風(fēng)險,更好地保障貝類消費(fèi)者的健康。在后續(xù)研究中可以采用液相色譜-高分辨率質(zhì)譜聯(lián)用技術(shù),對市售海產(chǎn)貝類中有文獻(xiàn)報道的所有貝毒素進(jìn)行篩查分析,將更多種類的貝毒素及其衍生物納入到海產(chǎn)貝類食用安全性評價指標(biāo)體系中。
References
1 LIJia-Wen, JIANG Tao, WU Feng, JIANG Tian-Jiu. J. Jinan U., 2014, 35(3): 228-234
李嘉雯, 江 濤, 吳 鋒, 江天久. 暨南大學(xué)學(xué)報, 2014, 35(3): 228-234
2 LIU Ren-Yan, GAO Chun-Lei, LIANG Yu-Bo, ZHANG Fang, LIU Yong-Jian, XU Dao-Yan. Acta Oceanol. Sin., 2008, 30(6): 171-176
劉仁沿, 高春蕾, 梁玉波, 張 芳, 劉永健, 許道艷. 海洋學(xué)報, 2008, 30(6): 171-176
3 Gerssen A, Mulder P P, De B J. Anal. Chim. Acta, 2011, 685(2): 176-185
4 LIU Ren-Yan, LIU Lei, LIANG Yu-Bo, YU Ji, XU Dao-Yan, WEI Ning, YANG Lin, GUO Hao.Marine. Environ. Sci., 2016, 35(5): 787-800
劉仁沿, 劉 磊, 梁玉波, 于 姬, 許道艷, 韋 寧, 楊 琳, 郭 浩. 海洋環(huán)境科學(xué), 2016, 35(5): 787-800
5 Li A F, Ma J G, Cao J J, McCarron P. Toxicon, 2012, 60(3): 420-425
6 ZHONG Yuan-Fang, JIANG Hai-Tang, LI Yun-Feng, CHEN Rong-Kai, LIN Wei. Chinese. Prim. Heal. Care, 2014, 28(2): 104-105
鐘苑芳, 江海棠, 李云峰, 陳榮凱, 林 維. 中國初級衛(wèi)生保健, 2014, 28(2): 104-105
7 Yasumoto T, Oshima Y, Yamaguchi M. Nippon Suisan Gakkaishi, 1978, 44(11): 1249-1255
8 ZHAO Qian-Cheng, LAI Peng, QIN Cheng, WANG Chong, WU Bin, LIU Di, CHANG Ya-Qing. Food. Sci. Technol. , 2009, (11): 287-292
趙前程, 來 鵬, 秦 成, 王 翀, 吳 斌, 劉 迪, 常亞青. 食品科技, 2009, (11): 287-292
9 Lee J S, Yanagi T, Kenma R, Yasumoto T. Agr. Biol. Chem. , 1987, 51(3): 877-881
10 Gerssen A, Mulder P P, Mcelhinney M A, De B J. J. Chromatogr. A , 2009, 1216(9): 1421-1430
11 Regueiro J, Rossignoli A E, Alvarez G, Blanco J. Food Chem., 2011, 129(2): 533-540
12 CHEN Jian-Gang, ZHU Bing-Hui, LIANG Su-Dan, ZHANG Gui, WU Xi-Mei. Chinese J. Food Hygiene, 2015, 27(6): 624-629
陳劍剛, 朱炳輝, 梁素丹, 張 瑰, 吳西梅. 中國食品衛(wèi)生雜志, 2015, 27(6): 624-629
13 TAN Zhi-Jun, WU Hai-Yan, GUO Meng-Meng, YANG Fan, WANG Lian-Zhu, LI Zhao-Xin, ZHAI Yu-Xiu. J. Fishery Sci., 2013, 20(2): 467-479
譚志軍, 吳海燕, 郭萌萌, 楊 帆, 王聯(lián)珠, 李兆新, 翟毓秀. 中國水產(chǎn)科學(xué), 2013, 20(2): 467-479
14 Commission decision 2002/225/EC of 15 March 2002 laying down detailed rules for the implementation of Council Directive 91/492/EEC as regards the maximum levels and the methods of analysis of certain marine biotoxins in bivalve molluscs, echino-derms, tunicates and marine gastropods. Off. J. Eur. Communities, 2002: 62-63
15 Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union, 2004, L226: 22-82
16 YU Hong, LI Xiao-Jing, LIU Miao, XIE Jin, PENG Rong-Fei. Chinese J.Health.Lab.Technol., 2014, (18): 2702-2704
于 鴻, 李曉晶, 劉 苗, 謝 進(jìn), 彭榮飛. 中國衛(wèi)生檢驗雜志, 2014, (18): 2702-2704
17 Munday R, Reeve J. Toxins, 2013, 5(11): 2109-2137
18 Lawrence J, Loreal H, Toyofuku H, Hess P, Iddya K, Ababouch L. Assessment and Management of Biotoxin Risks in Bivalve Molluscs. FAO Fisheries and Aquaculture. Technical Paper No.551, Rome: FAO, 2011: 43-44
19 Henshilwood K, Deegan B, Mcmahon T, Cusack C, Keaveney S, Silke J, Ocinneide M, Lyons D, Hess P. Proceedings of the 5th International conference on Molluscan Shellfish Safety, Ireland: Galway, 2006: 464-468
20 Munday R, Aune T, Rossini G P. Toxicology of the Yessotoxins, Florida: Taylor & FranCI, 2008: 329-339
21 Munday R, Towers N R, Mackenzie L, Beuzenberg V, Holland P T, Miles C O. Toxicon, 2004, 44(2): 173-178
22 Li X, Li Z Y, Chen J H, Shi Q, Zhang R T, Wang S, Wang X R. Chemosphere, 2014, 111: 560-567
23 WANG Yan-Long, CHEN Jun-Hui, GAO Li-Yuan, WANG Shuai, ZHENG Xiao-Ling, SUN Cheng-Jun, WANG Xiao-Ru. Chinese J. Anal. Chem., 2016, 44(3): 335-341
王艷龍, 陳軍輝, 高莉媛, 王 帥, 鄭曉玲, 孫承君, 王小如. 分析化學(xué), 2016, 44(3): 335-341
24 Wang Y L, Chen J H, Li Z Y, Wang S, Shi Q, Cao W, Zheng X L, Sun C J, Wang X R, Zheng L. Mar. Pollut. Bull., 2015, 101(2): 954-960
25 MU Qing-Lin, FANG Jie, WAN Han-Xing, WANG Xiao-Hua, CAO Liu-Yan, ZHANG Qing-Hong. Chinese J. Anal. Chem., 2011, 39(1): 111-114
母清林, 方 杰, 萬漢興, 王曉華, 曹柳燕, 張慶紅. 分析化學(xué), 2011, 39(1): 111-114
26 GB 5009.212-2016, Determination of Lipophilic Shellfish Toxins in Shellfish. National Standards of the People's Republic of China
貝類中腹瀉性貝類毒素的測定. 中華人民共和國國家標(biāo)準(zhǔn). GB 5009.212-2016
27 YAO Jian-Hua, TAN Zhi-Jun, ZHOU De-Qing. Chinese J. Anal. Chem., 2010, 38(12): 1714-1720
姚建華, 譚志軍, 周德慶. 分析化學(xué), 2010, 38(12): 1714-1720
28 SUN Xing-Quan, ZHENG Qiu-Yue, PANG Yan-Hua, LI Yi-Chen, XIAO Shan-Shan, XU Jing, CAO Ji-Juan. Chinese J. Anal. Chem, 2013, 41(9): 1423-1427
孫興權(quán), 鄭秋月, 龐艷華, 李一塵, 肖珊珊, 徐 靜, 曹際娟. 分析化學(xué), 2013, 41(9): 1423-1427
29 DENG Shuo, YU Wei-Sen, LYU Xiao-Jing, TAN Zhi-Jun. Prev. Med. Trib. , 2017, (1): 11-16
鄧 碩, 于維森, 呂曉靜, 譚志軍. 預(yù)防醫(yī)學(xué)論壇, 2017, (1): 11-16
30 Alexander J, Benford D, Boobis A, Ceccatelli S, Cravedi J P, Domenico A D, Doerge D, Dogliotti E, Edler L, Farmer P, Filipic M, Fink-Gremmels J, Furst P, Guerin T, Knutsen H K, Machala M, Mutti A, Schlatter J, Leeuwen R, Verger P. The EFSA J., 2009, 1306: 1-23
Abstract In view of the present situation that edible marine shellfishes are combinedly contaminated by different kinds of lipophilic toxins, common lipophilic shellfish toxins in marine shellfishes were simultaneously detected by liquid chromatography-tandem mass spectrometry, and the safety risk of commercial marine shellfish was evaluated using the risk assessment method based on combined contamination of various toxins. Under the optimum conditions, satisfactory recoveries (63.3%-88.8%), precision (relative standard deviations RSD≤14.5%) and sensitivity (limit of detection in the range of 0.5-2.7 ng/g) of the method were achieved for all the analytes. Among the 105 commercially available shellfish samples, 42.86% of the samples had at least a kind of toxin. The highest average content was 47.6 μg/kg of DTX1, which was the most serious contaminant for marine shellfishes. The total Expose Risk Index (ΣERI) was calculated based on Tolerable Daily Intake (TDI) and Acute Reference Dose (ARfD) of each toxin to evaluate the safety risk of commercial marine shellfish. The results showed that the ratio of commercially available marine shellfish with safety risk was 19.05% and the food safety risk of scallop was the highest. In summary, a new method based on the combined contamination of lipophilic shellfish toxins was successfully developed for risk assessment of the commercial marine shellfish. The proposed method is more harsh compared with the European Food Safety Authority (EFSA) regulation and can make shellfish consumers better to avoid the risk of poisoning.
Keywords Liquid chromatography-tandem mass spectrometry; Marine shellfishes; Lipophilic shellfish toxins; Combined contamination; Food safety
(Received 10 August 2017; accepted 28 March 2018)