• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fracture Mechanics Approach to Estimate Fatigue Lives of Welded Lap-Shear Specimens

    2015-04-20 01:33:36PohSangLamandJwoPan
    Computers Materials&Continua 2015年4期

    Poh-Sang Lamand Jwo Pan

    1 Introduction

    This paper is a summary of recent development at the University of Michigan for estimating fatigue life of laser weld in a lap-shear specimen[e.g.,the work of Sripichai et al.(2011);Asim et al.(2014)].The specimens were made of thin sheets of SAE J2340 300Y High Strength Low Alloy(HSLA)steel and were welded with 6 kW CO2laser.When a specimen was subjected to cyclic loadingconditions,two main cracks were formed on each side of the weld.The lap-shear load is statically equivalent to a combined loading of a membrane force and a bending moment.The beam theory is used to calculate the structural stress as experienced at the edges of the weld.The structural stress represents the sum of the uniform normal stress on the cross-section of the specimen due to the membrane force and the maximum normal stress on the cross-section due to the bending moment at the edges of the weld.The principle of superposition is employed to decompose the loading system into several simpler configurations to facilitate the derivation of the stress intensity factors in crack opening mode(KI)and sliding mode(KII).

    The fatigue lives of the lap-shear specimens can be estimated by three approaches:

    (1)With the structural stresses calculated from the beam theory,the fatigue lives can be estimated with the experimental fatiguedata of the material,typically known as theS?Ncurve(stress vs.number of cycles);

    (2)The fatigue life can be obtained by integrating the empirical Paris law(da/dN=C(ΔK)m),whereais the crack length,Nis the number of cycles,ΔKis the loading characterized by the range of stress intensity factors,andCandmare material constants obtained by curve- fi tting.The key for this approach is that the stress intensity factor solutions must be known.From the lap-shear specimen fatigue testing,it is noted that a kinked crack is formed at the main crack tip and propagates through the sheet thickness leading to failure.Therefore,two sets of stress intensity factors must be determined:1)for the main crack and 2)for the kinked crack.The stress intensity factors for the main crack were obtained by previous work such as Sripichai et al.(2011).The solution process will be summarized in this paper.A theoretical solution of the stress intensity factors for a kinked crack has been derived by Cotterell and Rice(1980).These solutions can be used with the Paris law and a simple equation for fatigue life can be obtained by direct integration;and

    (3)As the kinked crack grows eventually leading to failure,the stress intensity factor solutions of Cotterell and Rice for an in finitesimal kinked crack become inadequate.A set of finite element based solutions must be used with the Paris law.This paper will describe the essential elements of these approaches.The estimations will be compared with the experimental data.

    2 Specimen configuration

    A welded lap-shear specimen is schematically shown in Fig.1,in whichW=27mm,b=8 mm,c=13.5 mm,w=1 mm,L=95 mm,V=30 mm,t=0.93 mm,r=10 mm,ands=50 mm.The cyclic loadFis applied to both ends of the specimen.A detailed weld configuration is shown in Fig.2.Figure 3 shows the welded region of the test specimen prior to final failure by the cyclic load.Note that the kinkedcrack on the right is longer than the one on the left.The Young’s modulus,yield strength,and tensile strength of the HSLA steel are,respectively,206 GPa,315 MPa,and 415 MPa.The hardening exponent is 0.15 and the strength coefficient is 633 MPa.

    Figure 1: A schematic of a lap-shear specimen.

    Figure 2: Weld details.

    3 Principle of Superposition–Global Stress and Stress Intensity Factors

    Radaj(1989),Radaj and Zhang(1991a,1991b,1992),Lin et al.(2007),and Lin and Pan(2008)showed that the loadFof a lap-shear specimen(Fig.4a)can be de-composed into statically equivalent symmetric and anti-symmetric loads.The dogbone area(mid-section)of a lap-shear specimen is modeled as two beams which are connected by the weld(Fig.4b).It can be seen that the equivalent loadings are the membrane force per unit width(F/b)and the bending moment per unit width(Ft/2b),applied at the middle surfaces of the upper or the lower beams.

    Figure 3: A partially failed laser weld.Note that the right kinked crack is always longer and the upper right leg always separates under high cycle fatigue testing.

    The loading in Fig.4b can further be decomposed into four symmetric and antisymmetric loading conditions:counter bending(Fig.4c),central bending(Fig.4d),tension(Fig.4e),and in-plane shear(Fig.4f).The bending moments per unit width of the counter bending and central bending loading conditions have a magnitude ofFt/4b,and the forces per unit width of the tension and in-plane shear loading conditions areF/2b.

    3.1 Global Structural Stress at Weld Edge

    From Fig.4b,the structural stress in the lap-shear specimen can be easily shown as

    Figure 4: Decomposition of the lap-shear loading system.The shaded area is the weld zone.The two-beam model is subjected to the lap-shear loading as shown in(a),which is equivalent to the loading in(b).By superposition,(b)is the sum of(c)counter bending,(d)central bending,(e)tension,and(f)in-plane shear loading.

    Note that the first term on the right hand side of Eq.1 corresponds to the membrane force per unit width and the second term is from the bending moment per unit width.With Eq.(1)defined as the cyclic structural stress at the edge of the weld bead and utilizing the experimental stress-fatigue life data(S?NCurve)of the HSLA steel,the fatigue lives of laser welds in lap-shear specimens can be estimated.

    3.2 Global Stress Intensity Factors for the Main Cracks

    In terms of linear elastic fracture mechanics,the crack driving force(G)or the energy release rate of a crack is the decrease of potential energy per unit crack extension.In addition,it has been shown that the energy release rate and the stress intensity factors are related by

    whereE′=E/(1?ν2)for plane strain andE′=Efor plane stress,Eis the Young’s modulus,andνis the Poisson’s ratio.Based on these conditions,Sripichai et al.(2011)showed that the stress intensity factors with respect to the decomposed configurations are:

    (i)Figure 4c,Counter Bending

    KII=0

    (ii)Figure 4d,Central Bending

    KI=0

    (iii)Figure 4e,Simple Tension along the Crack Face

    KI=KII=0

    (iv)Figure 4f,In-plane Shear

    KI=0

    Therefore,by superposition,the“global”stress intensity factors for the main cracks of the lap-shear specimen subject to loadF(Fig.1)are

    Note that Eqs.(3)and(4)are valid only when the weld widthwis large compared to the sheet thicknesst.Whenwbecomes smaller,the Westergaard stress function solutions in Tada et al.(2000)prevail:

    KI,TPI=0

    To obtain the full range of the global stress intensity factor as a function ofw/t,the finite element analysis was carried out by Sripichai et al.(2011).Their approximate solutions forKIandKIIare given as(also shown graphically in Fig.5):

    (a)Solution forKI

    (b)Solution forKII

    Figure 5: The global stress intensity factors as functions of w/t(all KI’s and KII’s are normalized by Eq.(4)).

    3.3 Stress Intensity Factors for the Kinked Crack

    3.3.1 Analytical Solution

    In reality,the experimental observation suggested that the fatigue cracks of the lapshear specimens never follow the direction of the main cracks(formed by the two sheets and the weld).Instead,as shown in Fig.3,a kinked crack was initiated at each of the main crack tips.Figure 6 is a schematic of a kinked crack with lengthaand a kink angleα.DenotingKIandKIIas the global stress intensity factors for the main crack,the solutions for the local stress intensity factorskIandkIIfor the kinked crack are given by Bilby et al.(1978)and Cotterell and Rice(1980):

    where(kI)0and(kII)0represent the localkIandkIIsolutions for the kinked crack with its lengthaapproaching to 0(i.e.,an in finitesimal kink).Note that the arrows in Fig.6 indicate the positive sense of the stress intensity factorsKI,KII,kI,andkII.

    Figure 6: A schematic of a main crack and a kinked crack with kink length a and kink angle α.

    3.3.2 Numerical Solutions for a finite kinked Crack

    Note that the theoretical solutions for a kinked crack in Eqs.(7)and(8)are functions of the kink angleαand the specimen overall geometry(through the global stress intensity factorsKIandKII),and is independent of the kink lengtha.However,as the kinked crack continues to grow under fatigue load,it is expected that thelocal stress intensity factors(kIandkII)will increase with the kink length.Therefore, finite element analysis was conducted by considering that the kinked crack has a finite length.In addition,for the particular lap-shear specimens discussed in this paper,the kink is assumed to be perpendicular to the main crack(i.e.,α=?90?)as shown in Fig.3.The finite element model is schematically shown in Fig.7 and the calculated stress intensity factorskIandkII,which both are normalized by(kI)0for convenience,are plotted in Figs.8 and 9.

    Figure 7: A schematic of a two-dimensional finite elemental model of a lap-shear specimen with two kinked cracks.

    Figure 8: The values of kI/(kI)0for w/t=0.5,1,and 2 with α=?90?.

    Figure 9: The values of kII/(kI)0for w/t=0.5,1,and 2 with α=?90?.

    4 Estimation of Fatigue Life

    The fatigue life of a structural component can be estimated based on:1)structural stress,using the fatigue data from material testing,typically known as theS?NCurve,and 2)fracture mechanics,using the stress intensity factor solutions at the tip of a fatigue crack.

    4.1 Structural Stress Model

    The structural stress for the welded lap-shear specimen was derived in Section 3.1 asσ=F/tb+3F/tb=4F/tb(Eq.(1)).With the applied stress(σ)and theS?Nfatigue curve for HSLA steel,the fatigue life curve can be constructed.However,the stress-life data for the SAE 300Y HSLA(with the tensile yield strength of 315 MPa)are not available,and the stress-life data forR=?1 of SAE 950X(with the tensile yield strength of 350 MPa)are used instead.The fatigue life estimations with the structural stress are plotted against the experimental data in Fig.10.

    4.2 Fatigue Crack Growth Model

    Here the Paris law(da/dN=C(ΔK)m)is adopted to describe the fatigue crack propagation for kinked cracks emanating from the main cracks in the lap-shearspecimens.Because bothkIandkIIexist at the crack tip,an equivalent stress intensity factor range(Δkeq)is used.The Paris law is rewritten as

    where

    In the above equation,γis an empirical constant to account for the sensitivity of material to the Mode II loading conditions.In the absence of information,the value ofγis simply taken as unity(1).By substituting Eq.(10)into Eq.(9)and integrating,the fatigue life of a laser weld in lap-shear specimens can be expressed as

    where 0,0.025,0.05,...,and 0.7,are arbitrarily chosen and represent the values of the normalized kink lengtha/t,at which the local stress intensity solutions are available(e.g.,by referencing Figs.8 and 9).The variablet′is the actual crack growth distance(t′=t/sin|α|).In the case ofα=?90?such as in Fig.7,t′=t.

    The material constants,C=6.89×10?9andm=3,for ferritic-pearlitic steels listed in Dowling(1998)are used to estimate the fatigue lives.The fatigue lives predicted by Eq.(11)with the use of the complete solutionskI(Fig.8)andkII(Fig.9)are shown in Fig.10.Note that the global stress intensity factorsKIandKIIare implicit in Figs.8 and 9 through the normalization factor(kI)0(Eq.(7)).In addition,the effect of the load ratio(R)is ignored when the range of the stress intensity factor(Δkeq)is used in Eqs.(9)and(11).The load ratio is actually 0.2 in the fatigue experiments but is not expected to have significant impacts on the fatigue life estimations of these laser welds.

    4.3 Simplified Fatigue Crack Growth Model

    In a Simplified model,the local stress intensity factors(kI)0and(kII)0in Eqs.(7)and(8)are used with the Paris law(Eq.9).Note that the stress intensity factor solutions are valid only as the kink lengthaapproaching to 0.As treated by Newman and Dowling(1998)and Lin et al.(2006),the ranges of the equivalent local stress intensity factors are assumed to be constant for all kink lengths and are assumed tobe equal to those for the kinked cracks with vanishing length(a→0).For this Simplified model,the fatigue life of a laser weld can then be obtained by substituting Eqs.(7)and(8)into Eq.(9).By direct integration,

    Figure 10: The experimental results and the fatigue life estimations based on the(1)structural stress model,(2)fatigue crack growth model,and(3)Simplified fatigue crack growth model.

    5 Discussions

    Figure 10 shows the experimental results of the CO2laser welded lap-shear specimens made from SAE J2340 300Y HSLA steel.It also includes the fatigue life estimations based on(1)the structural stress(Section 4.1),(2)the fatigue crack growth model(Section 4.2),and(3)the Simplified fatigue crack growth model(Section 4.3).It can be seen that the fatigue life estimations based on the fatigue crackgrowth model(with the global and the local stress intensity factor solutions forw/t=0.86)are in agreement with the experimental results,while the fatigue lives estimated with the Simplified fatigue crack growth model are consistently higher than the experimental data.This is understandable because the value of the equivalent local stress intensity factor increases as the kink length becomes longer,but in the Simplified model this quantity is assumed to remain at its initial value evaluated at nearly zero kink length and is lower than the realistic value,which implies a slower crack growth rate and a longer fatigue life.

    The solutions ofkIandkIIin Section 3.3.2 for a finite kinked crack can be further improved by considering the actual weld configuration(Fig.2)to include the weld bead in the finite element model(Fig.11).As shown in Asim et al.(2014),with the weld bead,the solution forkIfor the right main crack becomes higher than that for the left main crack,but on the other hand,kIIis higher on the left side.Because the absolute value ofkIIis only about 10%ofkI,the range of the equivalent stress intensity factor Δkeqremains higher at the right kinked crack.This suggests that the right kinked crack should grow faster and the failure would occur first in the right side of the lap-shear specimen.Indeed this is consistent with the experimental observation for high cycle fatigue testing[Asim et al.(2014)]and is shown in Fig.3.

    Figure 11: A schematic of a two-dimensional finite element model of a lap-shear specimen with a weld bead.

    It is well known that the Paris Law typically well represents the fatigue crack growth behavior in most of the stress intensity factor(ΔK)range,however,it would overestimateda/dNat the initial or threshold ΔKand underestimate it at large ΔK.An alternative formulation based on the method of Moving Least Squares,or MLS,[e.g.,see Atluri and Zhu(1998);Kim and Atluri(2000)]to model fatigue behavior in terms of ΔKwas proposed by Dong et al.(2015).These researchers demonstrated that only very few MLS nodes were needed to predict thea vs.Nor theda/dN vs.ΔKcurves very accurately for 7075-T6 aluminum alloy,where ΔKwas obtained by the Finite Element Alternating Method (FEAM) as was shown by Nishioka and Atluri(1983)and Dong and Atluri(2013a;2013b).In a more recent work by Wang et al.(2015),they introduced probabilistic frame work with Kalman and particle filters to remove the errors caused by experimental noises,for example,from the experimentala vs.Ndata set.Such treatment allows the mean value and probabilistic distribution of the remaining useful life be calculated.It would be interesting to implement MLS in the study of the kinked fatigue crack growth such as the present work in the case of a lap-shear joint.

    6 Conclusions

    This paper summarizes part of the research at the University of Michigan on predicting the fatigue lives of lap-shear specimens based on fracture mechanics.A full range of approximate closed-form solutions for global stress intensity factors are first developed for the main crack based on the results of(1) finite element analyses in conjunction with(2)analytical solutions with beam bending theory and(3)Westergaard stress function solutions for two semi-in finite solids which share a common boundary with a length equal to the size of the weld.It is followed by a series of finite element analysis to calculate the local stress intensity factors at the tip of the kinked crack emanating from the main crack tips.The computational results indicate that the kinked cracks are under dominant Mode I loading(kI>>kII).Combining the calculated local stress intensity factors with the global stress intensity factors(KIandKII),the fatigue life of laser welded lap-shear specimen can be estimated.In addition,a standard engineering practice of using the structural stress and theS?Ncurve to predict the fatigue lives is also presented.Comparing with the fatigue test data of the lap-shear specimens,it can be concluded that the fatigue lives estimated with the kinked fatigue crack growth model agree well with the experimental results,whereas the estimations based on the structural stress agree only at higher fatigue loads.

    Asim,K.;Sripichai,K.;Pan,J.(2014):Fatigue behavior of laser welds in lapshear specimens of high strength low alloy steel sheets.Int.J.Fatigue,vol.61,pp.283–296.

    Atluri,S.N.;Zhu,T.(1998):A New Meshless Local Petrov-Galerkin(MLPG)Approach to Nonlinear Problems in Computer.Modeling&Simulation,Computer Modeling&Simulation in Engg.,vol.3,pp.187-196.

    Bilby,B.A.;Cardew,G.E.;Horward,I.C.(1978):Stress intensity factors at the tip of kinked and forked cracks.The fourth international conference on fracture,University of Waterloo,Ontario,June 19-24,1977;Pergamon Press,New York,3A,pp.197-200.

    Cotterell,B.;Rice,J.R.(1980):Slightly curved or kinked cracks.Int J Fract,vol.16,pp.155-169.

    Dong,L.;Atluri,S.N.(2013a):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 1:2D Structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.91-146.

    Dong,L.;Atluri,S.N.(2013b):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 2:3D Solids.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.379-413.

    Dong,L.;Haynes,R.;Atluri,S.N.(2015):On Improving the Celebrated Paris’Power Law for Fatigue,by Using Moving Least Squares.CMC:Computers Materials and Continua,vol.45,pp.1-15.

    Dowling,N.E.,(1998):Mechanical Behavior of Materials,Second Edition,Prentice Hall,New Jersey.

    Kim H.G.,Atluri,S.N.(2000):Arbitrary placement of secondary nodes,and error control,in the meshless local Petrov-Galerkin(MLPG)method.CMESComputer Modeling in Engineering&Sciences,vol.1,pp.11-32.

    Lin,P.C.;Pan,J.(2008):Closed-form structural stress and stress intensity factor solutions for spot welds in commonly used specimens.Eng Fract Mech,vol.75,pp.5187-5206.

    Lin,S.H.;Pan,J.;Wung,P.;Chiang,J.A.(2006):A fatigue crack growth model for spot welds under cyclic loading conditions.Int J Fatigue,vol.28,pp.792-803.

    Lin,P.C.;Wang,D.A.;Pan,J.(2007):Mode I stress intensity factor solutions for spot welds in lap-shear specimens.Int J Solids Struct,vol.44,pp.1013-1037.

    Nishioka,T.;Atluri,S.N.(1983):An Alternating Method for Analysis of Surface fl awed Aircraft Structural Components.AIAA Journal,vol.21,pp.749-757.

    Newman,J.A.;Dowling,N.E.(1998):A crack growth approach to life prediction of spot-welded lap joints.Fatigue Fract Engrg Mater Struct,vol.21,pp.1123-1132.

    Radaj,D.(1989):Stress singularity,notch stress and structural stress at spot–welded joints.Eng Fract Mech,vol.34,pp.495-506.

    Radaj,D.;Zhang,S.(1991a):Stress intensity factors for spot welds between plates of unequal thickness.Eng Fract Mech,vol.39,pp.391-413.

    Radaj,D.;Zhang,S.(1991b):Simplified formulae for stress intensity factors of spot welds.Eng Fract Mech,vol.40,pp.233-236.

    Radaj,D.;Zhang,S.(1992):Stress intensity factors for spot welds between platesof dissimilar materials.Eng Fract Mech,vol.42,pp.233-236.

    Sripichai,K.;Asim,K.;Pan,J.(2011):Stress intensity factor solutions for estimation of fatigue lives of laser welds in lap-shear specimens.Eng Fract Mech,vol.78,pp.1424-40.

    Tada,H.;Paris,P.C.;Irwin,G.R.(2000):In finite planes with two semi-in finite cracks(page 4-11)inThe stress analysis of cracks handbook.3rdEdition,New York,ASME Press.

    Wang,H.;Haynes,R.;Huang,H.;Dong,L.;Atluri,S.N.(2015):The Use of High-Performance Fatigue Mechanics and the Extended Kalman/Particle Filters,for Diagnostics and Prognostics of Aircraft Structures.CMES:Computer Modeling in Engineering&Sciences,vol.105,pp.1-24.

    亚洲久久久国产精品| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久精品电影小说| 午夜91福利影院| 国模一区二区三区四区视频| 精品国产国语对白av| 亚洲综合精品二区| 最近手机中文字幕大全| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 麻豆精品久久久久久蜜桃| 99热6这里只有精品| 国产高清三级在线| 免费观看在线日韩| 国产男人的电影天堂91| 亚洲综合精品二区| 青春草视频在线免费观看| xxx大片免费视频| 一本色道久久久久久精品综合| 街头女战士在线观看网站| 国产一区二区在线观看日韩| 男男h啪啪无遮挡| 婷婷色av中文字幕| 日韩成人伦理影院| 午夜av观看不卡| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 国产在线男女| 高清午夜精品一区二区三区| 黄色一级大片看看| 一二三四中文在线观看免费高清| 一级毛片电影观看| 国产高清国产精品国产三级| 日本av手机在线免费观看| 午夜91福利影院| 亚洲欧美日韩另类电影网站| 丝瓜视频免费看黄片| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 国产成人freesex在线| 日韩,欧美,国产一区二区三区| 国产精品国产av在线观看| 欧美精品高潮呻吟av久久| 香蕉精品网在线| 国产成人aa在线观看| 美女福利国产在线| 91久久精品国产一区二区三区| 美女国产视频在线观看| 久久久久视频综合| 国产精品秋霞免费鲁丝片| 国产永久视频网站| 黄色配什么色好看| av又黄又爽大尺度在线免费看| 人人澡人人妻人| 国产成人a∨麻豆精品| 在线观看www视频免费| 国产色爽女视频免费观看| 伦精品一区二区三区| 我的老师免费观看完整版| 最新中文字幕久久久久| 成人影院久久| 51国产日韩欧美| 精品久久久噜噜| 久久女婷五月综合色啪小说| 亚洲激情五月婷婷啪啪| 日日撸夜夜添| 国精品久久久久久国模美| 久久精品夜色国产| 久久狼人影院| 亚洲,欧美,日韩| 美女大奶头黄色视频| 哪个播放器可以免费观看大片| 国产一区二区在线观看av| 多毛熟女@视频| 插阴视频在线观看视频| 国产视频内射| 美女中出高潮动态图| 看十八女毛片水多多多| 亚洲精品aⅴ在线观看| 午夜av观看不卡| 精品人妻偷拍中文字幕| 自线自在国产av| 日韩一区二区三区影片| 亚洲国产精品成人久久小说| 亚洲精品成人av观看孕妇| 午夜激情福利司机影院| 国产 精品1| 国产无遮挡羞羞视频在线观看| 久久精品国产鲁丝片午夜精品| 99热这里只有是精品50| 人妻一区二区av| 国产欧美亚洲国产| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 看非洲黑人一级黄片| 啦啦啦在线观看免费高清www| 嫩草影院新地址| 亚洲国产精品成人久久小说| 老熟女久久久| 99久久精品一区二区三区| 99re6热这里在线精品视频| 高清午夜精品一区二区三区| 日韩精品有码人妻一区| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 国产精品.久久久| 亚洲国产av新网站| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 日本午夜av视频| 黄色毛片三级朝国网站 | 如日韩欧美国产精品一区二区三区 | 午夜福利网站1000一区二区三区| a级毛片免费高清观看在线播放| a级毛色黄片| 内射极品少妇av片p| 成人黄色视频免费在线看| 美女福利国产在线| 观看免费一级毛片| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 乱人伦中国视频| 欧美日韩综合久久久久久| 日韩三级伦理在线观看| 黄色视频在线播放观看不卡| 少妇高潮的动态图| 十分钟在线观看高清视频www | 欧美高清成人免费视频www| 国产午夜精品久久久久久一区二区三区| 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 免费看av在线观看网站| 亚洲电影在线观看av| 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 色哟哟·www| 啦啦啦啦在线视频资源| 国产黄片美女视频| a级毛片免费高清观看在线播放| 亚洲av综合色区一区| 久久女婷五月综合色啪小说| 有码 亚洲区| 久久精品久久久久久久性| 成人免费观看视频高清| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 肉色欧美久久久久久久蜜桃| 97超视频在线观看视频| 最后的刺客免费高清国语| 国内精品宾馆在线| 国产老妇伦熟女老妇高清| 亚洲四区av| 久久久久国产精品人妻一区二区| 午夜精品国产一区二区电影| 在线观看免费视频网站a站| 亚洲经典国产精华液单| 在线看a的网站| 一区二区av电影网| 成人漫画全彩无遮挡| 高清欧美精品videossex| 妹子高潮喷水视频| 日本欧美视频一区| 国产精品.久久久| 蜜臀久久99精品久久宅男| av免费在线看不卡| 亚洲欧美日韩卡通动漫| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 国产高清三级在线| 日本色播在线视频| 国产精品久久久久成人av| 赤兔流量卡办理| 久久精品国产自在天天线| 中文字幕精品免费在线观看视频 | 免费黄频网站在线观看国产| 国产一区二区三区av在线| 能在线免费看毛片的网站| 国产淫语在线视频| 人人妻人人澡人人看| 麻豆成人午夜福利视频| 精品酒店卫生间| 国产男人的电影天堂91| 国产深夜福利视频在线观看| 国产精品国产三级专区第一集| 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 亚洲国产av新网站| 热re99久久精品国产66热6| 插逼视频在线观看| 亚洲国产精品一区三区| 中文在线观看免费www的网站| 午夜日本视频在线| 大香蕉97超碰在线| 欧美激情极品国产一区二区三区 | 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 欧美激情国产日韩精品一区| 午夜久久久在线观看| 特大巨黑吊av在线直播| 久久免费观看电影| 久久国内精品自在自线图片| 看免费成人av毛片| 精品久久久久久久久av| 精品亚洲乱码少妇综合久久| 制服丝袜香蕉在线| 综合色丁香网| 插阴视频在线观看视频| 欧美亚洲 丝袜 人妻 在线| 国产精品秋霞免费鲁丝片| 日韩大片免费观看网站| 国产高清有码在线观看视频| 国产日韩欧美视频二区| 久热这里只有精品99| av.在线天堂| 女人精品久久久久毛片| 午夜福利视频精品| 国产欧美日韩一区二区三区在线 | 精品亚洲乱码少妇综合久久| 亚洲电影在线观看av| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 在线观看免费日韩欧美大片 | 亚洲美女视频黄频| a级毛片免费高清观看在线播放| 国产黄色视频一区二区在线观看| 伊人久久国产一区二区| 欧美区成人在线视频| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 日韩 亚洲 欧美在线| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 国产精品欧美亚洲77777| 最近2019中文字幕mv第一页| 丝袜喷水一区| 91午夜精品亚洲一区二区三区| 多毛熟女@视频| 水蜜桃什么品种好| 午夜免费观看性视频| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人爽人人片va| 国产免费一区二区三区四区乱码| 青春草视频在线免费观看| 久久人妻熟女aⅴ| 亚洲美女视频黄频| 国产av国产精品国产| 欧美成人午夜免费资源| 亚洲精品456在线播放app| 国产一区二区三区综合在线观看 | 美女国产视频在线观看| 日韩电影二区| 亚洲在久久综合| 日本午夜av视频| 一级毛片久久久久久久久女| 美女视频免费永久观看网站| 亚洲性久久影院| av播播在线观看一区| 久久 成人 亚洲| 久久久久久久大尺度免费视频| 久久毛片免费看一区二区三区| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久av| 国产精品熟女久久久久浪| 一级爰片在线观看| 久久99一区二区三区| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久| 蜜臀久久99精品久久宅男| 成人影院久久| 久久久久国产精品人妻一区二区| 99国产精品免费福利视频| 国产熟女午夜一区二区三区 | 激情五月婷婷亚洲| 亚洲国产欧美日韩在线播放 | 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 在线观看免费视频网站a站| 精华霜和精华液先用哪个| 亚洲综合精品二区| 内地一区二区视频在线| 嫩草影院新地址| 乱系列少妇在线播放| 亚洲第一av免费看| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 午夜免费鲁丝| 丝瓜视频免费看黄片| 国产在线男女| 天天操日日干夜夜撸| 69精品国产乱码久久久| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 乱系列少妇在线播放| a级片在线免费高清观看视频| 人妻夜夜爽99麻豆av| 九九久久精品国产亚洲av麻豆| 最后的刺客免费高清国语| 亚洲精品第二区| 乱人伦中国视频| 免费黄色在线免费观看| 少妇的逼水好多| 国产精品偷伦视频观看了| 亚洲欧美日韩卡通动漫| 中文在线观看免费www的网站| 人妻系列 视频| 久热久热在线精品观看| kizo精华| av在线观看视频网站免费| 十分钟在线观看高清视频www | 美女cb高潮喷水在线观看| 国产色婷婷99| 免费高清在线观看视频在线观看| 免费大片18禁| 高清毛片免费看| 99精国产麻豆久久婷婷| 欧美另类一区| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 丰满乱子伦码专区| 中文字幕制服av| 在线天堂最新版资源| 国产精品三级大全| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 高清av免费在线| 国产亚洲一区二区精品| 精品酒店卫生间| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 熟女av电影| 在线播放无遮挡| 大话2 男鬼变身卡| 国精品久久久久久国模美| 精品一区二区三卡| 成人黄色视频免费在线看| 日韩欧美精品免费久久| 少妇的逼水好多| 桃花免费在线播放| 狂野欧美白嫩少妇大欣赏| 大陆偷拍与自拍| 欧美国产精品一级二级三级 | 五月开心婷婷网| 日韩大片免费观看网站| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 99久久综合免费| 欧美+日韩+精品| 中国三级夫妇交换| 在线观看www视频免费| 国产精品.久久久| 国产一区二区在线观看av| 久久午夜福利片| 亚洲精品456在线播放app| 九九在线视频观看精品| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 22中文网久久字幕| 最近中文字幕高清免费大全6| 精品亚洲成a人片在线观看| 亚洲真实伦在线观看| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 国产伦理片在线播放av一区| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 国产免费又黄又爽又色| 街头女战士在线观看网站| av在线播放精品| 伦理电影免费视频| 丝袜脚勾引网站| 秋霞伦理黄片| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 一区二区三区精品91| 精品少妇久久久久久888优播| 涩涩av久久男人的天堂| 边亲边吃奶的免费视频| 免费大片18禁| 国产在线一区二区三区精| av网站免费在线观看视频| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 自拍偷自拍亚洲精品老妇| 插阴视频在线观看视频| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 免费黄色在线免费观看| 国产在线免费精品| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 国产高清有码在线观看视频| 少妇精品久久久久久久| 日韩大片免费观看网站| 日本欧美视频一区| 99热网站在线观看| 国产无遮挡羞羞视频在线观看| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 日韩不卡一区二区三区视频在线| 老司机亚洲免费影院| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 在线观看av片永久免费下载| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃 | 18禁在线无遮挡免费观看视频| 熟女av电影| 成人影院久久| 两个人免费观看高清视频 | 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 校园人妻丝袜中文字幕| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 香蕉精品网在线| 黄片无遮挡物在线观看| 99热全是精品| 日本免费在线观看一区| 大码成人一级视频| 国产69精品久久久久777片| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 国产黄片美女视频| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲网站| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 午夜91福利影院| 少妇精品久久久久久久| 我的女老师完整版在线观看| 欧美 日韩 精品 国产| 日本av免费视频播放| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 成年人午夜在线观看视频| 色网站视频免费| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| 如何舔出高潮| 成人免费观看视频高清| 精品一区在线观看国产| 内地一区二区视频在线| av播播在线观看一区| 日本爱情动作片www.在线观看| 秋霞伦理黄片| 国产亚洲91精品色在线| 亚洲国产最新在线播放| 亚洲精品国产色婷婷电影| 我要看黄色一级片免费的| 亚洲第一av免费看| 九九久久精品国产亚洲av麻豆| 春色校园在线视频观看| 久久久久久久国产电影| 69精品国产乱码久久久| 亚洲国产精品国产精品| 久久久久久久久大av| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 在线观看三级黄色| 亚洲无线观看免费| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 欧美日韩国产mv在线观看视频| 夜夜爽夜夜爽视频| √禁漫天堂资源中文www| 蜜桃在线观看..| 嫩草影院新地址| 国产精品一区二区三区四区免费观看| 王馨瑶露胸无遮挡在线观看| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的| 国产真实伦视频高清在线观看| 99热这里只有精品一区| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 久久 成人 亚洲| 制服丝袜香蕉在线| a级毛色黄片| 国产极品粉嫩免费观看在线 | 熟女电影av网| 国产探花极品一区二区| 亚洲真实伦在线观看| 一级毛片我不卡| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 欧美成人精品欧美一级黄| 在线观看av片永久免费下载| 一二三四中文在线观看免费高清| 在线观看人妻少妇| 国产精品成人在线| 亚洲国产精品成人久久小说| 女性生殖器流出的白浆| 黑人高潮一二区| 久久人人爽人人片av| 亚洲av日韩在线播放| 99久久综合免费| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 免费在线观看成人毛片| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图 | 中文精品一卡2卡3卡4更新| 国产精品伦人一区二区| 大话2 男鬼变身卡| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人aa在线观看| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| 成年av动漫网址| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的| 三级国产精品片| 在线看a的网站| 嫩草影院入口| 国产精品.久久久| 久久久久久久精品精品| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 观看免费一级毛片| 日韩制服骚丝袜av| 久热久热在线精品观看| 亚洲真实伦在线观看| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 国模一区二区三区四区视频| 青春草视频在线免费观看| 激情五月婷婷亚洲| 亚洲成人av在线免费| 99热这里只有是精品在线观看| 桃花免费在线播放| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 少妇人妻一区二区三区视频| 精品亚洲成a人片在线观看| 18禁在线播放成人免费| 成年美女黄网站色视频大全免费 | 十八禁高潮呻吟视频 | 九草在线视频观看| 女性被躁到高潮视频| 自拍偷自拍亚洲精品老妇| a 毛片基地| 国产精品一区二区在线观看99| 精品一区在线观看国产| 久久精品国产鲁丝片午夜精品| 欧美区成人在线视频| 一级毛片久久久久久久久女| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线播| 亚洲天堂av无毛| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 亚洲欧美日韩另类电影网站| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 久久久久网色| 亚洲欧美精品自产自拍| 能在线免费看毛片的网站| 高清午夜精品一区二区三区| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说| 嫩草影院入口| 精品国产露脸久久av麻豆| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 日本免费在线观看一区| 人妻人人澡人人爽人人| 熟女电影av网| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 午夜福利影视在线免费观看| 国产亚洲5aaaaa淫片| av在线老鸭窝| 国产成人免费无遮挡视频| 2022亚洲国产成人精品| 国产精品麻豆人妻色哟哟久久| 最近中文字幕高清免费大全6| 美女大奶头黄色视频| 精品亚洲乱码少妇综合久久| 亚洲情色 制服丝袜| 国产免费福利视频在线观看| 高清毛片免费看|