• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Dimensional Free Vibration Analysis of Sandwich FGM Cylinders with Combinations of Simply-Supported and Clamped Edges and Using the Multiple Time Scale and Meshless Methods

    2015-04-20 01:33:39ChihPingWuandRueiYongJiang
    Computers Materials&Continua 2015年4期
    關(guān)鍵詞:卡口交通管理多維度

    Chih-Ping Wuand Ruei-Yong Jiang

    1 Introduction

    The exact and approximate three-dimensional(3D)analysis of functionally graded material(FGM)plates/shells has attracted considerable attention in the last decade due to the fact that the material properties of FGM plates/shells continuously and gradually vary through their thickness,which may overcome some drawbacks of conventional laminated composite plates/shells,such as delamination,thermal stress concentration,and matrix cracking.The related 3D solutions may provide a reference for assessing the two-dimensional(2D)theoretical methodologies and numerical models.Among these,however,relatively few articles consider the 3D analysis of plates/shells with various boundary conditions compared to those that examine plates/shells with fully simply-supported edges.A comprehensive literature survey with regard to various 3D coupled piezo-thermo-mechanical analyses of FGM plates/shells has been carried out by Wu et al.(2008),and the relevant re fi ned and advanced 2D analyses of these have also been reviewed[Carrera(2000,2003);Carrera and Birschetto(2009);Carrera and Ciuffreda(2005);Carrera et al.(2008);Cinefra et al.(2010);Carrera et al.(2010);Liew et al.(2015);Saravanos and Heyliger(1999);Swaminathan et al.(2015)].

    Wu et al.(2008)classi fi ed the analytical methods used for the 3D analysis of simply-supported,multilayered FGM structures and laminated composite ones into four different approaches,namely the state space[Chen and Ding(2002);Wu and Liu(2007);Zhong and Yu(2006);Zhang et al.(2014)],Pagano[Heyliger and Brooks(1995,1996);Wu and Tsai(2012)],series expansion[Dube et al.(1996a,1996b);Dumir et al.(1997)]and perturbation[Wu et al.(1996a,1996b);Wu and Tsai(2010)]methods.In addition,Brischetto(2013)presented the exact 3D solutions for the free vibration of FGM plates and shells.The formulation was developed in the general orthogonal curvilinear coordinates,and the exponential matrix method was used to solve the system equations.In the first three approaches,the analytical solutions of which can be obtained only for the system of constant coefficient equations,a successive approximation(SA)method[Soldatos and Hadjigeorgiou(1990)]is used for FGM plates/shells with variable-coefficient equations.In the SA method,FGM plates/shells are artificially divided into a series of homogeneous layers with an equal and small thickness for each layer,and their effective material properties are estimated in an average sense,such that the multilayered homogeneous structures can be used to approximately model the FGM ones when the number of individual layers becomes greater.Unlike the above mentioned methods,the interlaminar field variables in the perturbation method are derived as a de finite integration through the thickness coordinate,and can be directly determined without using the SA method,and the perturbation method may thus be better in this context than the other three approaches.

    In the decade,the meshless method has been used as an alternative approach to the finite element method(FEM)in computational mechanics.Unlike FEM[Wu and Li(2010,2013);Xie and Chi(2014)],for which the development of the interpolation functions of unknown variables relies strongly on an assigned grid mesh,those in the meshless methods are entirely constructed in terms of random distributions of nodes using the differential reproducing kernel(DRK)method[Chen et al.(2011);Wang et al.(2010)],the moving least square method[Sladek et al.(2003,2006,2010)]and radial basis functions[Ferreira et al.(2003);Roque et al.(2005)].A comprehensive literature survey of meshless methods has been undertaken[Belytschko et al.(1996);Atluri and Shen(2002);Li and Liu(2004);Liew et al.(2011)].Among these,a truly meshless method,the meshless local Petrov-Galerkin(MLPG)method,was developed by Atluri and Zhu(1998),in which no assigned meshes were required for constructing the interpolation functions of the field variables and for the integration evaluations of the stiffness,mass and geometric stiffness matrices.The MLPG method has been extended to various mechanical analyses of elastic solids and structures,such as thermal shock[Hosseini et al.(2011)],wave propagation[Moussavinezhad et al.(2013)],transient elastodynamic[Sladek et al.(2007)],thermal bending[Sladek et al.(2008)]analyses.Finally,a review of applications of the MLPG method in engineering and sciences was undertaken by Sladek et al.(2013).

    To the best of the authors’knowledge,the perturbation method and multiple time scales ones have been sucessfully applied to the 3D static and dynamic analyses,respectively,of simply-supported,FGM plates/shells[Wu and Syu(2007);Wu and Tsai(2009)]in the open literature,while these can not be directly applied to the structures with various boundary conditions.An asymptotic DRK-based meshless method is thus developed in this work for the 3D free vibration analysis of sandwich FGM circular hollow cylinders with combinations of simply-supported and clamped edges,in which the multiple time scales method[Nayfeh(1981)]is replaced by the regular perturbation method.Using direct elimination,we first reduce the fifteen partially differential equations(PDEs)of the 3D elasticity theory to six PDEs in terms of six primary variables of elastic fields,which are three displacement components and three transverse shear and normal stress ones.Through the mathematical manipulation of nondimensionalization,asymptotic expansion and successive integration,we finally obtain recurrent sets of motion equations for various order problems.Classical shell theory(CST)is derived as a first-order approximation of the 3D elasticity theory,and the motion equations for higher-order problems retain the same differential operators as those of CST,although with different nonhomogeneous terms.These features will be very less time-consuming,because the solution process of the leading order can be repeatedly used by meansof recalculating the corresponding nonhomogeneous terms only.Expanding the primary field variables of each order as the Fourier series functions in the circumferential direction,and interpolating these in the axial direction using the DRK interpolation,we can obtain the leading-order solutions of this analysis,and the higher-order modifications can then be determined in a systematic and consistent manner,in which the solvability and normality conditions are used to eliminate the secular terms and uniquely determine the modal variables when we apply the solution process to the first-order problems,and then to much higher-order ones.Some benchmark solutions for the dynamic responses of simply-supported,sandwich FGM circular hollow cylinders and laminated composite ones are given to demonstrate the performance of the asymptotic DRK-based meshless method,and the results for the cylinders with combinations of simply-supported and clamped boundary conditions may provide a standard for assessing those obtained using the 2D analytical and numerical methods.Moreover,the effects of the materialproperty gradient index,and different aspect ratios and boundary conditions on the natural frequencies of the cylinders and their corresponding through-thickness distributions of interlaminar modal variables,and the deviations between the results obtained using the rules of mixtures and the Mori-Tanaka scheme are also examined.

    2 Basic equations of 3D elasticity

    As shown in Fig.1,we consider a functionally graded elastic circular hollow cylinder,of which the thickness is 2h.A set of cylindrical coordinates(x,θandr)is located at the center of the cylinder,and the thickness coordinate(ζ)is measured from the mid-surface of this.RandLdenote the radius and length of the cylinder,and the relation between the radial coordinate(r)and the thickness one(ζ)isζ=r?R.

    The linear constitutive equations valid for the symmetrical class of elastic materials are given by

    Figure 1: The configuration and coordinates of a sandwich circular hollow cylinder with either FGM face sheets or an embedded FGM core.

    The strain-displacement relations in the cylindrical coordinatesx,θ,andrare given by

    in whichux,uθandurare the displacement components,and?k=?/?k(k=x,θandr).

    The stress equilibrium equations of an elastic body without accounting for body forces are given by

    in whichρdenotes the mass density of the elastic body considered,andtis the time variable.

    The boundary conditions for the free vibration problem of the FGM cylinder are specified,as follows:

    On the lateral surface the transverse loads are given by

    The edge boundary conditions of the cylinder are considered as either simply supported or clamped ones,and are given,as follows:

    For the simply-supported edge,

    For the clamped edge,

    3 Nondimensionalization

    A set of dimensionless coordinates and elastic field variables is defined,as follows:

    where∈2=h/R,andQdenotes a reference elastic modulus,the value of which is taken to be the same as the Young’s modulus inxdirection(E11)at the bottom of the cylinder in this article.The dimensionless multiple time scales are defined,as follows:

    in whichρ0denotes a reference mass density,and is taken to be the same as that at the bottom of the cylinder in this article.

    As shown in Eqs.(1)_(5),there are fifteen basic equations of 3D elasticity theory for the free vibration analysis of FG elastic circular hollow cylinders.In order to make the previous complicated formulation suitable for mathematical treatment,we eliminate the in-surface stressand straincomponents from Eqs.(1)-(5),introduce Eqs.(8)and(9)in the resulting equations,and then express the 3D basic equations in terms of the dimensionless forms of displacementand transverse stresscomponents,as follows:

    where

    Following a similar derivation process,we rewrite the in-surface stresses in the dimensionless form as

    where

    and

    The dimensionless forms of the boundary conditions of the problem are specified,as follows:

    On the lateral surface,the transverse loads are given by

    For the simply-supported edge,

    For the clamped edge,

    4 Asymptotic expansion

    By observation of Eqs.(10)-(16),we fi nd that these contain terms involving only even powers of∈.We thus asymptotically expand the field variables in the powers∈2,as given by

    Substituting Eq.(19)into Eqs.(10)-(16)and collecting coefficients of equal powers of∈,we obtain the following sets of recurrence equations.

    Order∈0:

    The boundary conditions for various order problems are specified,as follows:

    On the lateral surface the transverse loads are given by

    Order∈2k(k=0,1,2,3,etc),

    For the simply-supported edge and order∈2k(k=0,1,2,3,etc),

    For the clamped edge and orderε2k(k=0,1,2,3,etc),

    5 Asymptotic integration and various order problems

    5.1 The leading-order problem

    We examine the sets of asymptotic equations and fi nd that the present analysis can be carried out by integrating these through the thickness direction.We thus integrate Eqs.(20)-(22)to obtain

    With the lateral boundary conditions onx3=-1 given in Eq.(34),we then proceed to integrate Eqs.(23)-(25),which yields

    Imposing the remaining lateral boundary conditions onx3=1 given in Eq.(34)in Eqs.(39)-(41),and reorganizing the resulting equations,we finally obtain the motion equations for the leading(∈0)order,as follows:

    whereKij(i,j=1-3)andIkl(k=1,2;l=0-2)are the relevant differential operators,and these are given in Appendix A.

    In this article,the edge boundary conditions of the cylinder are considered as combinations of the simply-supported and clamped edges.After the asymptotic process,we thus obtain the edge conditions for the leading-order problem,as follows:Case 1.For simple-simple(SS)supports,

    Case 2.For simple-clamped(SC)supports,

    Case 3.For clamped-clamped(CC)supports,

    It is noted that the CST governing equations are recovered from Eqs.(42)-(44)by introducing a geometric assumption with regard to the thin shell:x3/R<<1.CST has thus been derived as a first-order approximation of the 3D theory.Solutions of Eqs.(42)-(44)must be supplemented with one of the appropriate edge boundary conditions given in Eqs.(45)-(47)to constitute a well-posed boundary value problem.Once the variables ofu01,u02andu03are determined,the leadingorder solutions of modal displacements are given by Eqs.(36)-(38),the modal transverse shear and normal stresses by Eqs.(39)-(41)and the modal in-surface stresses by Eq.(26).

    為實(shí)現(xiàn)對(duì)車輛的精確管理,從車輛運(yùn)行到車輛停放進(jìn)行多維度的全面信息采集,并從交通管理、交通治安的角度進(jìn)行考慮,設(shè)置多級(jí)卡口實(shí)現(xiàn)車輛的多維度監(jiān)管.

    5.2 Higher-order problems

    Proceeding to order∈2kand following the same process as before, we readily obtain

    where

    The edge conditions for the higher-order problems are given,as follows:

    Case 1.For simple-simple(SS)supports,

    Case 2.For simple-clamped(SC)supports,

    Case 3.For clamped-clamped(CC)supports,

    The higher-order modifications of mid-surface displacement componentscan be obtained by solving Eqs.(54)-(56)combined with one of the appropriate edge conditions given in Eqs.(57)-(59),and once these are determined,the higher-order modifications of displacement components are given by Eqs.(48)-(50),the transverse shear and normal stresses by Eqs.(51)-(53)and the in-surface stresses by Eq.(33).

    By observation of the governing equations of the leading-order problem(Eqs.(42)-(44))and the higher-order problems(Eqs.(54)-(56)),we fi nd that the differential operators among the various order problems remain identical,and the nonhomogeneous terms of higher-order problems can be calculated from the lower-order solution.It is thus shown that the solution process of the leading-order problem can be repeatedly applied to the higher-order problems.The present asymptotic solutions can be determined order-by-order in a hierarchical and consistent manner.

    6 DRK interpolation

    In this article,the DRK interpolation functions[Wang et al.(2010)]are used to construct the shape functions of the primary field variables of this problem in the axial(x1)direction,and the DRK interpolation functions and their relevant derivatives are brie fl y described,as follows.

    It is assumed that there arenpdiscrete nodes randomly selected and located atrespectively,in thex1direction,in which a functionF(x1)is interpolated asFa(x1)and defined as

    By selecting the completenth-order polynomials as the base functions to be reproduced,we obtain a set of reproducing conditions to determine the undetermined functions ofThese conditions are given as

    Equation(61)represents(n+1)reproducing conditions,and the matrix form of these is given as

    According to these conditions,we may obtain the undetermined function vector(x1)in the following form

    Substituting Eq.(63)into Eq.(60)yields the shape functions ofFa(x1)in the form of

    where

    It is noted that if we select a set of primitive functions satisfying the Kronecker delta propertiesa priori,then a set of the shape functions with these properties will be obtaineddue to the fact that the enrichment functions vanish at all the nodes

    In implementing the present scheme,the weight and primitive functionsmust be selected in advance.Following Wang et al.(2010),the normalized Gaussian function is selected as the weight and primitive functions at eachsampling node,and this is given as

    wherewa(x?xl)=w(s),s=|x?xl|/a,andadenotes the radius of the influence zone,which is assigned not to cover any neighboring node for the primitive function,and its optimal value for the weight function will be discussed later in this work.The literature[Wang et al.(2010)]suggestsα=3 for the analysis of an elastic solid,and this is also used in this article.Moreover,the derivatives of these DRK interpolation functions are given in Wang et al.(2010),and not repeated here.

    7 Applications

    7.1 Leading-order solution

    The free vibration problem of sandwich functionally graded elastic circular hollow cylinders and laminated composite ones with simply-supported and clamped edges is studied using the asymptotic DRK-based meshless method,in which the primary variables of displacement and stress components are expanded as the Fourier series functions in the circumferential coordinate,and then the DRK interpolation functions are used to interpolate the variables in the axial coordinate.The motion equations of the leading-order problem can thus be solved by letting

    Substituting Eqs.(66)-(68)into Eqs.(42)-(44)gives

    in which the expressions ofkij(i,j=1?3)are given in Appendix B.

    Using the DRK interpolation,we express the field variables in the form of Eq.(60)and their higher-order derivatives,and then rewrite the edge boundary conditions and motion equations of the leading order,as follows:

    Applying the motion equation(Eq.(69))to the selected sampling node and using the DRK interpolation leads to

    in which the expressions ofdijare given in Appendix C.

    Equations(70)-(72)can be rewritten in the matrix form,as follows:

    the dimensions of which are(8x1)and[(3np-8)x1],respectively.

    Using the DRK interpolation,we rewrite the appropriate edge conditions of Cases 1-3 for the leading order problem,as follows:

    Case 1.For the simple-simple(S-S)supports,

    Case 2.For the simple-clamped(SC)supports,

    Case 3.For the clamped-clamped(CC)supports,

    The above boundary conditions can be rewritten in the matrix form,as follows:

    The motion equations(70)-(72)associated with one set of the appropriate boundary conditions(Eqs.(73)-(78))represents a standard eigen-valued problem consisting of a set of(3np)simultaneously algebraic equations in terms of 3npunknowns.By satisfying the boundary conditions(80),the motion equations(73)can be rewritten in the form of

    The natural frequencies(ω0)i[i=1?(3np?8)]can then be obtained by letting

    The modal displacement components are normalized to render the asymptotic solution for various orders unique,and these are given by

    The normality conditions at each level are

    Once the natural frequencies of the leading-order problem((ω0)i)are obtained,the corresponding eigen vectors,which are the modal mid-surface displacement components,can be uniquely determined by using the corresponding normality conditions(Eq.(84a)),and the through-thickness distributions of modal displacement and stress variables for the leading-order problem can thus be determined,as mentioned before.

    7.2 First-order modifications

    Carrying on the solution to order∈2,we fi ndthatthenonhomogeneous termsi=1?3 and the revelant functionsfor fixed values ofandin the∈2-order equations are

    and

    In view of the recurrence of the equations,the∈2-order solution can be obtained by letting

    Substituting Eqs.(85)-(93)into Eqs.(54)-(56)gives

    Applying the motion equation(Eq.(94))to the selected sampling node and using the DRK interpolation leads to

    The appropriate edge conditions of Cases 1-3 for the∈2-order problem can be written,as follows:

    By satisfying the boundary conditions(96),we can rewrite the motion equation(95),as follows:

    A solvability condition for a particular vibration mode(i),the natural frequency of which is(ω0)i,is introduced such that Eq.(97)becomes solvable,and this is given by

    Equation(98)leads to

    The hamonic time function can then be modified as

    and the natural frequencies for the first-order problem are thus obtained as

    By using the solvability conditions(98)and the normality conditions(84b),we can uniquely determine the first-order modifications of interlaminar modal displacement and stress components for theithvibration mode.Moreover,the solution process can be repeatedly applied to higher-order problems(∈2k-order,k=2,3,etc)in a systematic and consistent manner due to the similarity between the system equations of the first-order problem(k=1)and those of much higher-order ones(k=2,3,etc.).

    8 Illustrative examples

    8.1 Sandwich cylinders with two FGM face sheets

    The free vibration problem of simply supported,sandwich FGM cylinders consisting of two FGM face-sheets and a homogeneous core(i.e.,[FGM/core/FGM])asshown in Figs.1(a)and 1(b),which has been studied by Wu and Yang(2011)using the quasi-3D element-free Galerkin method,and Wu et al.(2014)using an exact 3D modified Pagano method,is used to validate the performance of the asymptotic DRK-based meshless method.The thickness for each layer constituting the cylinder ishi(i=1-3),the layer number is counted from the bottom(inner)layer of the cylinder,and the total thickness of the cylinder is 2h,such thath1+h2+h3=2h.The volume fraction of each layer is given as

    in whichζ0=?ζ3=?h,ζ1=?ζ2=?h2/2,andκpdenotes the material-property gradient index.

    The effective engineering constants and mass density of each layer are evaluated by using the rule of mixtures[Hill(1965)],and are written as follows:

    whereEtandEbdenote the Young’s modulus of the top and bottom surfaces of layer 1,which is the bottom layer,andρtandρbare their mass densities.

    For comparison purposes,the dimensionless frequency parameter is defined as the same as that used in Wu and Yang(2011)and Wu et al.(2014),which is=The top and bottom surfaces of layer 1(the bottom layer)are considered to be aluminum(t)and alumina(b),respectively,the engineering constants and mass density of which are

    Table 1 presents the asymptotic solutions of lowest frequency parameters of sandwich FGM cylinders for different vibration modes with=1?3,in whichL/R=5,R/2h=10,h1:h2:h3=2h/3:2h/3:2h/3,andκp=0,1 and∞.When

    κp=0,the sandwich FGM cylinder reduces to a single-layered homogeneous aluminum cylinder,while this reduces to a sandwich homogeneous cylinder(i.e.,[alumina/aluminum/alumina]one)whenκp=∞.

    Table 1: The convergence study with regard to the results of lowest frequency parameters of simply-supported,sandwich FGM cylinders for different vibration modes(L/R=5,R/2h=10,h1:h2:h3=2h/3:2h/3:2h/3,=ωR2(2h)).

    Table 1: The convergence study with regard to the results of lowest frequency parameters of simply-supported,sandwich FGM cylinders for different vibration modes(L/R=5,R/2h=10,h1:h2:h3=2h/3:2h/3:2h/3,=ωR2(2h)).

    κp Vibration Theories mode(?n)Present EFG[Wu 3D solutions(n,a)np ∈2k?order solutions and Yang [Wu et al.∈0∈2∈4∈6(2011)](2014)]0 1∞1 2 3 123123(4,4.1Δx)(4,4.6Δx)(4,4.1Δx)(4,4.6Δx)(4,4.1Δx)(4,4.6Δx)(4,4.1Δx)(4,4.1Δx)(4,4.1Δx)(4,4.1Δx)(4,4.1Δx)(4,4.1Δx)11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 11 13 15 1.0018 1.0024 1.0026 1.0016 1.0024 1.0026 0.7172 0.7177 0.7178 0.7170 0.7176 0.7178 1.3752 1.3753 1.3754 1.3751 1.3753 1.3754 1.4873 1.4883 1.4886 1.2366 1.2373 1.2375 2.5026 2.5029 2.5030 1.7733 1.7745 1.7748 1.4018 1.4026 1.4029 2.7922 2.7925 2.7926 0.9863 0.9870 0.9872 0.9862 0.9870 0.9872 0.5960 0.5967 0.5970 0.5959 0.5967 0.5970 1.2108 1.2112 1.2115 1.2107 1.2112 1.2114 1.4524 1.4534 1.4538 0.9921 0.9932 0.9937 2.1471 2.1479 2.1483 1.7369 1.7381 1.7385 1.1296 1.1310 1.1315 2.3728 2.3737 2.3742 0.9937 0.9943 0.9945 0.9936 0.9943 0.9946 0.6014 0.6021 0.6023 0.6012 0.6020 0.6023 1.2121 1.2126 1.2128 1.2120 1.2125 1.2127 1.4690 1.4700 1.4704 1.0027 1.0037 1.0042 2.1576 2.1584 2.1587 1.7543 1.7555 1.7559 1.1434 1.1447 1.1452 2.3896 2.3904 2.3908 0.9938 0.9944 0.9947 0.9937 0.9944 0.9947 0.6023 0.6029 0.6032 0.6021 0.6029 0.6032 1.2122 1.2127 1.2129 1.2121 1.2126 1.2128 1.4693 1.4704 1.4707 1.0043 1.0053 1.0058 2.1576 2.1583 2.1586 1.7545 1.7558 1.7562 1.1453 1.1465 1.1470 2.3892 2.3900 2.3904 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.6050 0.6050 0.6050 0.6050 0.6050 0.6050 1.2161 1.2161 1.2161 1.2161 1.2161 1.2161 1.4714 1.4714 1.4714 1.0094 1.0094 1.0094 2.1659 2.1659 2.1659 1.7570 1.7570 1.7570 1.1510 1.1510 1.1510 2.3983 2.3983 2.3983 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.6050 0.6050 0.6050 0.6050 0.6050 0.6050 1.2161 1.2161 1.2161 1.2161 1.2161 1.2161 1.4714 1.4714 1.4714 1.0093 1.0093 1.0093 2.1656 2.1656 2.1656 1.7570 1.7570 1.7570 1.1510 1.1510 1.1510 2.3983 2.3983 2.3983

    It can be seen in Table 1 that the convergence rate for the asymptotic solutions of the lowest frequency of the cylinders is rapid,and the convergent solutions are in excellent agreement with the quasi-and exact-3D solutions available in the literature,in which the highest order of base functions(n)is taken asn=4,the total number of selected sampling nodes(np)isnp=11,13 and 15,the radius of the infl uence zone(a)for each node is eithera=4.1Δxora=4.6Δx,and Δx=L/(np?1).

    The results show that the relative errors between the 15-node∈4-order solutions with(n,a)=(4,4.1Δx)and the exact-3D ones[Wu et al.(2014)]are less than 0.6%,and the set of related parameters is thus used in the next example,such asn=4,a=4.1Δx,andnp=15.It is also shown that for a particular vibration mode,the natural frequency parameter increases when the material-property gradient index becomes larger,which means the sandwich cylinder becomes stiffer;and the fundamental frequency parameter occurs atn?=2 for these moderately thick FGM sandwich cylinders.

    8.2 Sandwich cylinders with an embedded FGM core

    The dynamic responses of sandwich FGM circular hollow cylinders,consisting of two homogeneous face-sheets and an embedded FGM core,with combinations of simply-supported and clamped edges are investigated,and the configuration,cylindrical coordinate systems and layer-up sequence of the cylinder are shown in Figs.1(a)and 1(c).The effective engineering constants of each layer are evaluated by using the rule of mixtures[Hill(1965)]and Mori-Tanaka scheme[Mori and Tanaka(1973)],and these are written,as follows:

    (a)The rule of mixtures,

    whereEtandEbdenote the Young’s modulus of the material at the mid-surface of the core-layer and that of the face-sheets,respectively,for whichEtandEbare the same values as those used in Example 8.1;ν(m)(m=1_3)are taken to be 0.3;and Γ(m)(m=1_3)are the volume fractions of the constituents of the cylinder,and are given by

    (b)Mori-Tanaka scheme,

    The effective material properties of the FGM core(i.e.,the second layer)are evaluated using the Mori-Tanaka formula[Ramirez et al.(2006)],and are written as follows:

    It is apparent that whenκp=0,Γ(2)=1,this sandwich FGM cylinder is reduced to a single-layered homogeneous alumina cylinder;while whenκp=∞,Γ(2)=0,it is reduced to a sandwich homogeneous cylinder(i.e.,sandwich[alumina/aluminum/alumina]ones).Figure2 shows the through-thickness distributions of the Young’s modulus evaluated by the rule of mixtures and Mori-Tanaka scheme for a particular case,in whichκp=2 and 4,andh1:h2:h3=0.2h:1.6h:0.2h.The results show that the material properties evaluated by using the rule of mixtures are greater than those evaluated by using Mori-Tanaka scheme,which means that the rule of mixtures gives a stiffer FGM layer than Mori-Tanaka scheme does,although these values are not much different from each other.In addition,the set of dimensionless frequency parameters used in Example 8.1 is also used in this example.

    Table 2 shows the asymptotic DRK-based meshless solutions for the lowest frequency parameters of sandwich FGM cylinders with different boundary conditions,thickness ratios for each layer and material-property gradient indices,in whichR/2h=10,L/R=5,(,)=(1,2),h1:h2:h3=0.8h:0.4h:0.8hand 0.2h:1.6h:0.2h,andκp=0,2,4 and∞.It can be seen in Table 2 that the asymptotic DRK-based meshless solutions converge rapidly,and the relative errors between the∈4-order solutions and exact 3D ones[Wu et al.(2014)]are less than 0.6%for the moderately thick cylinder with simply-supported edges.The magnitude order of the lowest frequencies of the cylinders for different boundary conditions is CC>SC>SS,and that for using different material-property models is the rule of mixtures>Mori-Tanakascheme,in which“>”means the cylinder is stiffer and the corresponding natural frequency parameter is greater.

    Figure 2: Through-thickness distributions of Young’s modulus of a sandwich cylinder with an embedded FGM core,and estimated by using the rule of mixtures and the Mori-Tanaka scheme,in which κp=2 and 4,and h1:h2:h3=0.2h:1.6h:0.2h.

    Figures 3(a)-3(c)show variations of the lowest frequency parameters of sandwich FGM cylinders with the half-wave-number()for the SS,SC and CC edges,respectively,in which a set of parameters,R/2h=10,L/R=5,h1:h2:h3=0.2h:1.6h:0.2h,κp=0,2,4 and∞,and=0-10,and the Mori-Tanaka scheme is used.It can be seen in Figs.3(a)-3(c)that at first the frequency parameter gradually decreases,and then it monotonically increases again when>2.The variation patterns for different boundary conditions are shown to be similar to one another,except that the magnitude order of the lowest frequency parameters are CC>SC>SS,even though the deviations among them are hard to distinguish from the figures.In addition,the results also show when the material-property gradient index increases,the frequency parameter becomes lower,which means the gross stiffness of the cylinder becomes softer.

    Tables 3 and 4 show the asymptotic DRK-based meshless solutions for the lowest frequency parameters of sandwich FGM cylinders for a particular vibration mode(,)=(1,2)and with different values of the ratios of radius-to-thickness(R/2h)and length-to-radius(L/R),respectively,in whichκp=3,L/R=10,R/2h=5,10,50 and 100 in Table 3,andκp=3,R/2h=10,L/R=2,5,10 and 100 in Table 4.When we convert the frequency parameter()to the natural frequency(ω),the resultsshow that the natural frequency decreases when the cylinder becomes thinner and longer.

    Table 2:The lowest freq uency parameters of FG M sandwich1,cylind ers with different5; boun dary conditions,thick ness ratios for each layer and material-p ro perty gradient indices(?m=?n=2,R/2h=1 0,L/R=ˉω=ωR 2 ρb/Eb/(2h).κp Theories 0.8h:0.4h:0.8h 0.2h:1.6 h:0.2h SS SC CC SS SC CC Ru le of mixtures Mori-Tanaka Rule of mixtures 97 02 31 48 Mo ri-Tanaka Rule of mixtu res 10 80 18 31 Mori-Tanaka Ru le of mixtures Mori-Tanaka Rule of mixtures Mori-Tanaka Rule of mixtu res 10 80 18 31 Mo ri-Tanaka 0 Present∈0-order 1.4117 1.41 17 42 47 64 97 97 84 98 16 52 09 61 80 98 34 26 26 53 71 07 1.60 1.6097 1.84 1.8410 1.4117 1.41 17 42 47 64 97 82 80 87 03 40 97 21 27 43 78 66 54 51 65 97 1.6097 1.6097 1.84 1.8410∈2?order 1.1742 1.17 1.40 1.4002 1.65 1.6580 1.1742 1.17 1.4002 1.4002 1.65 1.6580∈4?order 1.1847 1.18 1.41 1.4131 1.67 1.6718 1.1847 1.18 1.4131 1.4131 1.67 1.6718∈6?order 1.1864 1.18 1.41 1.4148 1.67 1.6731 1.1864 1.18 1.4148 1.4148 1.67 1.6731 3D solutions[Wu et al.(2014)]1.1897 1.18 NA NA NA NA 1.1897 1.18 NA NA NA NA 2 Present∈0-order 1.4132 1.40 1.59 9 63 02 20 1.5937 1.81 78 17 67 82 1.8105 1.3268 1.27 1.4749 1.4186 1.65 21 23 79 95 1.5872∈2?order 1.1628 1.15 1.37 1.3699 1.62 1.6133 1.0683 1.02 1.2405 1.1914 1.44 1.3836∈4?order 1.1741 1.16 1.39 1.3839 1.63 1.6285 1.0795 1.03 1.2546 1.2049 1.45 1.3986∈6?order 1.1759 1.17 1.39 1.3857 1.63 1.6299 1.0812 1.04 1.2564 1.2066 1.45 1.4001 3D solutions[Wu et al.(2014)]1.1794 1.17 NA NA NA NA 1.0849 1.04 NA NA NA NA 4 Present∈0-order 1.4132 1.41 1.59 65 01 45 63 1.5929 1.81 26 29 85 00 1.8078 1.2806 1.23 1.4168 1.3709 1.58 07 08 64 79 1.5290∈2?order 1.1591 1.15 1.37 1.3658 1.61 1.6073 1.0245 0.99 1.1834 1.1452 1.37 1.3259∈4?order 1.1709 1.16 1.38 1.3803 1.62 1.6230 1.0356 1.00 1.1974 1.1586 1.38 1.3409∈6?order 1.1727 1.16 1.38 1.3821 1.63 1.6245 1.0373 1.00 1.1992 1.1603 1.38 1.3424 3D solutions[Wu et al.(2014)]1.1763 1.17 NA NA NA NA 1.0409 1.00 NA NA NA NA∞Present∈0-order 1.4126 1.41 1.59 21 96 51 69 1.5921 1.80 42 86 53 68 1.8042 1.1466 1.14 1.2648 1.2648 1.40 73 68 05 19 1.4073∈2?order 1.1526 1.15 1.35 1.3596 1.59 1.5986 0.9154 0.91 1.0535 1.0535 1.21 1.2168∈4?order 1.1653 1.16 1.37 1.3751 1.61 1.6153 0.9251 0.92 1.0657 1.0657 1.23 1.2305∈6?order 1.1671 1.16 1.37 1.3769 1.61 1.6168 0.9265 0.92 1.0672 1.0672 1.23 1.2319 3D solutions[Wu et al.(2014)]1.1707 1.17 NA NA NA NA 0.9297 0.92 NA NA NA NA

    T a b l e 3:T h e l o w e s t f r e q u e n c y p a r a m e t e r s o f s i m p l y s u p p o r t e d,F G M s a n d w i c h c y l i n d e r s w i t h d i f f e r e n t m i d-s u r f a c e r a d i u s-t o-t h i c k n e s s r a t i o s a n d t h i c k n e s s r a t i o s f o r e a c h l a y e r(?m=1,?n=2,κp=3,L/R=1 0,ˉω=ω R2 ρb/Eb/(2 h)).R/2 h T h e o r i e s 0.8 h:0.4 h:0.8 h 0.2 h:1.6 h:0.2 h S S S C C C S S S C C C R u l e o f m i x-t u r e s M o r i-T a n a k a R u l eo f m i x-t u r e s M o r i-T a n a k a R u l eo f m i x-t u r e s M o r i-T a n a k a R u l eo f m i x-t u r e s M o r i-T a n a k a R u l eo f m i x-t u r e s M o r i-T a n a k a R u l eo f m i x-t u r e s M o r i-T a n a k a 5 P r e s e n t∈0-o r d e r 1.1 2 7 2 1.1 2 6 7 1.1 3 6 3 1.1 3 5 8 1.1 4 9 1 1.1 4 8 5 1.0 7 8 6 1.0 4 3 6 1.0 8 5 9 1.0 5 0 5 1.0 9 5 7 1.0 5 9 9∈2?order 0.8027 0.7998 0.8134 0.8105 0.8291 0.8261 0.7448 0.7218 0.7531 0.7298 0.7650 0.7412∈4?order 0.8124 0.8101 0.8236 0.8213 0.8400 0.8376 0.7614 0.7372 0.7701 0.7456 0.7826 0.7576∈6?order 0.8130 0.8107 0.8243 0.8220 0.8409 0.8385 0.7613 0.7373 0.7701 0.7457 0.7828 0.7578 3 D s o l u t i o n s[W u e t a l.(2 0 1 4)]0.8 1 9 7 0.8 1 7 6 N A N A N A N A 0.7 6 8 6 0.7 4 4 2 N A N A N A N A 1 0 P r e s e n t∈0-o r d e r 1.1 4 2 6 1.1 4 2 0 1.1 6 9 3 1.1 6 8 3 1.2 0 9 6 1.2 0 8 2 1.0 8 9 9 1.0 5 4 3 1.1 0 9 6 1.0 7 3 1 1.1 3 9 1 1.1 0 1 1∈2?order 0.8560 0.8548 0.8882 0.8867 0.9375 0.9355 0.8084 0.7823 0.8322 0.8050 0.8684 0.8395∈4?order 0.8590 0.8579 0.8925 0.8911 0.9438 0.9419 0.8123 0.7859 0.8370 0.8095 0.8748 0.8455∈6?order 0.8595 0.8584 0.8933 0.8920 0.9449 0.9431 0.8127 0.7864 0.8377 0.8102 0.8758 0.8464 3 D s o l u t i o n s[W u e t a l.(2 0 1 4)]0.8 6 2 7 0.8 6 1 6 N A N A N A N A 0.8 1 6 0 0.7 8 9 5 N A N A N A N A 5 0 P r e s e n t∈0-o r d e r 1.5 2 4 2 1.5 1 9 8 1.9 1 6 0 1.9 0 8 4 2.4 3 0 1 2.4 1 8 7 1.3 6 8 8 1.3 1 9 9 1.6 6 8 0 1.6 0 5 4 2.0 7 0 5 1.9 8 9 9∈2?order 1.3174 1.3126 1.7508 1.7427 2.2998 2.2879 1.1572 1.1146 1.4937 1.4306 1.9300 1.8532∈4?order 1.3292 1.3244 1.7644 1.7562 2.3126 2.3007 1.1673 1.1244 1.5065 1.4482 1.9428 1.8655∈6?order 1.3308 1.3260 1.7655 1.7574 2.3133 2.3014 1.1689 1.1259 1.5078 1.4495 1.9437 1.8664 3 D s o l u t i o n s[W u e t a l.(2 0 1 4)]1.3 3 1 4 1.3 2 6 5 N A N A N A N A 1.1 6 9 5 1.1 2 6 5 N A N A N A N A 1 0 0 P r e s e n t∈0-o r d e r 2.3 4 3 7 2.3 3 3 0 3.2 9 5 4 3.2 7 8 2 4.4 4 7 3 4.4 2 2 7 2.0 0 1 5 1.9 2 4 4 2.7 6 0 1 2.6 5 0 0 3.6 9 0 5 3.5 4 0 6∈2?order 2.2094 2.1981 3.1995 3.1818 4.3762 4.3513 1.8570 1.7838 2.6550 2.5475 3.6118 3.4639∈4?order 2.2223 2.2111 3.2101 3.1924 4.3845 4.3596 1.8699 1.7962 2.6661 2.5583 3.6208 3.4726∈6?order 2.2230 2.2118 3.2104 3.1928 4.3846 4.3597 1.8708 1.7971 2.6665 2.5587 3.6210 3.4728 3 D s o l u t i o n s[W u e t a l.(2 0 1 4)]2.2 2 3 0 2.2 1 1 8 N A N A N A N A 1.8 7 0 8 1.7 9 7 2 N A N A N A N A

    Table4:T he lowestfrequencyparam etersofsimplysupported2,κp,F GMs=3and wich cylind ersw ithdifferentlength-to-mid-surface radius ratios and thickness ratios for each layer(?m=1,?n=,R/2h=10,ˉω=ωR 2 ρb/Eb/(2h).L/R Theories 0.8h:0.4h:0.8h 0.2h:1.6h:0.2h SS SC CC SS SC CC Ru le of mixtures Mori-Tanaka Rule of mixtu res 50 12 49 49 Mo ri-Tanaka Rule of mixtu res Mori-Tanaka Ru le of mixtures Mori-Tanaka Rule of mixtures 01 62 31 27 Mo ri-Tanaka Rule of mixtu res 17 66 31 16 Mo ri-Tanaka 2 Present∈0-order 3.7125 3.6956 4.11 4.0973 4.5982 4.5796 3.1646 3.04 37 51 16 21 86 55 65 71 87 23 43 23 59 64 95 28 11 35 37 68 3.52 3.3894 3.95 3.8089∈2?order 3.5673 3.5492 3.98 3.9622 4.4751 4.4551 3.0000 2.88 3.36 3.2413 3.80 3.6695∈4?order 3.5819 3.5641 3.99 3.9762 4.4877 4.4681 3.0174 2.90 3.38 3.2574 3.82 3.6852∈6?order)]3.5823 3.5644 3.99 3.9762 4.4873 4.4676 3.0179 2.90 3.38 3.2570 3.82 3.6839 3D solutions[Wu et al.(2014 3.5888 3.5711 NA NA NA NA 3.0245 2.90 NA NA NA NA 5 Present∈0-order 1.4132 1.4104 1.59 65 15 57 75 1.5923 1.8118 1.8060 1.3004 1.25 1.44 04 59 00 18 1.3895 1.60 79 73 29 45 1.5501∈2?order 1.1606 1.1570 1.37 1.3663 1.6134 1.6067 1.0427 1.00 1.20 1.1627 1.39 1.3463∈4?order 1.1722 1.1687 1.38 1.3807 1.6288 1.6222 1.0539 1.01 1.22 1.1761 1.41 1.3613∈6?order)]1.1740 1.1705 1.38 1.3825 1.6303 1.6237 1.0556 1.01 1.22 1.1779 1.41 1.3628 3D solutions[Wu et al.(2014 1.1775 1.1741 NA NA NA NA 1.0592 1.02 NA NA NA NA 10 Present∈0-order 1.1426 1.1420 1.16 93 82 25 33 1.1683 1.2096 1.2082 1.0899 1.05 1.10 96 22 70 77 1.0731 1.13 91 84 48 58 1.1011∈2?order 0.8560 0.8548 0.88 0.8867 0.9375 0.9355 0.8084 0.78 0.83 0.8050 0.86 0.8395∈4?order 0.8590 0.8579 0.89 0.8911 0.9438 0.9419 0.8123 0.78 0.83 0.8095 0.87 0.8455∈6?order)]0.8595 0.8584 0.89 0.8920 0.9449 0.9431 0.8127 0.78 0.83 0.8102 0.87 0.8464 3D solutions[Wu et al.(2014 0.8627 0.8616 NA NA NA NA 0.8160 0.78 NA NA NA NA 10 0 Present∈0-order 1.1034 1.1029 1.10 34 57 73 75 1.1029 1.1034 1.1029 1.0570 1.02 1.05 70 60 87 89 1.0228 1.05 70 60 87 89 1.0228∈2?order 0.8157 0.8147 0.81 0.8148 0.8157 0.8148 0.7759 0.75 0.77 0.7511 0.77 0.7511∈4?order 0.8173 0.8164 0.81 0.8165 0.8174 0.8165 0.7786 0.75 0.77 0.7536 0.77 0.7536∈6?order)]0.8174 0.8166 0.81 0.8167 0.8175 0.8167 0.7788 0.75 0.77 0.7538 0.77 0.7539 3D solutions[Wu et al.(2014 0.8205 0.8197 NA NA NA NA 0.7820 0.75 NA NA NA NA

    Figure 3: Variations of the lowest frequencies of sandwich FGM cylinders with different vibration modes and different values of material-property gradient indices and using the Mori-Tanaka scheme;(a)SS,(b)SC,(c)CC edges.

    Figure 4 shows the∈4-order DRK solutions for the through-thickness distributions of various modal variables induced at a certain crucial section of a simply supported,FGM sandwich cylinder,inwhichL/R=5,R/(2h)=10,h1:h2:h3=0.4h:1.2h:0.4handκp=3,and the material properties of the embedded FGM core are estimated by using the rule of mixtures and the Mori-Tanaka scheme.It can be seen in Fig.4 that the distributions of various modal variables through the thickness coordinate obtained by using the rule of mixtures closely agree with those obtained by using the Mori-Tanaka scheme.The through-thickness distributions of in-and

    out-of surface displacement components appear to be globally linear and layerwise parabolic polynomial variations,respectively.The through-thickness distributions of in-surface and transverse stress components appear to be linear and parabolic polynomial variations in the homogeneous face sheets,respectively,while they all appear to be higher-order polynomial variations in the FGM core.Moreover,the asymptotic DRK solutions satisfy the boundary conditions at lateral surfaces and the continuity conditions of displacement and transverse stress components at interfaces between adjacent layers,which is difficult to achieve for various 2D displacement-based shell theories.

    Figure 4: Through-thickness distributions of various modal variables for simply supported,sandwich FGM cylinder with different material models,in which R/2h=10,L/R=5,h1:h2:h3=0.4h:1.2h:0.4h,=2,and κp=3.

    9 Conclusions

    On the basis of the multiple time scale and meshless DRK methods,in this article we developed an asymptotic DRK-based meshless formulation for the quasi-3D free vibration analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges.In the illustrative examples,it is shown that these asymptotic DRK solutions converge rapidly,and are in excellent agreement with the approximate and exact 3D solutions of simply-supported,sandwich FGM cylinders available in the literature, and those for the cases of SC and CC edge conditions can be used as a reference for assessing the solutions obtained using other 2D and 3D methodologies and numerical techniques.It is also seen in the examples that the natural frequency decreases when the cylinder becomes thinner and longer,and the magnitude order of the natural frequency for different boundary conditions is CC>SC>SS,and that for using different material-property models is the rule of mixtures>Mori-Tanaka scheme.The through-thickness distributions of the in-and out-of-surface modal variables of sandwich FGM cylinders in the free vibration problems have been observed,and the results can be provided as a reference for making the kinetic and kinematic assumptions a priori when an advanced 2D FGM shell theory is to be developed.

    Acknowledgement:This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 103-2221-E-006-064-MY3.

    Atluri,S.N.;Shen,S.(2002):The Meshless Local Petro-Galerkin(MLPG)Method.Encino,Tech Science Press.

    Atluri,S.N.;Zhu,T.(1998):A new meshless local Petro-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,pp.117-127.

    Belytschko,T.;Krongauz,Y.;Organ,D.;Fleming,M.;Krysl,P.(1996):Meshless methods:an overview and recent developments.Computer Methods in Applied Mechanics and Engineering,vol.139,pp.3-47.

    Brischetto,S.(2013):Exact elasticity solutions for natural frequencies of functionally graded simply-supported structures.CMES-Computer Modeling in Engineering&Sciences,vol.95,pp.391-430.

    Carrera,E.(2000):An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates.Composite Structures,vol.50,pp.183-198.

    Carrera,E.(2003):Historical review of zig-zag theories for multilayered plates and shells.Applied Mechanics Reviews,vol.56,pp.287-308.

    Carrera,E.;Brischetto,S.(2009):A survey with numerical assessment of classical and re fi ned theories for the analysis of sandwich plates.Applied Mechanics Reviews,vol.62,pp.1-17.

    Carrera,E.;Ciuffreda,A.(2005):A uni fi ed formulation to assess theories of multilayered plates for various bending problems.Composite Structures,vol.69,pp.271-293.

    Carrera,E.;Brischetto,S.;Robaldo,A.(2008):Variable kinematic model for the analysis of functionally graded material plates.AIAA Journal,vol.46,pp.194-203.

    Carrera,E.;Brischetto,S.;Cinefra,M.;Soave,M.(2010):Re fi ned and advanced models for multilayered plates and shells embedding functionally graded material layers.Mechanics of Advanced Materials and Structures,vol.17,pp.603-621.

    Chen,W.Q.;Ding,H.J.(2002):On free vibration of a functionally graded piezoelectric rectangular plate.Acta Mechanica,vol.153,pp.207-216.

    Chen,S.M.;Wu,C.P.;Wang,Y.M.(2011):AHermite DRK interpolation-based collocation method for the analysis of Bernoulli-Euler beams and Kirchhoff-Love plates.Computational Mechanics,vol.47,pp.425-453.

    Cinefra,M.;Belouettar,S.;Soave,M.;Carrera,E.(2010):Variable kinematic models applied to free-vibration analysis of functionally graded material shells.European Journal of Mechanics A-Solids,vol.29,pp.1078-1087.

    Cinefra,M.;Carrera,E.;Brischetto,S.;Belouettar,S.(2010):Ther momechanical analysis of functionally graded shells.Journal of Thermal Stresses,vol.33,pp.942-963.

    Dube,G.P.;Kapuria,S.;Dumir,P.C.(1996a):Exact piezother moelastic solu-tion of simply-supported orthotropic circular cylindrical panel in cylindrical bending.Archive of Applied Mechanics,vol.66,pp.537-554.

    Dube,G.P.;Kapuria,S.;Dumir,P.C.(1996b):Exact piezothermoelastic solution of simply-supported orthotropic fl at panel in cylindrical bending.International Journal of Mechanical Sciences,vol.38,pp.1161-1177.

    Dumir,P.C.;Dube,G.P.;Kapuria,S.(1997):Exact piezoelectric solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending.International Journal of Solids and Structures,vol.34,pp.685-702.

    Ferreira,A.J.M.;Roque,C.M.C.;Martins,P.A.L.S.(2003):Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function.Composites Part BEngineering,vol.34,pp.627-636.

    Heyliger,P.;Brooks,S.(1995):Free vibration of piezoelectric laminates in cylindrical bending.International Journal of Solids and Structures,vol.32,pp.2945-2960.

    Heyliger,P.;Brooks,S.(1996):Exact solutions for laminated piezoelectric plates in cylindrical bending.Journal of Applied Mechanics,vol.63,pp.903-910.

    Hill,R.(1965):A self-consistent mechanics of composite materials.Journal of the Mechanics and Physics of Solids,vol.13,pp.213-222.

    Hosseini,S.M.;Sladek,J.;Sladek,V.(2011):Meshless local Petro-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder.Engineering Analysis with Boundary Elements,vol.35,pp.827-835.

    Li,S.;Liu,W.K.(2004):Meshfree Particle Methods.Berlin:Springer.

    Liew,K.M.;Lei,Z.X.;Zhang,L.W.(2015):Mechanical analysis of functionally graded carbon nanotube reinforced composites:A review.Composite Structures,vol.120,pp.90-97.

    Liew,K.M.;Zhao,X.;Ferreira,A.J.M.(2011):A review of meshless methods for laminated and functionally graded plates and shells.Composite Structures,vol.93,pp.2031-2041.

    Mori,T.;Tanaka,K.(1973):Average stress in matrix and average elastic energy of materials with mis fi tting inclusions.Acta Metallurgica,vol.21,pp.571-574.

    Moussavinezhad,S.M.;Shahabian,F.;Hosseini,S.M.(2013):Twodimensional elastic wave propagation analysis in finite length FG thick hollow cylinders with 2D nonlinear grading patterns using MLPG method.Computer Methods in Applied Mechanics and Engineering,vol.91,pp.177-204.

    Nayfeh,A.H.(1981):Introduction to Perturbation Techniques.New York:John Wiley&Sons.

    Ramirez,F.;Heyliger,P.R,;Pan,E.(2006):Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach.Composites Part B-Engineering,vol.37,pp.10-20.

    Roque,C.M.C.;Ferreira,A.J.M.;Jorge,R.M.N.(2005):Modeling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions.Composites Part B-Engineering,vol.36,pp.559-572.

    Saravanos,D.A.;Heyliger,P.G.(1999):Mechanics and computational models for laminated piezoelectric beams,plates,and shells.Applied Mechanics Reviews,vol.52,pp.305-320.

    Sladek,J.;Sladek,V.;Zhang,C.(2003):Application of meshless local Petro-Galerkin(MLPG)method to elastodynamic problems in continuously nonhomogeneous solids.CMES-Computer Modeling in Engineering&Sciences,vol.4,pp.637-647.

    Sladek,J.;Sladek,V.;Krivacek,J.;Aliabadi,M.H.(2007):Local boundary integral equations for orthotropic shallow shells.International Journal of Solids and Structures,vol.44,pp.2285-2303.

    Sladek,J.;Sladek,V.;Solek,P.;Wen,P.H.(2008):Thermal bending of Reissner-Mindl in plates by the MLPG.Computer Methods in Applied Mechanics and Engineering,vol.28,pp.57-76.

    Sladek,J.;Sladek,V.;Stanak,P.;Zhang,Ch.(2010):Meshless local Petro-Galerkin(MLPG)method for laminate plates under dynamic loading.CMCComputers,Materials,&Continua,vol.15,pp.1-26.

    Sladek,J.;Stanak,P.;Han,Z.D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG method in Engineering and Sciences:a review.Computer Methods in Applied Mechanics and Engineering,vol.92,pp.423-475.

    Sladek,J.;Sladek,V.;Zhang,C.H.;Krivacek,J.;Wen,P.H.(2006):Analysis of orthotropic thick plates by meshless local Petro-Galerkin(MLPG)method.International Journal for Numerical Methods in Engineering,vol.13,pp.2830-2850.

    Soldatos,K.P.;Hadjigeorgiou,V.P.(1990):Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels.Journal of Sound and Vibration,vol.137,pp.369-384.

    Swaminathan,K.;Naveenkumar,D.T.,Zenkour,A.M.;Carrera,E.(2015):Stress,vibration and buckling analyses of FGM plates-A state-of-the art review.Composite Structures,vol.120,pp.10-31.

    Wang,Y.M.;Chen,S.M.;Wu,C.P.(2010):A meshless collocation method based on the differential reproducing kernel interpolation.Computational Mechan-ics,vol.45,pp.585-606.

    Wu,C.P.;Li,H.Y.(2010):RMVT-and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates.CMC-Computers,Materials,&Continua,vol.19,pp.155-198.

    Wu,C.P.;Li,H.Y.(2013):An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions.CMCComputers,Materials,&Continua,vol.34,pp.27-61.

    Wu,C.P.;Liu,K.Y.(2007):A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells.CMC-Computers,Materials,&Continua,vol.6,pp.177-199.

    Wu,C.P.;Syu,Y.S.(2007):Exact solutions of functionally graded piezoelectric shells under cylindrical bending.International Journal of Solids and Structures,vol.44,pp.6450-6072.

    Wu,C.P.;Tsai,Y.H.(2009):Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation.Journal of Engineering Mathematics,vol.63,pp.95-119.

    Wu,C.P.;Tsai,Y.H.(2010):Dynamic responses of functionally graded magnet oelectro-elastic shells with closed-circuit surface conditions using the method of multiple scales.European Journal of Mechanics A-Solids,vol.29,pp.166-181.

    Wu,C.P.;Tsai,T.C.(2012):Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method.Applied Mathematical Modelling,vol.36,pp.1910-1930.

    Wu,C.P.;Yang,S.W.(2011):A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders.Journal of Intelligent Material Systems and Structures,vol.22,pp.1993-2007.

    Wu,C.P.;Chiu,K.H.;Wang,Y.M.(2008):A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells.CMC-Computers,Materials,&Continua,vol.8,pp.93-132.

    Wu,C.P.;Jiang,R.Y.;Tu,S.Y.(2014):Exact solutions for the stability and free vibration of multilayered functionally graded material hollow cylinders under axial compression.CMC-Computers,Materials,&Continua,vol.42,pp.111-152.

    Wu,C.P.;Tarn,J.Q.;Chi,S.M.(1996a):Three-dimensional analysis of doubly curved laminated shells.Journal of Engineering Mechanics,vol.122,pp.391-401.

    Wu,C.P.;Tarn,J.Q.;Chi,S.M.(1996b):An asymptotic theory for dynamic response of doubly curved laminated shells.International Journal of Solids and Structures,vol.33,pp.3813-3841.

    Xie,G.Q.;Chi,M.X.(2014):Sensitivity of dynamic response of a simply sup-ported functionally graded magneto-electro-elastic plate to its elastic parameters.CMC-Computers,Materials,&Continua,vol.44,pp.123-140.

    Zhong,Z.;Yu,T.(2006):Vibration of a simply supported functionally graded piezoelectric rectangular plate.Smart Materials and Structures,vol.15,pp.1404-1412.

    Appendix A.The expressions of Kij

    The relevant differential operatorsKij(i,j=1-3)andIkl(k=1,2;l=0-2)in Eqs.(42)-(44)are given as follows:

    in which

    Appendix B.The expressions ofkij(i,j=1?3)

    The relevant differential operatorskij(i,j=1?3)in Eq.(69)are given as follows:

    Appendix C.The expressions ofdij

    The relevant differential operatorsdijin Eq.(70)-(72)are given as follows:

    猜你喜歡
    卡口交通管理多維度
    主動(dòng)交通管理在智慧高速中的應(yīng)用探討
    “多維度評(píng)改”方法初探
    L卡口“馬拉松”聯(lián)盟的前世今生
    攝影之友(2018年12期)2018-12-26 08:53:42
    多維度市南
    商周刊(2017年7期)2017-08-22 03:36:22
    對(duì)設(shè)區(qū)城市交通管理立法的思考
    限行不限購(gòu)應(yīng)是小汽車交通管理的新常態(tài)
    高速公路車道高清卡口系統(tǒng)實(shí)施方案
    基于高清卡口識(shí)別的高速公路長(zhǎng)隧道安全比對(duì)系統(tǒng)
    專利名稱:一種禽舍加溫水槽
    智能交通是城市交通管理的有效途徑
    一夜夜www| 亚洲人成网站高清观看| 少妇高潮的动态图| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 精品99又大又爽又粗少妇毛片 | 国产一区二区三区视频了| av国产免费在线观看| 久久久久久久午夜电影| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 免费大片18禁| 男人狂女人下面高潮的视频| 国产av麻豆久久久久久久| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 天堂√8在线中文| 午夜老司机福利剧场| 一卡2卡三卡四卡精品乱码亚洲| av专区在线播放| 亚洲精品在线美女| 草草在线视频免费看| 亚洲,欧美精品.| 噜噜噜噜噜久久久久久91| 日韩高清综合在线| av黄色大香蕉| 动漫黄色视频在线观看| 国内揄拍国产精品人妻在线| 美女高潮喷水抽搐中文字幕| 午夜免费男女啪啪视频观看 | 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久亚洲av鲁大| 国内揄拍国产精品人妻在线| 3wmmmm亚洲av在线观看| a级毛片免费高清观看在线播放| 午夜福利视频1000在线观看| 国产在线精品亚洲第一网站| 熟女电影av网| 亚洲片人在线观看| 久久久久国内视频| 九色国产91popny在线| 国产黄片美女视频| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| 一进一出抽搐动态| 亚洲成av人片在线播放无| 老熟妇仑乱视频hdxx| 国产高清视频在线观看网站| 欧美乱妇无乱码| 九色国产91popny在线| 欧美区成人在线视频| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片| 直男gayav资源| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 亚洲va日本ⅴa欧美va伊人久久| 自拍偷自拍亚洲精品老妇| 淫秽高清视频在线观看| 又爽又黄无遮挡网站| 国产午夜精品论理片| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 亚洲成av人片在线播放无| 亚洲精品在线观看二区| 性色av乱码一区二区三区2| 成年免费大片在线观看| 国产伦精品一区二区三区四那| ponron亚洲| 国产成人福利小说| 97超级碰碰碰精品色视频在线观看| 午夜免费男女啪啪视频观看 | 亚洲经典国产精华液单 | 精品99又大又爽又粗少妇毛片 | 熟女电影av网| 国产爱豆传媒在线观看| 天堂√8在线中文| 99精品久久久久人妻精品| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 极品教师在线免费播放| 人妻久久中文字幕网| 国内精品一区二区在线观看| 高清日韩中文字幕在线| 国产精华一区二区三区| a级一级毛片免费在线观看| 精品人妻偷拍中文字幕| 90打野战视频偷拍视频| 又爽又黄无遮挡网站| 亚洲最大成人中文| 久久久成人免费电影| 精品久久久久久久末码| av在线老鸭窝| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 2021天堂中文幕一二区在线观| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 麻豆一二三区av精品| 亚洲欧美日韩高清在线视频| 亚洲中文日韩欧美视频| 欧美激情国产日韩精品一区| 日本黄大片高清| 少妇人妻一区二区三区视频| 国产精品免费一区二区三区在线| 午夜福利免费观看在线| 一边摸一边抽搐一进一小说| 别揉我奶头~嗯~啊~动态视频| 免费看日本二区| 啦啦啦观看免费观看视频高清| 亚洲最大成人中文| 精品国产亚洲在线| 丁香欧美五月| 久久人人爽人人爽人人片va | 久久草成人影院| 国产色婷婷99| 久久久久国产精品人妻aⅴ院| 亚洲成人久久性| 精品久久久久久久久亚洲 | 亚洲狠狠婷婷综合久久图片| 最近最新免费中文字幕在线| 色视频www国产| 久久人妻av系列| 757午夜福利合集在线观看| 国产精品综合久久久久久久免费| 少妇被粗大猛烈的视频| 99在线人妻在线中文字幕| 久久九九热精品免费| 国产综合懂色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 欧美午夜高清在线| 我要看日韩黄色一级片| a在线观看视频网站| 一级av片app| 窝窝影院91人妻| 熟女电影av网| 88av欧美| 成人无遮挡网站| 校园春色视频在线观看| 天堂av国产一区二区熟女人妻| 网址你懂的国产日韩在线| 午夜福利18| 亚洲精品粉嫩美女一区| 亚洲成av人片免费观看| 亚洲人成网站高清观看| 亚洲经典国产精华液单 | 女人被狂操c到高潮| 国产在线男女| 日韩中文字幕欧美一区二区| 宅男免费午夜| 亚洲五月天丁香| 亚洲美女搞黄在线观看 | 亚洲欧美清纯卡通| 精品国内亚洲2022精品成人| 国产av在哪里看| 69av精品久久久久久| 又爽又黄a免费视频| 身体一侧抽搐| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| www.www免费av| 日本一本二区三区精品| 亚洲国产精品999在线| 欧美黑人巨大hd| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 日韩欧美国产在线观看| 欧美又色又爽又黄视频| 亚洲欧美清纯卡通| 国产探花极品一区二区| 国产高清视频在线观看网站| 欧美成人免费av一区二区三区| 欧美日韩综合久久久久久 | 国产精品自产拍在线观看55亚洲| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 天堂网av新在线| 国产三级中文精品| 午夜免费激情av| 日日夜夜操网爽| 亚洲精品一区av在线观看| 欧美成人a在线观看| 亚洲欧美日韩高清在线视频| 少妇丰满av| 亚洲欧美日韩高清专用| 国产精品一区二区三区四区免费观看 | 国内精品久久久久精免费| 97碰自拍视频| 久久6这里有精品| 十八禁国产超污无遮挡网站| 午夜福利在线在线| 亚洲欧美清纯卡通| 国内精品一区二区在线观看| 亚洲国产欧洲综合997久久,| 亚洲人成网站在线播| 永久网站在线| 亚洲国产精品成人综合色| 亚洲在线观看片| 国产男靠女视频免费网站| 老鸭窝网址在线观看| 日韩大尺度精品在线看网址| 国产高清激情床上av| 99精品久久久久人妻精品| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站 | 国产av在哪里看| 啪啪无遮挡十八禁网站| 欧美日韩国产亚洲二区| 亚洲av美国av| 国产成人啪精品午夜网站| 欧美三级亚洲精品| 欧美成人性av电影在线观看| 日韩欧美在线乱码| www.999成人在线观看| 桃色一区二区三区在线观看| 简卡轻食公司| 少妇熟女aⅴ在线视频| 亚洲av美国av| 亚洲精品乱码久久久v下载方式| 精品人妻偷拍中文字幕| 岛国在线免费视频观看| 免费观看精品视频网站| 婷婷六月久久综合丁香| 99久久精品国产亚洲精品| 黄色一级大片看看| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 免费大片18禁| 国产欧美日韩精品一区二区| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 亚洲电影在线观看av| 一个人免费在线观看电影| 亚洲天堂国产精品一区在线| 美女大奶头视频| 亚洲国产色片| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久| 久久人妻av系列| 日韩免费av在线播放| a级毛片a级免费在线| 动漫黄色视频在线观看| 日韩中字成人| 国模一区二区三区四区视频| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 他把我摸到了高潮在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品久久电影中文字幕| 757午夜福利合集在线观看| 男人舔女人下体高潮全视频| 嫩草影院新地址| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 一区福利在线观看| 成人无遮挡网站| 99热这里只有是精品50| 在线观看免费视频日本深夜| 亚洲激情在线av| 午夜精品在线福利| 国产欧美日韩精品一区二区| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 免费黄网站久久成人精品 | 亚洲内射少妇av| 国产精品久久电影中文字幕| 丁香欧美五月| 国产成人欧美在线观看| 久久热精品热| 久久性视频一级片| 在线a可以看的网站| 制服丝袜大香蕉在线| 成人欧美大片| 国产高清视频在线观看网站| 国产大屁股一区二区在线视频| 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 成人精品一区二区免费| 亚洲av成人av| 亚洲在线观看片| 日韩欧美一区二区三区在线观看| 特大巨黑吊av在线直播| 国产精品久久久久久亚洲av鲁大| 精品人妻熟女av久视频| 悠悠久久av| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 九九热线精品视视频播放| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 91久久精品电影网| 亚洲最大成人手机在线| 一区二区三区激情视频| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 国产精品一及| 久久精品国产亚洲av天美| 欧美一区二区精品小视频在线| 一夜夜www| 乱码一卡2卡4卡精品| 国产高潮美女av| 两个人视频免费观看高清| 日日摸夜夜添夜夜添av毛片 | 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 中文字幕熟女人妻在线| 在线国产一区二区在线| 90打野战视频偷拍视频| 久久久久久久久中文| 深夜精品福利| 又爽又黄a免费视频| 在线观看一区二区三区| 日本黄色片子视频| 久久人人精品亚洲av| 少妇人妻精品综合一区二区 | 51午夜福利影视在线观看| 午夜日韩欧美国产| 亚洲国产欧美人成| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 日日夜夜操网爽| 88av欧美| 日韩大尺度精品在线看网址| 久久精品影院6| 久久国产精品人妻蜜桃| 欧美黄色片欧美黄色片| av在线老鸭窝| 国产成年人精品一区二区| 午夜久久久久精精品| 国产精品av视频在线免费观看| 一级av片app| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 欧美日韩黄片免| 午夜老司机福利剧场| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av第一区精品v没综合| 欧美日韩国产亚洲二区| 一个人免费在线观看电影| 好看av亚洲va欧美ⅴa在| 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 久久人人爽人人爽人人片va | 男女做爰动态图高潮gif福利片| 国产精品伦人一区二区| av国产免费在线观看| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 国产日本99.免费观看| 国产高清视频在线播放一区| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| av女优亚洲男人天堂| 我的老师免费观看完整版| 国产亚洲精品久久久com| 日韩欧美一区二区三区在线观看| 亚洲国产精品久久男人天堂| 婷婷六月久久综合丁香| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 黄色丝袜av网址大全| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 久久久久久久久大av| 久久精品国产亚洲av天美| 亚洲美女视频黄频| 亚洲天堂国产精品一区在线| 亚洲自偷自拍三级| av国产免费在线观看| 国产成人欧美在线观看| 久久精品久久久久久噜噜老黄 | 91九色精品人成在线观看| 亚州av有码| 99热这里只有是精品50| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 精品久久国产蜜桃| 日韩欧美在线乱码| 美女xxoo啪啪120秒动态图 | 中国美女看黄片| 国产老妇女一区| 97热精品久久久久久| 免费av不卡在线播放| 久久天躁狠狠躁夜夜2o2o| 国产精品98久久久久久宅男小说| 久久久久九九精品影院| 亚洲成人久久性| 精品人妻熟女av久视频| 亚洲成人久久性| 成人av在线播放网站| 国产乱人视频| 国产视频内射| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 五月玫瑰六月丁香| 国产精品野战在线观看| 欧美性感艳星| 在线播放无遮挡| 波多野结衣高清作品| 久久精品国产亚洲av天美| 精品人妻1区二区| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 国产主播在线观看一区二区| 国产美女午夜福利| 99久久九九国产精品国产免费| 久久久久久国产a免费观看| 欧美国产日韩亚洲一区| 午夜福利18| 能在线免费观看的黄片| 变态另类成人亚洲欧美熟女| 亚洲av一区综合| 国产av麻豆久久久久久久| 免费av毛片视频| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2| 啪啪无遮挡十八禁网站| 欧美日本视频| 亚洲熟妇熟女久久| 国产在视频线在精品| 少妇人妻一区二区三区视频| 国产人妻一区二区三区在| 女同久久另类99精品国产91| 两个人视频免费观看高清| 欧美高清成人免费视频www| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片 | 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 午夜免费激情av| 每晚都被弄得嗷嗷叫到高潮| aaaaa片日本免费| 亚洲美女黄片视频| 日本三级黄在线观看| 久久精品国产清高在天天线| 免费观看精品视频网站| 俄罗斯特黄特色一大片| 成年版毛片免费区| 亚洲成av人片免费观看| 亚洲精品在线观看二区| 午夜激情欧美在线| 1000部很黄的大片| 欧美丝袜亚洲另类 | 国内毛片毛片毛片毛片毛片| 亚洲av二区三区四区| 一本一本综合久久| 最好的美女福利视频网| 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 国产熟女xx| 老鸭窝网址在线观看| 欧美日韩黄片免| 免费在线观看成人毛片| 国产高清激情床上av| 久久久精品大字幕| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频| av天堂在线播放| 亚洲久久久久久中文字幕| 亚洲18禁久久av| 91在线观看av| 午夜福利在线观看吧| 成人毛片a级毛片在线播放| 首页视频小说图片口味搜索| 国产精品一及| 国产亚洲精品综合一区在线观看| 亚洲av熟女| 日本黄色视频三级网站网址| aaaaa片日本免费| 国产主播在线观看一区二区| 国产精品电影一区二区三区| 69人妻影院| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 午夜a级毛片| 国内精品久久久久精免费| 深爱激情五月婷婷| av福利片在线观看| 欧美xxxx性猛交bbbb| 3wmmmm亚洲av在线观看| 国内精品久久久久精免费| 深爱激情五月婷婷| 一级黄色大片毛片| 国产人妻一区二区三区在| 美女大奶头视频| 男女那种视频在线观看| 宅男免费午夜| 九色国产91popny在线| 天堂√8在线中文| 亚洲成人久久爱视频| av在线观看视频网站免费| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 变态另类丝袜制服| 99久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 此物有八面人人有两片| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 欧美潮喷喷水| 天堂√8在线中文| 日本熟妇午夜| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 亚洲国产精品久久男人天堂| a级毛片免费高清观看在线播放| 日日夜夜操网爽| 日日干狠狠操夜夜爽| 999久久久精品免费观看国产| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| 亚洲 欧美 日韩 在线 免费| 日韩 亚洲 欧美在线| 男女下面进入的视频免费午夜| 日日夜夜操网爽| 亚洲无线在线观看| 黄色配什么色好看| 能在线免费观看的黄片| 亚洲乱码一区二区免费版| 色视频www国产| avwww免费| 久久性视频一级片| 麻豆久久精品国产亚洲av| 欧美成人免费av一区二区三区| 十八禁网站免费在线| netflix在线观看网站| 久久午夜福利片| 又黄又爽又免费观看的视频| 国产人妻一区二区三区在| 精品国产三级普通话版| 国产高清三级在线| 90打野战视频偷拍视频| 淫妇啪啪啪对白视频| 久久人人爽人人爽人人片va | 永久网站在线| 午夜福利在线观看吧| 亚洲真实伦在线观看| 又爽又黄无遮挡网站| 欧美精品国产亚洲| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 国产男靠女视频免费网站| 男女那种视频在线观看| 久久久久久久午夜电影| 小说图片视频综合网站| 性色avwww在线观看| 亚洲成人精品中文字幕电影| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| www.熟女人妻精品国产| 亚洲国产欧洲综合997久久,| 婷婷亚洲欧美| 俺也久久电影网| 99久久99久久久精品蜜桃| 国产精品女同一区二区软件 | 欧美又色又爽又黄视频| 久久久国产成人精品二区| 国产av不卡久久| 9191精品国产免费久久| 亚洲成av人片免费观看| 精品一区二区三区人妻视频| 99热这里只有精品一区| 最近视频中文字幕2019在线8| 少妇高潮的动态图| 国内精品久久久久久久电影| 美女免费视频网站| 啦啦啦韩国在线观看视频| 女生性感内裤真人,穿戴方法视频| 91九色精品人成在线观看| 真人一进一出gif抽搐免费| 国产男靠女视频免费网站| 亚洲在线观看片| 俄罗斯特黄特色一大片| av在线蜜桃| a在线观看视频网站| 五月伊人婷婷丁香| 中文字幕高清在线视频| 欧美zozozo另类| 人人妻,人人澡人人爽秒播| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看| 久久九九热精品免费| 久久香蕉精品热| 一级av片app| 国产精品av视频在线免费观看| 国产在线精品亚洲第一网站|