• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fracture Mechanics Approach to Estimate Fatigue Lives of Welded Lap-Shear Specimens

    2015-04-20 01:33:36PohSangLamandJwoPan
    Computers Materials&Continua 2015年4期

    Poh-Sang Lamand Jwo Pan

    1 Introduction

    This paper is a summary of recent development at the University of Michigan for estimating fatigue life of laser weld in a lap-shear specimen[e.g.,the work of Sripichai et al.(2011);Asim et al.(2014)].The specimens were made of thin sheets of SAE J2340 300Y High Strength Low Alloy(HSLA)steel and were welded with 6 kW CO2laser.When a specimen was subjected to cyclic loadingconditions,two main cracks were formed on each side of the weld.The lap-shear load is statically equivalent to a combined loading of a membrane force and a bending moment.The beam theory is used to calculate the structural stress as experienced at the edges of the weld.The structural stress represents the sum of the uniform normal stress on the cross-section of the specimen due to the membrane force and the maximum normal stress on the cross-section due to the bending moment at the edges of the weld.The principle of superposition is employed to decompose the loading system into several simpler configurations to facilitate the derivation of the stress intensity factors in crack opening mode(KI)and sliding mode(KII).

    The fatigue lives of the lap-shear specimens can be estimated by three approaches:

    (1)With the structural stresses calculated from the beam theory,the fatigue lives can be estimated with the experimental fatiguedata of the material,typically known as theS?Ncurve(stress vs.number of cycles);

    (2)The fatigue life can be obtained by integrating the empirical Paris law(da/dN=C(ΔK)m),whereais the crack length,Nis the number of cycles,ΔKis the loading characterized by the range of stress intensity factors,andCandmare material constants obtained by curve- fi tting.The key for this approach is that the stress intensity factor solutions must be known.From the lap-shear specimen fatigue testing,it is noted that a kinked crack is formed at the main crack tip and propagates through the sheet thickness leading to failure.Therefore,two sets of stress intensity factors must be determined:1)for the main crack and 2)for the kinked crack.The stress intensity factors for the main crack were obtained by previous work such as Sripichai et al.(2011).The solution process will be summarized in this paper.A theoretical solution of the stress intensity factors for a kinked crack has been derived by Cotterell and Rice(1980).These solutions can be used with the Paris law and a simple equation for fatigue life can be obtained by direct integration;and

    (3)As the kinked crack grows eventually leading to failure,the stress intensity factor solutions of Cotterell and Rice for an in finitesimal kinked crack become inadequate.A set of finite element based solutions must be used with the Paris law.This paper will describe the essential elements of these approaches.The estimations will be compared with the experimental data.

    2 Specimen configuration

    A welded lap-shear specimen is schematically shown in Fig.1,in whichW=27mm,b=8 mm,c=13.5 mm,w=1 mm,L=95 mm,V=30 mm,t=0.93 mm,r=10 mm,ands=50 mm.The cyclic loadFis applied to both ends of the specimen.A detailed weld configuration is shown in Fig.2.Figure 3 shows the welded region of the test specimen prior to final failure by the cyclic load.Note that the kinkedcrack on the right is longer than the one on the left.The Young’s modulus,yield strength,and tensile strength of the HSLA steel are,respectively,206 GPa,315 MPa,and 415 MPa.The hardening exponent is 0.15 and the strength coefficient is 633 MPa.

    Figure 1: A schematic of a lap-shear specimen.

    Figure 2: Weld details.

    3 Principle of Superposition–Global Stress and Stress Intensity Factors

    Radaj(1989),Radaj and Zhang(1991a,1991b,1992),Lin et al.(2007),and Lin and Pan(2008)showed that the loadFof a lap-shear specimen(Fig.4a)can be de-composed into statically equivalent symmetric and anti-symmetric loads.The dogbone area(mid-section)of a lap-shear specimen is modeled as two beams which are connected by the weld(Fig.4b).It can be seen that the equivalent loadings are the membrane force per unit width(F/b)and the bending moment per unit width(Ft/2b),applied at the middle surfaces of the upper or the lower beams.

    Figure 3: A partially failed laser weld.Note that the right kinked crack is always longer and the upper right leg always separates under high cycle fatigue testing.

    The loading in Fig.4b can further be decomposed into four symmetric and antisymmetric loading conditions:counter bending(Fig.4c),central bending(Fig.4d),tension(Fig.4e),and in-plane shear(Fig.4f).The bending moments per unit width of the counter bending and central bending loading conditions have a magnitude ofFt/4b,and the forces per unit width of the tension and in-plane shear loading conditions areF/2b.

    3.1 Global Structural Stress at Weld Edge

    From Fig.4b,the structural stress in the lap-shear specimen can be easily shown as

    Figure 4: Decomposition of the lap-shear loading system.The shaded area is the weld zone.The two-beam model is subjected to the lap-shear loading as shown in(a),which is equivalent to the loading in(b).By superposition,(b)is the sum of(c)counter bending,(d)central bending,(e)tension,and(f)in-plane shear loading.

    Note that the first term on the right hand side of Eq.1 corresponds to the membrane force per unit width and the second term is from the bending moment per unit width.With Eq.(1)defined as the cyclic structural stress at the edge of the weld bead and utilizing the experimental stress-fatigue life data(S?NCurve)of the HSLA steel,the fatigue lives of laser welds in lap-shear specimens can be estimated.

    3.2 Global Stress Intensity Factors for the Main Cracks

    In terms of linear elastic fracture mechanics,the crack driving force(G)or the energy release rate of a crack is the decrease of potential energy per unit crack extension.In addition,it has been shown that the energy release rate and the stress intensity factors are related by

    whereE′=E/(1?ν2)for plane strain andE′=Efor plane stress,Eis the Young’s modulus,andνis the Poisson’s ratio.Based on these conditions,Sripichai et al.(2011)showed that the stress intensity factors with respect to the decomposed configurations are:

    (i)Figure 4c,Counter Bending

    KII=0

    (ii)Figure 4d,Central Bending

    KI=0

    (iii)Figure 4e,Simple Tension along the Crack Face

    KI=KII=0

    (iv)Figure 4f,In-plane Shear

    KI=0

    Therefore,by superposition,the“global”stress intensity factors for the main cracks of the lap-shear specimen subject to loadF(Fig.1)are

    Note that Eqs.(3)and(4)are valid only when the weld widthwis large compared to the sheet thicknesst.Whenwbecomes smaller,the Westergaard stress function solutions in Tada et al.(2000)prevail:

    KI,TPI=0

    To obtain the full range of the global stress intensity factor as a function ofw/t,the finite element analysis was carried out by Sripichai et al.(2011).Their approximate solutions forKIandKIIare given as(also shown graphically in Fig.5):

    (a)Solution forKI

    (b)Solution forKII

    Figure 5: The global stress intensity factors as functions of w/t(all KI’s and KII’s are normalized by Eq.(4)).

    3.3 Stress Intensity Factors for the Kinked Crack

    3.3.1 Analytical Solution

    In reality,the experimental observation suggested that the fatigue cracks of the lapshear specimens never follow the direction of the main cracks(formed by the two sheets and the weld).Instead,as shown in Fig.3,a kinked crack was initiated at each of the main crack tips.Figure 6 is a schematic of a kinked crack with lengthaand a kink angleα.DenotingKIandKIIas the global stress intensity factors for the main crack,the solutions for the local stress intensity factorskIandkIIfor the kinked crack are given by Bilby et al.(1978)and Cotterell and Rice(1980):

    where(kI)0and(kII)0represent the localkIandkIIsolutions for the kinked crack with its lengthaapproaching to 0(i.e.,an in finitesimal kink).Note that the arrows in Fig.6 indicate the positive sense of the stress intensity factorsKI,KII,kI,andkII.

    Figure 6: A schematic of a main crack and a kinked crack with kink length a and kink angle α.

    3.3.2 Numerical Solutions for a finite kinked Crack

    Note that the theoretical solutions for a kinked crack in Eqs.(7)and(8)are functions of the kink angleαand the specimen overall geometry(through the global stress intensity factorsKIandKII),and is independent of the kink lengtha.However,as the kinked crack continues to grow under fatigue load,it is expected that thelocal stress intensity factors(kIandkII)will increase with the kink length.Therefore, finite element analysis was conducted by considering that the kinked crack has a finite length.In addition,for the particular lap-shear specimens discussed in this paper,the kink is assumed to be perpendicular to the main crack(i.e.,α=?90?)as shown in Fig.3.The finite element model is schematically shown in Fig.7 and the calculated stress intensity factorskIandkII,which both are normalized by(kI)0for convenience,are plotted in Figs.8 and 9.

    Figure 7: A schematic of a two-dimensional finite elemental model of a lap-shear specimen with two kinked cracks.

    Figure 8: The values of kI/(kI)0for w/t=0.5,1,and 2 with α=?90?.

    Figure 9: The values of kII/(kI)0for w/t=0.5,1,and 2 with α=?90?.

    4 Estimation of Fatigue Life

    The fatigue life of a structural component can be estimated based on:1)structural stress,using the fatigue data from material testing,typically known as theS?NCurve,and 2)fracture mechanics,using the stress intensity factor solutions at the tip of a fatigue crack.

    4.1 Structural Stress Model

    The structural stress for the welded lap-shear specimen was derived in Section 3.1 asσ=F/tb+3F/tb=4F/tb(Eq.(1)).With the applied stress(σ)and theS?Nfatigue curve for HSLA steel,the fatigue life curve can be constructed.However,the stress-life data for the SAE 300Y HSLA(with the tensile yield strength of 315 MPa)are not available,and the stress-life data forR=?1 of SAE 950X(with the tensile yield strength of 350 MPa)are used instead.The fatigue life estimations with the structural stress are plotted against the experimental data in Fig.10.

    4.2 Fatigue Crack Growth Model

    Here the Paris law(da/dN=C(ΔK)m)is adopted to describe the fatigue crack propagation for kinked cracks emanating from the main cracks in the lap-shearspecimens.Because bothkIandkIIexist at the crack tip,an equivalent stress intensity factor range(Δkeq)is used.The Paris law is rewritten as

    where

    In the above equation,γis an empirical constant to account for the sensitivity of material to the Mode II loading conditions.In the absence of information,the value ofγis simply taken as unity(1).By substituting Eq.(10)into Eq.(9)and integrating,the fatigue life of a laser weld in lap-shear specimens can be expressed as

    where 0,0.025,0.05,...,and 0.7,are arbitrarily chosen and represent the values of the normalized kink lengtha/t,at which the local stress intensity solutions are available(e.g.,by referencing Figs.8 and 9).The variablet′is the actual crack growth distance(t′=t/sin|α|).In the case ofα=?90?such as in Fig.7,t′=t.

    The material constants,C=6.89×10?9andm=3,for ferritic-pearlitic steels listed in Dowling(1998)are used to estimate the fatigue lives.The fatigue lives predicted by Eq.(11)with the use of the complete solutionskI(Fig.8)andkII(Fig.9)are shown in Fig.10.Note that the global stress intensity factorsKIandKIIare implicit in Figs.8 and 9 through the normalization factor(kI)0(Eq.(7)).In addition,the effect of the load ratio(R)is ignored when the range of the stress intensity factor(Δkeq)is used in Eqs.(9)and(11).The load ratio is actually 0.2 in the fatigue experiments but is not expected to have significant impacts on the fatigue life estimations of these laser welds.

    4.3 Simplified Fatigue Crack Growth Model

    In a Simplified model,the local stress intensity factors(kI)0and(kII)0in Eqs.(7)and(8)are used with the Paris law(Eq.9).Note that the stress intensity factor solutions are valid only as the kink lengthaapproaching to 0.As treated by Newman and Dowling(1998)and Lin et al.(2006),the ranges of the equivalent local stress intensity factors are assumed to be constant for all kink lengths and are assumed tobe equal to those for the kinked cracks with vanishing length(a→0).For this Simplified model,the fatigue life of a laser weld can then be obtained by substituting Eqs.(7)and(8)into Eq.(9).By direct integration,

    Figure 10: The experimental results and the fatigue life estimations based on the(1)structural stress model,(2)fatigue crack growth model,and(3)Simplified fatigue crack growth model.

    5 Discussions

    Figure 10 shows the experimental results of the CO2laser welded lap-shear specimens made from SAE J2340 300Y HSLA steel.It also includes the fatigue life estimations based on(1)the structural stress(Section 4.1),(2)the fatigue crack growth model(Section 4.2),and(3)the Simplified fatigue crack growth model(Section 4.3).It can be seen that the fatigue life estimations based on the fatigue crackgrowth model(with the global and the local stress intensity factor solutions forw/t=0.86)are in agreement with the experimental results,while the fatigue lives estimated with the Simplified fatigue crack growth model are consistently higher than the experimental data.This is understandable because the value of the equivalent local stress intensity factor increases as the kink length becomes longer,but in the Simplified model this quantity is assumed to remain at its initial value evaluated at nearly zero kink length and is lower than the realistic value,which implies a slower crack growth rate and a longer fatigue life.

    The solutions ofkIandkIIin Section 3.3.2 for a finite kinked crack can be further improved by considering the actual weld configuration(Fig.2)to include the weld bead in the finite element model(Fig.11).As shown in Asim et al.(2014),with the weld bead,the solution forkIfor the right main crack becomes higher than that for the left main crack,but on the other hand,kIIis higher on the left side.Because the absolute value ofkIIis only about 10%ofkI,the range of the equivalent stress intensity factor Δkeqremains higher at the right kinked crack.This suggests that the right kinked crack should grow faster and the failure would occur first in the right side of the lap-shear specimen.Indeed this is consistent with the experimental observation for high cycle fatigue testing[Asim et al.(2014)]and is shown in Fig.3.

    Figure 11: A schematic of a two-dimensional finite element model of a lap-shear specimen with a weld bead.

    It is well known that the Paris Law typically well represents the fatigue crack growth behavior in most of the stress intensity factor(ΔK)range,however,it would overestimateda/dNat the initial or threshold ΔKand underestimate it at large ΔK.An alternative formulation based on the method of Moving Least Squares,or MLS,[e.g.,see Atluri and Zhu(1998);Kim and Atluri(2000)]to model fatigue behavior in terms of ΔKwas proposed by Dong et al.(2015).These researchers demonstrated that only very few MLS nodes were needed to predict thea vs.Nor theda/dN vs.ΔKcurves very accurately for 7075-T6 aluminum alloy,where ΔKwas obtained by the Finite Element Alternating Method (FEAM) as was shown by Nishioka and Atluri(1983)and Dong and Atluri(2013a;2013b).In a more recent work by Wang et al.(2015),they introduced probabilistic frame work with Kalman and particle filters to remove the errors caused by experimental noises,for example,from the experimentala vs.Ndata set.Such treatment allows the mean value and probabilistic distribution of the remaining useful life be calculated.It would be interesting to implement MLS in the study of the kinked fatigue crack growth such as the present work in the case of a lap-shear joint.

    6 Conclusions

    This paper summarizes part of the research at the University of Michigan on predicting the fatigue lives of lap-shear specimens based on fracture mechanics.A full range of approximate closed-form solutions for global stress intensity factors are first developed for the main crack based on the results of(1) finite element analyses in conjunction with(2)analytical solutions with beam bending theory and(3)Westergaard stress function solutions for two semi-in finite solids which share a common boundary with a length equal to the size of the weld.It is followed by a series of finite element analysis to calculate the local stress intensity factors at the tip of the kinked crack emanating from the main crack tips.The computational results indicate that the kinked cracks are under dominant Mode I loading(kI>>kII).Combining the calculated local stress intensity factors with the global stress intensity factors(KIandKII),the fatigue life of laser welded lap-shear specimen can be estimated.In addition,a standard engineering practice of using the structural stress and theS?Ncurve to predict the fatigue lives is also presented.Comparing with the fatigue test data of the lap-shear specimens,it can be concluded that the fatigue lives estimated with the kinked fatigue crack growth model agree well with the experimental results,whereas the estimations based on the structural stress agree only at higher fatigue loads.

    Asim,K.;Sripichai,K.;Pan,J.(2014):Fatigue behavior of laser welds in lapshear specimens of high strength low alloy steel sheets.Int.J.Fatigue,vol.61,pp.283–296.

    Atluri,S.N.;Zhu,T.(1998):A New Meshless Local Petrov-Galerkin(MLPG)Approach to Nonlinear Problems in Computer.Modeling&Simulation,Computer Modeling&Simulation in Engg.,vol.3,pp.187-196.

    Bilby,B.A.;Cardew,G.E.;Horward,I.C.(1978):Stress intensity factors at the tip of kinked and forked cracks.The fourth international conference on fracture,University of Waterloo,Ontario,June 19-24,1977;Pergamon Press,New York,3A,pp.197-200.

    Cotterell,B.;Rice,J.R.(1980):Slightly curved or kinked cracks.Int J Fract,vol.16,pp.155-169.

    Dong,L.;Atluri,S.N.(2013a):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 1:2D Structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.91-146.

    Dong,L.;Atluri,S.N.(2013b):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 2:3D Solids.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.379-413.

    Dong,L.;Haynes,R.;Atluri,S.N.(2015):On Improving the Celebrated Paris’Power Law for Fatigue,by Using Moving Least Squares.CMC:Computers Materials and Continua,vol.45,pp.1-15.

    Dowling,N.E.,(1998):Mechanical Behavior of Materials,Second Edition,Prentice Hall,New Jersey.

    Kim H.G.,Atluri,S.N.(2000):Arbitrary placement of secondary nodes,and error control,in the meshless local Petrov-Galerkin(MLPG)method.CMESComputer Modeling in Engineering&Sciences,vol.1,pp.11-32.

    Lin,P.C.;Pan,J.(2008):Closed-form structural stress and stress intensity factor solutions for spot welds in commonly used specimens.Eng Fract Mech,vol.75,pp.5187-5206.

    Lin,S.H.;Pan,J.;Wung,P.;Chiang,J.A.(2006):A fatigue crack growth model for spot welds under cyclic loading conditions.Int J Fatigue,vol.28,pp.792-803.

    Lin,P.C.;Wang,D.A.;Pan,J.(2007):Mode I stress intensity factor solutions for spot welds in lap-shear specimens.Int J Solids Struct,vol.44,pp.1013-1037.

    Nishioka,T.;Atluri,S.N.(1983):An Alternating Method for Analysis of Surface fl awed Aircraft Structural Components.AIAA Journal,vol.21,pp.749-757.

    Newman,J.A.;Dowling,N.E.(1998):A crack growth approach to life prediction of spot-welded lap joints.Fatigue Fract Engrg Mater Struct,vol.21,pp.1123-1132.

    Radaj,D.(1989):Stress singularity,notch stress and structural stress at spot–welded joints.Eng Fract Mech,vol.34,pp.495-506.

    Radaj,D.;Zhang,S.(1991a):Stress intensity factors for spot welds between plates of unequal thickness.Eng Fract Mech,vol.39,pp.391-413.

    Radaj,D.;Zhang,S.(1991b):Simplified formulae for stress intensity factors of spot welds.Eng Fract Mech,vol.40,pp.233-236.

    Radaj,D.;Zhang,S.(1992):Stress intensity factors for spot welds between platesof dissimilar materials.Eng Fract Mech,vol.42,pp.233-236.

    Sripichai,K.;Asim,K.;Pan,J.(2011):Stress intensity factor solutions for estimation of fatigue lives of laser welds in lap-shear specimens.Eng Fract Mech,vol.78,pp.1424-40.

    Tada,H.;Paris,P.C.;Irwin,G.R.(2000):In finite planes with two semi-in finite cracks(page 4-11)inThe stress analysis of cracks handbook.3rdEdition,New York,ASME Press.

    Wang,H.;Haynes,R.;Huang,H.;Dong,L.;Atluri,S.N.(2015):The Use of High-Performance Fatigue Mechanics and the Extended Kalman/Particle Filters,for Diagnostics and Prognostics of Aircraft Structures.CMES:Computer Modeling in Engineering&Sciences,vol.105,pp.1-24.

    av卡一久久| 午夜福利免费观看在线| 1024视频免费在线观看| 亚洲欧洲日产国产| av女优亚洲男人天堂| 91成人精品电影| 亚洲国产日韩一区二区| 99精品久久久久人妻精品| 亚洲av福利一区| 亚洲,一卡二卡三卡| 水蜜桃什么品种好| 午夜福利一区二区在线看| 免费高清在线观看日韩| 久久久精品国产亚洲av高清涩受| 日日摸夜夜添夜夜爱| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 美女国产高潮福利片在线看| 观看av在线不卡| 亚洲中文av在线| 人体艺术视频欧美日本| 成人亚洲欧美一区二区av| 久久女婷五月综合色啪小说| 国产精品亚洲av一区麻豆 | 日韩 亚洲 欧美在线| 亚洲精品第二区| 少妇人妻精品综合一区二区| 黄网站色视频无遮挡免费观看| 在线免费观看不下载黄p国产| 777久久人妻少妇嫩草av网站| 国产精品一区二区精品视频观看| 亚洲欧美中文字幕日韩二区| 久久人人爽人人片av| 另类精品久久| 99久久人妻综合| 美女中出高潮动态图| 欧美激情 高清一区二区三区| 亚洲av日韩精品久久久久久密 | 日本91视频免费播放| 在线亚洲精品国产二区图片欧美| 丝瓜视频免费看黄片| 精品一区二区三卡| 久久久久精品人妻al黑| 免费女性裸体啪啪无遮挡网站| 亚洲人成电影观看| 日韩av不卡免费在线播放| 欧美精品一区二区大全| 狠狠婷婷综合久久久久久88av| 亚洲欧美一区二区三区黑人| 久久性视频一级片| 亚洲国产av影院在线观看| 一本色道久久久久久精品综合| 国产精品三级大全| 久久久久人妻精品一区果冻| 国产1区2区3区精品| 大片免费播放器 马上看| 天堂中文最新版在线下载| 国产亚洲精品第一综合不卡| av在线老鸭窝| 国产亚洲精品第一综合不卡| 日本91视频免费播放| 日韩视频在线欧美| 考比视频在线观看| 欧美日本中文国产一区发布| 精品少妇黑人巨大在线播放| 高清视频免费观看一区二区| 五月开心婷婷网| 久久国产精品大桥未久av| 免费高清在线观看日韩| 久久精品国产亚洲av高清一级| 国产精品久久久久久人妻精品电影 | 一级黄片播放器| 99热全是精品| 超碰97精品在线观看| av在线老鸭窝| 人妻一区二区av| 美女高潮到喷水免费观看| 成人亚洲精品一区在线观看| 大香蕉久久网| 久久女婷五月综合色啪小说| 满18在线观看网站| 国产成人精品久久二区二区91 | 亚洲av福利一区| 熟女少妇亚洲综合色aaa.| 欧美国产精品一级二级三级| 亚洲情色 制服丝袜| 观看美女的网站| 成人漫画全彩无遮挡| 9色porny在线观看| 午夜免费鲁丝| 免费女性裸体啪啪无遮挡网站| 黑丝袜美女国产一区| av.在线天堂| 一级,二级,三级黄色视频| 亚洲av中文av极速乱| 国产黄色免费在线视频| 国产精品偷伦视频观看了| 成人黄色视频免费在线看| 少妇人妻 视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美乱码精品一区二区三区| 九色亚洲精品在线播放| 九九爱精品视频在线观看| 日本欧美视频一区| 久久鲁丝午夜福利片| 男女下面插进去视频免费观看| 亚洲人成电影观看| 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 99久久99久久久精品蜜桃| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美| 男女无遮挡免费网站观看| 久久精品国产亚洲av涩爱| 精品少妇黑人巨大在线播放| 久久国产精品大桥未久av| 亚洲av欧美aⅴ国产| 美女主播在线视频| 一本色道久久久久久精品综合| 青青草视频在线视频观看| 国产成人a∨麻豆精品| 午夜激情av网站| 久久久久久久国产电影| 精品一品国产午夜福利视频| 在线精品无人区一区二区三| 欧美xxⅹ黑人| 美女主播在线视频| 大片电影免费在线观看免费| 国精品久久久久久国模美| 777久久人妻少妇嫩草av网站| 久久精品国产a三级三级三级| 国产精品香港三级国产av潘金莲 | 国产av一区二区精品久久| 久久国产精品大桥未久av| 中文欧美无线码| 日韩中文字幕视频在线看片| 国精品久久久久久国模美| 婷婷色综合www| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 久久精品国产亚洲av涩爱| 国产女主播在线喷水免费视频网站| 69精品国产乱码久久久| 一级片'在线观看视频| 男男h啪啪无遮挡| 国产精品一区二区精品视频观看| 欧美 日韩 精品 国产| 亚洲国产看品久久| 夫妻性生交免费视频一级片| 亚洲激情五月婷婷啪啪| 极品人妻少妇av视频| 校园人妻丝袜中文字幕| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 一本一本久久a久久精品综合妖精| 久久女婷五月综合色啪小说| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 久久午夜综合久久蜜桃| 热99国产精品久久久久久7| 久久久久久久国产电影| 亚洲视频免费观看视频| 久久国产精品大桥未久av| av在线观看视频网站免费| 777米奇影视久久| 大片免费播放器 马上看| 建设人人有责人人尽责人人享有的| 精品亚洲成a人片在线观看| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 少妇的丰满在线观看| 国产成人免费无遮挡视频| 秋霞在线观看毛片| 波多野结衣av一区二区av| 大香蕉久久网| 青草久久国产| 美女扒开内裤让男人捅视频| 色播在线永久视频| 美女视频免费永久观看网站| 欧美变态另类bdsm刘玥| 国产成人精品久久久久久| 又大又黄又爽视频免费| 中文字幕最新亚洲高清| 丰满少妇做爰视频| 悠悠久久av| 亚洲人成网站在线观看播放| 精品国产露脸久久av麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费大片| 精品久久久精品久久久| 狠狠精品人妻久久久久久综合| 一区二区日韩欧美中文字幕| 国产有黄有色有爽视频| 精品久久久久久电影网| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 丰满饥渴人妻一区二区三| 久久久久久久国产电影| av在线app专区| avwww免费| 亚洲伊人久久精品综合| 日韩精品有码人妻一区| 久久青草综合色| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 国产福利在线免费观看视频| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 亚洲精品在线美女| 日韩一区二区视频免费看| 男女之事视频高清在线观看 | 欧美日韩一区二区视频在线观看视频在线| 别揉我奶头~嗯~啊~动态视频 | av.在线天堂| 精品久久久久久电影网| 亚洲色图综合在线观看| 9热在线视频观看99| 国产xxxxx性猛交| 国产有黄有色有爽视频| 精品一区二区三区四区五区乱码 | av免费观看日本| 亚洲欧洲精品一区二区精品久久久 | 美女福利国产在线| 人妻人人澡人人爽人人| 亚洲熟女毛片儿| 日韩精品免费视频一区二区三区| 大话2 男鬼变身卡| 操出白浆在线播放| 国产视频首页在线观看| 水蜜桃什么品种好| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 1024视频免费在线观看| 大片电影免费在线观看免费| 高清欧美精品videossex| 97在线人人人人妻| 精品国产一区二区三区久久久樱花| 久久这里只有精品19| 久久久久久久精品精品| 激情视频va一区二区三区| 国产午夜精品一二区理论片| av网站免费在线观看视频| 亚洲综合色网址| 精品国产国语对白av| 女的被弄到高潮叫床怎么办| 久久av网站| 亚洲精品日韩在线中文字幕| www.熟女人妻精品国产| 老司机在亚洲福利影院| 无遮挡黄片免费观看| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 国产精品久久久久久久久免| 成人午夜精彩视频在线观看| 亚洲成人av在线免费| 免费不卡黄色视频| 亚洲色图综合在线观看| 亚洲av综合色区一区| 在线精品无人区一区二区三| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜| 亚洲欧美激情在线| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 日本av免费视频播放| 精品一区二区三区av网在线观看 | 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 亚洲成色77777| 亚洲国产av新网站| av国产久精品久网站免费入址| 丁香六月天网| 天堂中文最新版在线下载| 欧美日韩亚洲国产一区二区在线观看 | 我要看黄色一级片免费的| 成年av动漫网址| 90打野战视频偷拍视频| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 午夜福利乱码中文字幕| 亚洲精品aⅴ在线观看| 777米奇影视久久| 在线 av 中文字幕| 日本欧美视频一区| 日韩一本色道免费dvd| 男女高潮啪啪啪动态图| 欧美日韩精品网址| 男人添女人高潮全过程视频| 午夜福利网站1000一区二区三区| 美女扒开内裤让男人捅视频| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 超色免费av| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 久久久久人妻精品一区果冻| 丰满迷人的少妇在线观看| 欧美人与性动交α欧美软件| 女人高潮潮喷娇喘18禁视频| videosex国产| 国产亚洲欧美精品永久| 在线免费观看不下载黄p国产| 欧美日本中文国产一区发布| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 中文字幕高清在线视频| 亚洲熟女毛片儿| 国产一区二区三区综合在线观看| 久久精品久久久久久噜噜老黄| 亚洲国产欧美网| 丁香六月天网| 久久久久久久久久久久大奶| 日韩av免费高清视频| 午夜激情av网站| 91精品三级在线观看| 精品久久久久久电影网| 亚洲四区av| 国产精品香港三级国产av潘金莲 | 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看 | 三上悠亚av全集在线观看| 黄色视频不卡| 少妇人妻久久综合中文| 欧美日韩国产mv在线观看视频| avwww免费| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 人人妻,人人澡人人爽秒播 | tube8黄色片| 日韩一本色道免费dvd| xxxhd国产人妻xxx| 97人妻天天添夜夜摸| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 国产成人精品久久二区二区91 | 久久久久久久久久久免费av| 激情视频va一区二区三区| 亚洲国产欧美网| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 嫩草影视91久久| 大香蕉久久网| 日韩精品有码人妻一区| 亚洲欧美一区二区三区久久| 国产色婷婷99| 超色免费av| 亚洲婷婷狠狠爱综合网| 国产成人系列免费观看| 精品福利永久在线观看| 精品第一国产精品| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 国产激情久久老熟女| 国产亚洲av高清不卡| 99国产精品免费福利视频| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 搡老岳熟女国产| 亚洲av国产av综合av卡| 日日爽夜夜爽网站| 一个人免费看片子| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 亚洲第一av免费看| 又大又爽又粗| 久久韩国三级中文字幕| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 91国产中文字幕| 婷婷色综合www| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 老司机深夜福利视频在线观看 | av天堂久久9| 国产一级毛片在线| 看十八女毛片水多多多| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 19禁男女啪啪无遮挡网站| 中文精品一卡2卡3卡4更新| 蜜桃国产av成人99| 国产熟女欧美一区二区| 一级毛片电影观看| 成年av动漫网址| 男的添女的下面高潮视频| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av | 午夜激情av网站| 国产一区二区三区综合在线观看| 女人精品久久久久毛片| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 国产片内射在线| 日韩制服丝袜自拍偷拍| 欧美精品一区二区大全| 亚洲色图综合在线观看| 久久国产精品男人的天堂亚洲| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 国产在线免费精品| 各种免费的搞黄视频| 国产精品免费视频内射| 久久久久久久久久久免费av| 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品aⅴ在线观看| 高清不卡的av网站| 日韩一区二区视频免费看| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡| 香蕉国产在线看| 免费在线观看视频国产中文字幕亚洲 | 欧美在线一区亚洲| 校园人妻丝袜中文字幕| 久久狼人影院| 婷婷色综合大香蕉| 99久国产av精品国产电影| 在线天堂中文资源库| 久久久久视频综合| 99热全是精品| 最近最新中文字幕大全免费视频 | 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| 99香蕉大伊视频| 国产精品嫩草影院av在线观看| 色94色欧美一区二区| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| av不卡在线播放| 99国产精品免费福利视频| 亚洲av日韩在线播放| 91老司机精品| 波多野结衣av一区二区av| 欧美日韩福利视频一区二区| 亚洲欧美精品综合一区二区三区| 久久精品人人爽人人爽视色| 色精品久久人妻99蜜桃| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 看免费成人av毛片| www.熟女人妻精品国产| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 男人爽女人下面视频在线观看| 国产一区二区激情短视频 | 亚洲国产精品999| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 国产成人精品无人区| 午夜日韩欧美国产| 国产毛片在线视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久久久免| 中文天堂在线官网| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀 | 国产成人啪精品午夜网站| 日日啪夜夜爽| 国产熟女午夜一区二区三区| 国产精品免费视频内射| 夫妻性生交免费视频一级片| av天堂久久9| 日本欧美视频一区| 七月丁香在线播放| 如何舔出高潮| 这个男人来自地球电影免费观看 | 欧美人与善性xxx| 欧美日韩亚洲国产一区二区在线观看 | 久热这里只有精品99| 国产成人91sexporn| 黄色 视频免费看| 这个男人来自地球电影免费观看 | 亚洲人成77777在线视频| 国产精品女同一区二区软件| 精品视频人人做人人爽| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 亚洲欧美成人精品一区二区| 亚洲国产中文字幕在线视频| 国产日韩欧美在线精品| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线 | 成年人午夜在线观看视频| 亚洲av电影在线进入| 天美传媒精品一区二区| 免费看不卡的av| 国产亚洲欧美精品永久| 丁香六月天网| bbb黄色大片| 亚洲成人一二三区av| a级毛片在线看网站| 夜夜骑夜夜射夜夜干| 午夜福利免费观看在线| 啦啦啦在线免费观看视频4| 亚洲男人天堂网一区| 亚洲国产中文字幕在线视频| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久成人网| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 91精品三级在线观看| 久久久久久久久免费视频了| 亚洲欧美成人精品一区二区| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看| 久久久精品国产亚洲av高清涩受| 国产精品蜜桃在线观看| 国产极品天堂在线| 少妇人妻精品综合一区二区| 亚洲七黄色美女视频| 婷婷色综合www| 国产av精品麻豆| 好男人视频免费观看在线| 啦啦啦 在线观看视频| 久久ye,这里只有精品| 在线观看免费视频网站a站| 高清av免费在线| 国产精品久久久av美女十八| 日韩制服骚丝袜av| 乱人伦中国视频| 在线观看免费午夜福利视频| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 国产精品免费视频内射| 日韩人妻精品一区2区三区| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 夜夜骑夜夜射夜夜干| 人体艺术视频欧美日本| 9191精品国产免费久久| 国产男女超爽视频在线观看| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 日韩成人av中文字幕在线观看| 亚洲国产看品久久| 在线观看三级黄色| 少妇精品久久久久久久| 国产97色在线日韩免费| 97在线人人人人妻| 国产一区二区在线观看av| 中文字幕亚洲精品专区| 99香蕉大伊视频| 久久久久久久国产电影| 亚洲欧洲国产日韩| 97在线人人人人妻| 操美女的视频在线观看| 新久久久久国产一级毛片| 国产国语露脸激情在线看| 欧美成人精品欧美一级黄| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品区二区三区| 91aial.com中文字幕在线观看| 另类精品久久| 91aial.com中文字幕在线观看| 性色av一级| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 欧美日韩福利视频一区二区| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 免费黄网站久久成人精品| 午夜老司机福利片| 精品亚洲成a人片在线观看| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 大码成人一级视频| 成年动漫av网址| 久久久精品94久久精品| 少妇被粗大的猛进出69影院| 精品一区在线观看国产| 宅男免费午夜| 啦啦啦中文免费视频观看日本| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 香蕉丝袜av| 久久 成人 亚洲| 亚洲,欧美精品.| 免费观看性生交大片5| 99国产精品免费福利视频| 久久97久久精品| 亚洲成色77777| 亚洲自偷自拍图片 自拍| 久久99一区二区三区| 一级a爱视频在线免费观看| av在线观看视频网站免费| 999精品在线视频| 视频区图区小说| 丝袜喷水一区| 大片电影免费在线观看免费| 国产精品国产av在线观看| 综合色丁香网| 久久精品人人爽人人爽视色| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 秋霞在线观看毛片|