• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Component SPD matrices:A low-dimensional discriminative data descriptor for image set classification

    2018-10-17 07:04:14KaiXuanChenXiaoJunWu
    Computational Visual Media 2018年3期

    Kai-Xuan Chen,Xiao-Jun Wu()

    Abstract In pattern recognition,the task of image set classification has often been performed by representing data using symmetric positive definite(SPD)matrices,in conjunction with themetricoftheresulting Riemannian manifold.In this paper,we propose a new data representation framework for image sets which we call component symmetric positive definite representation(CSPD).Firstly,we obtain sub-image sets by dividing the images in the set into square blocks of the same size,and use a traditional SPD model to describe them.Then,we use the Riemannian kernel to determine similarities of corresponding subimage sets.Finally,the CSPD matrix appears in the form of the kernel matrix for all the sub-image sets;its i,j-th entry measures the similarity between the i-th and j-th sub-image sets.The Riemannian kernel is shown to satisfy Mercer’s theorem,so the CSPD matrix is symmetric and positive definite,and also lies on a Riemannian manifold.Test on three benchmark datasets shows that CSPD is both lower-dimensional and more discriminative data descriptor than standard SPD for the task of image set classification.

    Keywords symmetric positive definite(SPD)matrices;Riemannian kernel;image classification,Riemannian manifold

    1 Introduction

    Image set classification has received wide attention in the domains of artificial intelligence and pattern recognition[1–8].An image set contains a large number of images taken under different conditions,allowing more robust discrimination than use of singleshot images[9–13].Representations of image sets used for the task of image classification commonly include Gaussian mixture models[14],linear subspaces[1],and covariance descriptors(CovDs)[7,8,15].The latter have been widely applied,e.g.,in virus recognition[13],object detection[4],and gesture classification[5].The traditional SPD model is based on CovDs,and SPD matrices lie on a non-linear manifold called the SPD manifold.

    The dimensionality of traditional SPD matrices[2,4–8]used for representing image sets is relatively high,which resultsin excessivecomputation and low efficiency of algorithms.Dimensionality reduction is always important in computer vision and machine learning.Classical methods,such as principal component analysis(PCA)[16]and linear discriminant analysis(LDA)[17]are widely used in various applications. However,as SPD matrices lie on a non-linear Riemannian manifold,these methods are unsuitable for analyzing SPD matrices.Recently,the work extending dimensionality reduction to Riemannian manifolds has received wide attention.Bidirectional covariance matrices(BCM)[8]and SPDML[2]are dimensionality reduction methods which can be used with the SPD manifold.BCM[8]applies two-directional twodimensional PCA[18]directly to the SPD matrices to obtain low-dimensional descriptors.SPDML[2]embeds the high-dimensional SPD matrices into a lower-dimensional,more discriminative SPD manifold through projection.

    Fig.1 Processing an image set using the traditional SPD approach and our CSPD approach.Above:traditional SPD.The SPD matrix is computed using a covariance descriptor;it lies on a non-linear SPD manifold.Below:our CSPD approach.It firstly divides images in the set into square blocks of the same size.Thei-th sub-image setBiis represented by a traditional SPD model.The Riemannian kernel is then used to describe the similarity between the sub-image sets.The final CSPD appears in the form of the Riemannian kernel matrix of the representations of sub-image sets.

    In this paper,we propose a new framework to obtain low-dimensional,discriminative descriptors for representing image sets.Figure 1 shows pipelines for producing descriptors of image sets,for both our framework and the traditional SPD model.Given an image set withnimages,in traditional SPD,the images are vectorized to obtain an image set matrix S=[s1,...,sn](see Fig.1(b)),wheresi∈RDrepresents thei-th image in the image set.Using CovDs results in aD×DSPD matrix(see Fig.1(c))for the representation of the entire image set.Itsi,jth element is the covariance between thei-th andj-th rows of the image set matrixS(see Fig.1(b)).Unlike the traditional SPD model,we describe the image set by measuring similarities between sub-image sets.We firstly divide the images in the set intod×dblocks of the same size,and obtaind2sub-image sets.We then vectorize the sub-images(see Fig.1(d))and use covariance descriptors to represent them(Fig.1(e)).Finally,the CSPD(Fig.1(f))takes the form of the Riemannian kernel matrix;itsi,j-th element denotes the similarity between thei-th andj-th sub-image sets.The dimensionality of the CSPD matrix is d2×d2,which depends on the number of sub-image sets.

    The rest of this paper is organized as follows.In Section 2,brie fly overview the geometry of the SPD manifold and some related classical Riemannian metrics.In Section 3,we present the traditional SPD model and our CSPD model,and introduce some SPD manifold-based classification algorithms used in our experiments.In Section 4,we present experimental results,which show that CSPD is a lower-dimensional and more discriminative data descriptor than standard SPD for the task of image set classification.In Section 5,we consider the effects of block size.In Section 6,we present our conclusions and discuss future directions.

    2 Related work

    In this section,we overview the geometry of the SPD manifold and some related classical Riemannian metrics.We adopt the following notation:is the space spanned by realn×nSPD matrices,Snis the tangent space spanned by realn×nsymmetric matrices at the point of the identity matrixIn∈Rn×n,andTPis the tangent space spanned by real n×n symmetric matrices at the point P∈.

    2.1 SPD manifold

    As described in Ref.[2],the SPD manifold spanned by SPD matrices is a non-linear Riemannian manifold,and does not satisfy the scalar multiplication axiom of a vector space.For example,the matrix resulting by multiplying an SPD matrix by a negative scalar does not lie on[11].Thus,similarity of two SPD matrices cannot be meaningfully computed using the Euclidean metric,and instead,Riemannian metrics are a better tool for analyzing SPD matrices.

    A variety of Riemannian metrics have been proposed for SPD manifolds.In particular,the affine invariant Riemannian metric(AIRM)[2,8,19]is the most widely studied Riemannian metric,and has the property of affine invariance.The Stein divergence and Jeffrey divergence[2,10,20],which are efficient metrics to measure geodesic distance on the SPD manifold,are equivalent to Bregman divergence for some special seed function.The log-Euclidean metric(LEM)[7,8]gives the similarity between two SPD matrices by computing their distance in tangent space.We now consider AIRM and LEM in detail,as these two metrics are used in our experiments.

    2.2 Affine invariant Riemannian metric

    The AIRM geodesic distancedAIRMbetween two pointsSpiandSpjon the SPD manifold can be written as

    where ‖·‖F(xiàn)denotes the Frobenius norm,log(·)is the matrix logarithm operator.

    2.3 Log-Euclidean metric

    The Log-Euclidean metric[4,7,8,11]is a bivariant Riemannian metric coming from Lie group multiplication on SPD matrices[11].The distance dLogEDbetween two pointsSpiandSpjon the SPD manifold computed by this metric can be written as

    The LEM can be viewed as the distance between points in the domain of the matrix logarithm,which is the tangent space of the SPD manifold obtained by logarithmic mapping[7,8]:

    Fig.2 Logarithmic mapping.

    whereSnis a vector space. Figure 2 illustrates the concept of logarithm mapping.Furthermore,the associated Riemannian kernel function can be computed by the inner product of points in the tangent space[7,11]:

    For the all pointsSp1,...,SpN∈,kLogEis a symmetric function becausekLogE(Spi,Spj)=kLogE(Spj,Spi).From Ref.[7],we have

    Equation(6)shows that the Log-Euclidean kernel guarantees the positive definiteness of the Riemannian kernel which thus satis fies Mercer’s theorem.

    3 SPD and CSPD models

    In this section,we brie fly describe the traditional SPD model[7,8]and then introduce our proposed CSPD model in detail.We also discuss classification algorithms based on these approaches.

    3.1 Traditional SPD model

    For an image set matrixS=[s1,...,sn]withn images,letsi∈RDbe a feature vector obtained by vectorizing thei-th image in the set.The final descriptor of the image set is aD×DSPD matrix[2,7,8]computed from covariance descriptors:

    where λ is set to 10?3tr(C)andIis the identity matrix[7].

    In this way,the image sets are represented as SPD matrices,which lie on the SPD manifold.

    3.2 Component SPD model

    Our proposed framework,which describes the similarities between sub-image sets,offers lowerdimensional and more discriminative descriptors for image sets than SPD.We firstly divide the images in the set intod×dsquare blocks of the same size,and each sub-image set is described by covariance descriptors(see Eq.(7)).This results ind2SPD matrices representing sub-image sets.The final CSPD matrix is the Riemannian kernel matrix of these SPD matrices,and its dimensionality is d2×d2.

    See Fig.1(below)again.In this figure,the images were divided into 2×2 square blocks to form 4 subimage sets:B1,...,B4.There are 4 corresponding covariance descriptors:C1,...,C4.The CSPD lies in ∈ R4×4,and is a matrix describing the similarity between these 4 sub-image sets.In order to measure similarity between the sub-image sets,we use the Log-Euclidean kernel(Eq.(5))to compute the similarity of the covariance descriptors(Fig.1(f)):

    whereCSPDi,jmeasures the similarity between theith andj-th sub-image sets.Note that as Eq.(6)shows that the log-Euclidean kernel guarantees positive definiteness of the Riemannian kernel,the CSPD matrix also lies on the SPD manifold.

    3.3 Classification algorithms based on the SPD manifold

    The nearest neighbor(NN)algorithm is one of the simplest methods for classification and regression used in computer vision and pattern recognition.Nearest neighbour classification algorithms based on AIRM and LEM have been utilized with the SPD manifold[8],and these simple classification algorithms clearly show the advantages of our CSPD model(see later).

    Covariance discriminative learning(CDL)has been proposed for image set classification[7],and classical classification algorithms are directly based on the SPD manifold.They derive a kernel function that maps the SPD matrices from the Riemannian manifold to Euclidean space through the LEM metric.This allows classical classification algorithms operating on a linear space to be exploited in the kernel formulation. Linear discriminant analysis(LDA)and partial least squares(PLS)in this linear space have been used for the task of classification[7].

    We also consider the Riemannian sparse coding algorithm LogEKSR [11], which takes the Riemannian geometry of the SPD manifold into account and applies sparse representation and dictionary learning to SPD matrices by mapping the SPD matrices into reproducing kernel Hilbert space(RKHS).Note that the log-Euclidean kernels in this algorithm,which are the derivatives of those in Eq.(7)and meet Mercer’s theorem,are respectively the polynomial kernel,exponential kernel,and Gaussian kernel.

    4 Results and discussion

    4.1 Preliminaries

    In order to verify the effectiveness of our model,we have carried out experiments on three tasks:object categorization,hand gesture recognition,and virus cell classification using the three datasets ETH-80[4],the Cambridge hand gesture dataset(CG)[5],and the virus dataset[13]respectively.In our experiments,we compared the accuracies resulting from our proposed CSPD model with those from the traditional SPD model using the same classification algorithms.To do so,we used the most common nearest neighbor classifiers based on AIRM[2,8]and LEM[4,8,11],as described earlier.As well as these two NN classifiers,we made use of classical Riemannian classification algorithms LogEKSR[11]and CDL[7],which are the efficient methods on SPD manifolds.In the following,we use the following notation:

    · NN-AIRMSPD:AIRM-based nearest neighbor classifier on the SPD manifold spanned by traditional SPD matrices.

    · NN-AIRMCSPD:AIRM-based nearest neighbor classifier on the SPD manifold spanned by our proposed CSPD matrices.

    · NN-LogEDSPD:LEM-based nearest neighbor classifier on the SPD manifold spanned by traditional SPD matrices.

    · NN-LogEDCSPD:LEM-based nearest neighbor classifier on the SPD manifold spanned by our proposed CSPD matrices.

    ·CDLSPD:CD on the SPD manifold spanned by traditional SPD matrices.

    ·CDLCSPD:CDL on the SPD manifold spanned by our proposed CSPD matrices.

    · LogEKSRSPD:LogEKSR on the SPD manifold spanned by traditional SPD matrices.

    ·LogEKSRCSPD:LogEKSR on the SPD manifold spanned by our proposed CSPD matrices.

    In our experiments,we re-sized all the images to 24×24,allowing them to be divided into 2×2,3×3,4×4,6×6,8×8,and 12×12 blocks.With this image size,the dimensionality of the traditional SPD is 576×576.Instead,the dimensionality of the CSPD will be 4×4,9×9,16×16,36×36,64×64,and 144×144.It is thus clear that our approach provides a lowerdimensional data representation.Next,we use the results of the experiments to verify the discriminative power of our model.

    4.2 Object categorization

    The ETH-80 dataset has eight categories of images:apples,pears,tomatoes,cows,dogs,horses,cups,and cars.Each class has 10 image sets,and each image set comprises 41 images from different angles.Figure 3(top)shows some images in the ETH-80 dataset.For each class,we randomly chose 2 image sets as training data,and the remaining image sets were used as test data.We give average accuracies and standard deviations of the 10 cross validation experiments.Table 1 shows the performance of both our proposed CSPD model and the traditional SPD model using four classification algorithms.The results for our CSPD model here use 6×6 blocks.

    Fig.3 Images from the three datasets.Top:ETH-80[4].Middle:CG[5].Bottom:virus[13].

    Table 1 Recognition rates with standard deviations,ETH-80 dataset

    4.3 Hand gesture recognition

    The Cambridge hand gesture dataset consists of a set of high resolution color sequences acquired by a Senz3D sensor showing an image sequence of hand gestures defined by 3 primitive hand shapes and 3 primitive motions.This dataset has 900 image sets in 9 classes with 100 image sets in each class(see Fig.3(middle)).For the task of hand gesture recognition,20 image sets of each class were randomly selected as training data,and the remaining image sets were used as test data.Ten-fold cross validation experiments were carried out on this dataset.We give the average accuracies with standard deviations for the ten experiments in Table 2.The results for our CSPD model are again based on 6×6 blocks.

    4.4 Virus cell classification

    The virus dataset contains 15 categories,each category having 5 image sets,each with 20 pictures taken from different angles(see Fig.3(bottom)).We arbitrarily chose 3 for training and the rest for testing.Table 3 shows the results using our proposed CSPD model and the traditional SPD model using four classification algorithms.The results for our CSPD model are this time based on 4×4 blocks.

    Table 2 Recognition rates with standard deviations,hand gesture dataset

    Table 3 Recognition rates with standard deviations,virus cell dataset

    4.5 Analysis

    For all three datasets,the results for all four classifiers show that our proposed CSPD can provide more discriminative and robust features than traditional SPD.Especially for the ETH-80 dataset,the recognition rates of the two NN classifiers based on our proposed CSPD,NN-AIRMCSPDand NN-LogEDCSPD,are higher than for the two state-ofthe-art classification algorithms CDL and LogEKSR,based on traditional SPD.Also,the accuracies of the two classifiers CDL and LogEKSR show that our proposed CSPD is more discriminative,andLogEKSRCSPDachieves the best result with an accuracy of 89.92%and standard deviation of 3.84. For the hand gesture and virus datasets,the advantages are not as obvious as for ETH-80.Nevertheless,LogEKSRCSPDstill achieves the best result with an accuracy of 91.02%and standard deviation of 1.54 for the hand gesture dataset,while CDLCSPDachieves the best result with an accuracy of 54.50%and standard deviation of 7.38 on the virus dataset.

    5 Effect of block size

    Next,we will present the effects of varying block size on accuracy and running for a fixed classification algorithm.We show results using the ETH-80 dataset as an example.The notation used is as follows:

    ·SPDTR:traditional SPD data representation.

    · CSPDn×n:CSPD descriptor obtained by dividing the image into n×n blocks.

    5.1 Effects of block size on accuracy

    In order to display the effects of block size,we give the average accuracies achieved for traditional SPD as well as for 6 different CSPD descriptors arising from different block sizes.Table 4 shows the averageaccuracies achieved with different data descriptors and NN-AIRM,NN-LogED,CDL,and LogEKSR classification algorithms. The data in each row are the average recognition rates using the same data descriptor and different classification algorithms;the columns give the average recognition rates for the same classification algorithm with different data descriptors.The recognition rates using the CSPD model are lower than for the traditional SPD model when using 2×2 blocks.However,the algorithms have better recognition rates than for SPD when using our proposed CSPD model and larger blocks.

    Table 4 Effect of block size on average accuracy

    In order to show the robustness of our proposed CSPD model,we give average standard deviations of ten experiments in Table 5.The data in the row are the standard deviations of accuracy using the same data descriptor with different classification algorithms,while columns give standard deviations of accuracy for the same classification algorithm with different data descriptors.The results show that standard deviations from our CSPD model are generally lower than for the traditional SPD model,for the same classification algorithm,especially for larger block sizes.

    The results in these two tables show that,typically,our CSPD model works best when the images were divided into 6×6 blocks,justifying the use of this size in the results in Tables 1 and 2.The results of classification algorithms based on the CSPD model in Table 3 were obtained by dividing the images inthe virus cell dataset into 4×4 blocks,which also works well.

    Table 5 Effect of block size on standard deviation of accuracy

    5.2 Effects of block size on run time

    CSPD matrices have lower dimensionality than traditional SPD matrices.This property saves run time.We consider the efficiency of our CSPD model in two ways:(i)the run time using different data representation models while using the same classifier,and(ii)the time needed to compute data descriptors(SPD or CSPD).

    Table 6 shows the time needed to compute data descriptors(SPD or CSPD).Clearly,the time needed for CSPD is less than for traditional SPD when the image set is divided into 2×2,3×3,4×4,and 6×6 blocks.In general,all descriptors take comparable time.

    Secondly,we compare classification time using different data descriptors in Table 7.Each row gives run time for the same data descriptor while using different classification algorithms,while columns give run time using the same classification algorithm with different data descriptors.

    These two tables show that our CSPD model takes least time when the images were divided into 2×2 blocks.Even with 12×12 blocks,our CSPD model takes far less time than traditional SPD while using the same classification algorithm.We can thusconclude that our CSPD model improves the efficiency of algorithms significantly.

    Table 6 Time needed to compute data descriptors

    Table 7 Time taken by different data descriptors with the same classification algorithm

    6 Conclusions and future work

    In this paper,we have proposed the component symmetric positive definite(CSPD)model as a novel descriptor for image sets.Its superior time performance is due to its lower dimensionality,and it also shows better discriminative ability,providing higher recognition rates than those from traditional SPD when using the same classification algorithm.The latter is clearly demonstrated by results from two nearest neighbor classification algorithms.In future,we hope to devise further data descriptors for image set classification.

    高清黄色对白视频在线免费看 | 中文资源天堂在线| 久久久久久久国产电影| 久久av网站| 国产av精品麻豆| 只有这里有精品99| 少妇裸体淫交视频免费看高清| 日本欧美国产在线视频| 成人综合一区亚洲| 永久免费av网站大全| 搡女人真爽免费视频火全软件| 日韩成人av中文字幕在线观看| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 午夜福利在线观看免费完整高清在| 一区二区av电影网| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 婷婷色av中文字幕| 精品酒店卫生间| 成人黄色视频免费在线看| 在线观看国产h片| 人妻少妇偷人精品九色| 少妇被粗大的猛进出69影院 | 国产色爽女视频免费观看| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 青春草视频在线免费观看| 中文字幕人妻丝袜制服| 777米奇影视久久| 亚洲va在线va天堂va国产| 国产爽快片一区二区三区| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 欧美丝袜亚洲另类| 少妇的逼水好多| 亚洲第一区二区三区不卡| 伊人亚洲综合成人网| 人人妻人人澡人人爽人人夜夜| 日韩熟女老妇一区二区性免费视频| 两个人的视频大全免费| 伦理电影大哥的女人| 色94色欧美一区二区| 麻豆成人av视频| 国产成人freesex在线| 在线播放无遮挡| 久久精品国产亚洲av涩爱| 免费看光身美女| 蜜桃在线观看..| 亚洲无线观看免费| 色网站视频免费| av.在线天堂| 国产高清不卡午夜福利| 在线精品无人区一区二区三| 中文资源天堂在线| kizo精华| 看免费成人av毛片| 欧美xxⅹ黑人| 午夜日本视频在线| 精品一区二区免费观看| 国产精品久久久久成人av| 观看免费一级毛片| 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 熟女人妻精品中文字幕| 高清视频免费观看一区二区| 视频区图区小说| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 久久久久久久久大av| 一本久久精品| 人妻 亚洲 视频| 日韩人妻高清精品专区| 色视频在线一区二区三区| 99热这里只有是精品在线观看| 国产毛片在线视频| 中文欧美无线码| 色视频在线一区二区三区| 嘟嘟电影网在线观看| 亚洲无线观看免费| 你懂的网址亚洲精品在线观看| 国产精品一区www在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久网色| 久久久久国产精品人妻一区二区| 18禁动态无遮挡网站| 精品亚洲成国产av| 久久久久久久久久成人| 欧美精品一区二区免费开放| 亚洲成人手机| 国产淫语在线视频| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 高清在线视频一区二区三区| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 国产视频内射| 老司机影院毛片| 97超视频在线观看视频| av女优亚洲男人天堂| 两个人免费观看高清视频 | 久久久久久久大尺度免费视频| 成年人免费黄色播放视频 | 亚洲精品中文字幕在线视频 | 日韩强制内射视频| 国产爽快片一区二区三区| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 亚洲性久久影院| 久久精品国产自在天天线| 80岁老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 中文字幕久久专区| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 欧美一级a爱片免费观看看| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 久久99热这里只频精品6学生| 熟妇人妻不卡中文字幕| 天天操日日干夜夜撸| 成人特级av手机在线观看| 妹子高潮喷水视频| 人人妻人人澡人人爽人人夜夜| 久久久久视频综合| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看 | 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 老熟女久久久| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 中文字幕久久专区| 少妇丰满av| 中文字幕精品免费在线观看视频 | 免费黄频网站在线观看国产| 亚洲精品,欧美精品| 在线观看免费高清a一片| 丝袜喷水一区| 成人黄色视频免费在线看| 国模一区二区三区四区视频| 国产精品国产av在线观看| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| videos熟女内射| 在线观看av片永久免费下载| 王馨瑶露胸无遮挡在线观看| 熟女av电影| 欧美日韩精品成人综合77777| 日韩欧美精品免费久久| 熟女av电影| 少妇人妻 视频| 精品一区二区三区视频在线| 九草在线视频观看| 多毛熟女@视频| 免费看日本二区| 国产熟女欧美一区二区| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 最新的欧美精品一区二区| 黄色毛片三级朝国网站 | 成人漫画全彩无遮挡| 丝瓜视频免费看黄片| 在线看a的网站| 成人漫画全彩无遮挡| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| 在线观看三级黄色| 嘟嘟电影网在线观看| 亚洲电影在线观看av| av天堂久久9| 亚洲av在线观看美女高潮| 18+在线观看网站| 赤兔流量卡办理| 曰老女人黄片| 丝袜在线中文字幕| 女性生殖器流出的白浆| 99久久精品热视频| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品成人久久小说| 久久久国产欧美日韩av| av.在线天堂| 亚洲内射少妇av| 国产视频内射| 国产精品一区二区在线观看99| 大码成人一级视频| 女性被躁到高潮视频| 乱码一卡2卡4卡精品| 久久精品国产亚洲av涩爱| 91午夜精品亚洲一区二区三区| 夫妻午夜视频| 国产精品国产三级国产专区5o| 国产伦在线观看视频一区| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 精品一品国产午夜福利视频| 国产av码专区亚洲av| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 国产精品久久久久久久久免| 亚洲精华国产精华液的使用体验| 大陆偷拍与自拍| 国产精品一区二区性色av| 视频区图区小说| 黄色毛片三级朝国网站 | 不卡视频在线观看欧美| 国产成人精品久久久久久| 色吧在线观看| 春色校园在线视频观看| 黄色欧美视频在线观看| 亚洲av日韩在线播放| 夫妻午夜视频| 欧美成人精品欧美一级黄| 精品酒店卫生间| 少妇人妻久久综合中文| 日韩欧美精品免费久久| 丝袜喷水一区| 久久99蜜桃精品久久| 啦啦啦视频在线资源免费观看| 高清在线视频一区二区三区| 中文天堂在线官网| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 日本av免费视频播放| 免费观看性生交大片5| 老熟女久久久| 国产免费福利视频在线观看| 国产精品一区二区在线不卡| 97精品久久久久久久久久精品| 黄色欧美视频在线观看| 国产男女超爽视频在线观看| 日产精品乱码卡一卡2卡三| 久久ye,这里只有精品| 免费看av在线观看网站| 最近中文字幕2019免费版| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 女性生殖器流出的白浆| 亚洲精品,欧美精品| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 国产在线一区二区三区精| 国产有黄有色有爽视频| 一级毛片电影观看| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 一边亲一边摸免费视频| 亚洲精品成人av观看孕妇| 欧美激情国产日韩精品一区| 国产亚洲5aaaaa淫片| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 亚洲成人av在线免费| 一级片'在线观看视频| 能在线免费看毛片的网站| 91成人精品电影| 高清午夜精品一区二区三区| 亚洲国产精品国产精品| 秋霞在线观看毛片| 高清在线视频一区二区三区| 人人妻人人看人人澡| 亚洲电影在线观看av| 久久免费观看电影| 久久久久久久久大av| 午夜免费鲁丝| 韩国高清视频一区二区三区| 80岁老熟妇乱子伦牲交| 欧美日韩在线观看h| 国产精品三级大全| 婷婷色av中文字幕| 人妻制服诱惑在线中文字幕| 久久久久久久亚洲中文字幕| 国产黄色视频一区二区在线观看| 最后的刺客免费高清国语| 国产乱来视频区| 欧美97在线视频| 老司机影院毛片| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| a级毛色黄片| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 久久影院123| 国内精品宾馆在线| 久久久久国产网址| 午夜免费鲁丝| 在线播放无遮挡| 五月玫瑰六月丁香| 乱码一卡2卡4卡精品| 最黄视频免费看| 国产精品嫩草影院av在线观看| 男人添女人高潮全过程视频| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 亚洲国产精品专区欧美| 高清毛片免费看| 成人黄色视频免费在线看| 国产美女午夜福利| 欧美区成人在线视频| 日日爽夜夜爽网站| 久久久久国产网址| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 有码 亚洲区| 亚洲av在线观看美女高潮| 成人黄色视频免费在线看| a级毛色黄片| 久久热精品热| 国产 精品1| 午夜福利在线观看免费完整高清在| 美女福利国产在线| 精品酒店卫生间| 午夜免费鲁丝| 成年人免费黄色播放视频 | 伊人久久国产一区二区| 人人妻人人澡人人看| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 肉色欧美久久久久久久蜜桃| 久久午夜福利片| 黄色配什么色好看| 啦啦啦中文免费视频观看日本| 久久久久视频综合| 一区二区三区乱码不卡18| 午夜久久久在线观看| 男女国产视频网站| 黄色视频在线播放观看不卡| 国产色爽女视频免费观看| 波野结衣二区三区在线| 日韩三级伦理在线观看| 中文乱码字字幕精品一区二区三区| 赤兔流量卡办理| 久久国产乱子免费精品| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 人妻一区二区av| 草草在线视频免费看| 女性被躁到高潮视频| 久久久久久久久久成人| 国产男人的电影天堂91| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 91久久精品国产一区二区三区| 国产淫语在线视频| 免费久久久久久久精品成人欧美视频 | 人妻 亚洲 视频| 久久人人爽人人爽人人片va| 成年女人在线观看亚洲视频| 色哟哟·www| 日韩电影二区| 欧美另类一区| 亚洲欧美成人精品一区二区| 美女xxoo啪啪120秒动态图| 蜜桃在线观看..| 黑人猛操日本美女一级片| 国产欧美日韩精品一区二区| 国产高清国产精品国产三级| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 日韩,欧美,国产一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 最近中文字幕高清免费大全6| 亚洲在久久综合| 色视频在线一区二区三区| 久久久久久久久久成人| 久久 成人 亚洲| 三级经典国产精品| 一本久久精品| 日韩欧美 国产精品| 国产淫片久久久久久久久| 我的老师免费观看完整版| 丝袜脚勾引网站| 久久久久久久久久久久大奶| 亚洲欧美中文字幕日韩二区| 亚洲精品视频女| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 纯流量卡能插随身wifi吗| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 亚洲综合色惰| 中文字幕人妻熟人妻熟丝袜美| 美女国产视频在线观看| 国产色婷婷99| 久久久精品94久久精品| 亚洲,欧美,日韩| 久久97久久精品| 女人久久www免费人成看片| 美女福利国产在线| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 久久人人爽人人片av| 最新的欧美精品一区二区| 国产精品久久久久久精品古装| 26uuu在线亚洲综合色| 国产深夜福利视频在线观看| 日韩三级伦理在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜爱| 欧美最新免费一区二区三区| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| 69精品国产乱码久久久| 十八禁高潮呻吟视频 | av视频免费观看在线观看| 国产亚洲欧美精品永久| av黄色大香蕉| h日本视频在线播放| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 中文字幕人妻丝袜制服| 亚洲国产最新在线播放| 十八禁网站网址无遮挡 | 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 国产日韩欧美视频二区| av有码第一页| 日韩三级伦理在线观看| 国产中年淑女户外野战色| 黄色配什么色好看| 丰满乱子伦码专区| 天堂俺去俺来也www色官网| 午夜福利,免费看| 视频区图区小说| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 有码 亚洲区| 国产精品蜜桃在线观看| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 极品人妻少妇av视频| 国产视频内射| 三级国产精品欧美在线观看| 久久国产亚洲av麻豆专区| 精品一区二区三卡| 免费播放大片免费观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产欧美亚洲国产| 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| 日韩强制内射视频| 99久久人妻综合| 亚洲av国产av综合av卡| 精品卡一卡二卡四卡免费| 免费少妇av软件| 少妇被粗大猛烈的视频| 国产 精品1| 欧美日韩一区二区视频在线观看视频在线| 一级毛片久久久久久久久女| 97在线人人人人妻| 亚洲美女视频黄频| 免费在线观看成人毛片| 亚洲成色77777| 91久久精品国产一区二区三区| 自线自在国产av| 天天躁夜夜躁狠狠久久av| 精品国产国语对白av| 少妇被粗大的猛进出69影院 | av女优亚洲男人天堂| 在线天堂最新版资源| 人人妻人人添人人爽欧美一区卜| 中文资源天堂在线| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 国产熟女午夜一区二区三区 | 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区 | 伊人久久国产一区二区| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 亚洲美女黄色视频免费看| 热re99久久精品国产66热6| 国产亚洲5aaaaa淫片| 性色av一级| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 久久久午夜欧美精品| 久久99热6这里只有精品| av在线观看视频网站免费| 99热6这里只有精品| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 久久久久精品性色| 国产精品无大码| 日本91视频免费播放| 国产亚洲最大av| 日韩熟女老妇一区二区性免费视频| 曰老女人黄片| 欧美bdsm另类| h视频一区二区三区| 亚洲,一卡二卡三卡| 久久99一区二区三区| 晚上一个人看的免费电影| 精品午夜福利在线看| 麻豆成人av视频| 一本久久精品| 日本av免费视频播放| 免费黄频网站在线观看国产| 青青草视频在线视频观看| 黑丝袜美女国产一区| 少妇 在线观看| 99久久精品热视频| 国产成人午夜福利电影在线观看| 精品国产国语对白av| 亚洲精品久久久久久婷婷小说| 国产乱人偷精品视频| av一本久久久久| 欧美日韩综合久久久久久| 97精品久久久久久久久久精品| 国产精品秋霞免费鲁丝片| 午夜免费观看性视频| 久久韩国三级中文字幕| 男女啪啪激烈高潮av片| 又爽又黄a免费视频| 久久久久人妻精品一区果冻| 夜夜看夜夜爽夜夜摸| 一级av片app| 一级片'在线观看视频| 国产欧美亚洲国产| 国产成人aa在线观看| 极品人妻少妇av视频| 国产伦理片在线播放av一区| 中文字幕精品免费在线观看视频 | 天天躁夜夜躁狠狠久久av| av线在线观看网站| 久久ye,这里只有精品| 人体艺术视频欧美日本| 亚洲av综合色区一区| 国产国拍精品亚洲av在线观看| 国产成人freesex在线| a 毛片基地| 极品人妻少妇av视频| 人妻一区二区av| 色婷婷久久久亚洲欧美| 视频区图区小说| kizo精华| 亚洲综合精品二区| 欧美精品一区二区免费开放| 亚洲三级黄色毛片| 精品少妇内射三级| 日本与韩国留学比较| 亚洲第一av免费看| 91精品伊人久久大香线蕉| 亚洲av国产av综合av卡| 又黄又爽又刺激的免费视频.| 天美传媒精品一区二区| 亚洲精品aⅴ在线观看| 乱人伦中国视频| 我要看日韩黄色一级片| 日本免费在线观看一区| 国产一级毛片在线| 免费av中文字幕在线| 大陆偷拍与自拍| 亚洲精品456在线播放app| 男女边吃奶边做爰视频| 精品国产露脸久久av麻豆| 免费看av在线观看网站| 午夜久久久在线观看| 国产av精品麻豆| 国产一级毛片在线| 久久久精品94久久精品| 肉色欧美久久久久久久蜜桃| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩另类电影网站| 日日撸夜夜添| 亚洲久久久国产精品| 欧美日韩av久久| 精品一区二区免费观看| 国产成人一区二区在线| 国产精品久久久久久精品电影小说| 少妇人妻久久综合中文| 麻豆成人av视频| 熟女人妻精品中文字幕| 丰满人妻一区二区三区视频av| 日本黄色日本黄色录像| 亚洲精品成人av观看孕妇| 亚洲精品色激情综合| 成人亚洲精品一区在线观看|