• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatially adaptive long-term semi-Lagrangian method for accurate velocity advection

    2018-10-17 07:04:08TakahiroSatoChristopherBattyTakeoIgarashiandRyoichiAndo
    Computational Visual Media 2018年3期

    Takahiro Sato(),Christopher Batty,Takeo Igarashi,and Ryoichi Ando

    Abstract We introduce a new advection scheme for fluid animation.Our main contribution is the use of long-term temporal changes in pressure to extend the commonly used semi-Lagrangian scheme further back along the time axis.Our algorithm starts by tracing sample points along a trajectory following the velocity field backwards in time for many steps.During this backtracing process,the pressure gradient along the path is integrated to correct the velocity of the current time step.We show that our method effectively suppresses numerical diffusion,retains small-scale vorticity,and provides better long-term kinetic energy preservation.

    Keywords fluid simulation;advection;method of characteristics;spatially adaptive integration;interpolation error correction

    1 Introduction

    An accurate velocity advection scheme is an essential component for any visually pleasing fluid simulation.Today,the MacCormack scheme[1]has become the state-of-the-art Eulerian scheme in practice,due to its ease of implementation and cost-effective accuracy advantage over first-order semi-Lagrangian schemes[2].Nevertheless,challenges remain.Artificial(numerical)diffusion still takes place at every step,leading to a significant dissipation of vorticity and energy over time.Naively increasing the resolution does not help,since in general the time step size must also be adjusted according to some CFL(Courant-Friedrichs-Lewy)number,and the increased resolution leads to significantly larger computational costs.Highorder interpolation schemes(e.g.,ENO or WENO)can improve accuracy,but involve larger stencils,and the issues above persist.Xiu and Karniadakis[3]provide a more comprehensive discussion of accuracy versus grid resolution in semi-Lagrangian schemes.The characteristic map scheme[4],based on the method of characteristics,was developed to reduce the accumulation of dissipation.However,application of this method to velocity advection requires non-trivial extensions.This paper presents a feasible solution:we leverage the time-varying pressure field data retained from previous frames to significantly reduce the detrimental effects of numerical dissipation.In summary,this paper offers the following contributions:

    · New equations for advection that effectively minimize numerical dissipation by incorporating the pressure gradient over time.

    ·Intuitive control of accuracy,allowing a user to trade offquality against increased computational and memory costs.

    ·A spatially adaptive scheme for long-term semi-Lagrangian backtracing,allowing efficient pressure gradient integration.

    ·A new error correction scheme to address issues induced by interpolation between grids and tracer particles.

    ·Our method is easy to implement and parallelize,and it outperforms the MacCormack scheme in preservation of kinetic energy and vorticity.

    2 Related work

    For a review of grid-based fluid simulation we refer to Bridson’s textbook[5].Since our contribution is a new Eulerian advection scheme,we focus our discussion around such methods.

    2.1 Semi-Lagrangian method

    Semi-Lagrangian advection wasintroduced to graphics by Stam[2],with the key advantage of being unconditionally stable regardless of time step[5].It works by moving a virtual particle one step back in time through the velocity field and(tri-or bi-)linearly interpolating a value at the resulting position.Indeed,for CFL numbers less than one the method is equivalent to a first-order upwind advection scheme.As we show later,this interpolation is the primary source of numerical diffusion.

    An unconditionally stable semi-Lagrangian MacCormack method[1]reduces error through extra back and forth steps,and thereby achieves second-order accuracy.While this partially mitigates numerical diffusion,some diffusion arising from the grid interpolation nevertheless remains.

    2.2 High-order interpolation

    Multilinear interpolation can be replaced by highorder schemes.Essentially non-oscillatory(ENO)[6],weightedENO (WENO)[6],andthecubicinterpolation pseudo-particle(CIP)scheme[7]are popularapproaches,and thesemethodshave successfully been applied in graphics[8,9].The improvements they offer are due to their increased order of accuracy,whereas our method reduces error introduced by repeated interpolation,separately from the particular interpolation method used. Our results demonstrate that our method with linear interpolation provides qualitatively superior results to the MacCormack method with sixth-order WENO interpolation.

    2.3 Characteristic map

    Our method is similar in spirit to the work of Tessendorf and Pelfrey[4]and that of Hachisuka[10]in thesensethatthey used themethod of characteristics.These approaches follow a streamline of a virtual particle through the velocity field in a Lagrangian manner,much like the(single-step)semi-Lagrangian method.To apply the characteristic map for velocity advection,Hachisuka[10]proposed to generalize the non-advection terms(e.g.,the pressure gradient,and external forces)as the source of change[11](see Eq.(3.37)for details).Our method shares the same strategy as the work of Hachisuka[10]but differs in that our method consistently fetches the velocity fieldNsteps back after reachingNtime steps,while the method of Hachisuka[10]“resets”the total record of velocity at fixed intervals.This brings pros and cons–resetting all previous records in this way may speed up the average simulation time while the effects of dissipation are still reduced by a factor O(1/N)at the cost of(possibly)noticeable temporal artifacts at the time of re-initialization.Our method does not display such artifacts but the performance drag due to backward sampling persists for the entire simulation.

    3 Advection scheme

    3.1 Overview

    For the sake of brevity,we initially omit external forces(e.g.,gravity),but they are re-visited in Section 3.8.Firstly,we illustrate how to incorporate temporal information into our advection scheme.We begin with the momentum equation of the incompressible Euler equations:

    where D/Dtdenotes the material derivative,and p(x,t)andu(x,t)denote pressure and velocity,respectively,at positionxand timet.LetSbe the trajectory of a particle passively advected by the time-varying velocity field from the beginning of a simulation to a timet=T,parameterized by time.Integrating both sides of Eq.(1)over time gives

    wherex(S(t))denotes a position on a trajectoryS at a timet.For brevity,in the following we use shortened notation:uS,Tforu(x(S(T)),T)andpS,Tforp(x(S(T)),T).We aim to solve Eq.(2)and show that this effectively lessens the numerical dissipation.We outline one step of our simulation in Algorithm 1.

    ?

    In the basic semi-Lagrangian method,significant numerical diffusion arises because the velocity is resampled at every time step. We circumvent this issue by reconstructingfrom the velocity if eld at the beginning of a simulation(line 1 of Algorithm 1).This way,our approach does not accumulate numerical diffusion over time.We then compute a middle velocityin a similar way to the regular semi-Lagrangian method[2].Note that,unlikeuS,T,the reconstructed velocityis not exactly divergence-free in the limit of numerical approximation. Therefore,we chooseuS,Tfor backtracing positions to preserve mass conservation in the same spirit as the fluid-implicit particle(FLIP)method[12]. We usefor sampling the intermediate velocity after advection(line 2 of Algorithm 1)becauseneed not necessarily be divergence-free. Finally,is projected to be incompressible though the regular pressure projection routine[5]to get the new velocity for the next time step(line 3 of Algorithm 1).

    3.2 Integrating the pressure gradient

    We compute the integral of the pressure gradient in Eq.(2)by repeating the semi-Lagrangian backtrace until we reach the beginning of a simulation.Hence,we must record both the velocity and pressurefields for all previous time steps.We later show that this limitation can be partially alleviated,in exchange for some reduction in accuracy.In our examples,we employ second-order accurate Runge–Kutta for backtracing,and choose single point quadrature for line integration.For example:

    Like before,we use the divergence-free velocity if elduS,Tfor backtracing positions.At the end of backtracing we can locateS0,and substitute into Eq.(2)to complete the calculation of.

    3.3 Seeding integration tracers

    In the above,we assumed we were backtracing only a single point,but the velocity field values sampled on the regular grid are properly interpreted as the average of the velocity over a small cell.Therefore,we should backtrace not a single point but rather a small volume around the sample point.Since true backtracing of a volumetric region would lead to severe geometric tangling,we instead simply seed multiple points(integration tracers)per cell,inspired by a Gaussian quadrature rule.

    We place seeds in a uniform grid pattern over each cell,using four tracers per cell in 2D and eight in 3D.The initial velocity of each tracer particle is interpolated from the velocity field on grid faces.The tracer particles are then backtraced in parallel.Finally,their averaged value is used to computeu?S,Tper cell.This setup is straightforward to extend to staggered configurations,as we do in our examples.

    3.4 Interpolation error correction

    When applied,the algorithm above introduces an additional numerical diffusion step associated with back and forth velocity interpolation between grids and tracer particles.This issue can be understood as follows: firstly,we seed tracer particles with velocities interpolated from grids.When we interpolate velocity from tracer particles back to grids(as we do at the end of our advection scheme),the grid velocity is smeared,leading to numerical diffusion as in the particle-in-cell(PIC)method.We overcome this issue by predicting this loss of information as?u,and injecting it back into.Our error correction scheme is summarized in Algorithm 2.

    ?

    We note that when we naively perform this error correction,the kinetic energy can slightly increase in some specific scenarios,e.g.,in the 2D Taylor–Green vortex test.Thus,we only correct 90%of the estimated error in all of our examples,except for the comparison test on various ratios of estimated interpolation error(see Fig.4).This strategy is similar to the work of Zhu and Bridson[12]in the sense that the PIC/FLIP method suggests linearly combining FLIP and PIC where the blending factor is heavily biased towards FLIP.

    3.5 Reusing the reconstructed velocity

    As the simulation proceeds,the total number of previous velocity and pressurefields stored continually increases.This eventually leads to a tremendous memory footprint,and for practical purposes it becomes infeasible to fetch a velocity from the beginning of the simulation.To overcome this issue,we propose an amendment to allow our method to have a fixed computational cost regardless of running time.LetNbe a target bound on the number of time steps’data to be stored.Equation(2)can then be re-written as

    Note that Eq.(4)is equivalent to

    Thisway, we can resortto the previously reconstructedinstead of tracing all the way back touS,0.To this end,we additionally storeat every time step.When computing Eq.(2),we backtrace at mostNsteps and fetchinstead ofuS,0at the point.WhenTis smaller than N?t,we just stop the backtracing at the beginning.

    Although this reintroduces some numerical diffusion,the amount isO(1/N)compared to the standard semi-Lagrangian method.For completeness,we assume that= uS,0andN?t ≤ T.Algorithm 3 lays out one step of our modified algorithm.

    ?

    3.6 Spatially adaptive integration

    Our multi-sampled integration scheme is essential for accurate long-term integration of the pressure gradient,but the effect of such accuracy may not be noticeable where the velocity magnitude is negligibly small.We exploit this observation and apply the following two-level adaptive scheme:we seed a single tracer particle per cell if the velocity magnitude of a cell is less than 0.5,and eight tracers everywhere else.We assign a weight of 1 to the former case,and 1/8 to the latter case,and use these weights later in computing the average velocity on faces.This technique allows us to significantly speed up the integration calculation,since typically the majority of the simulation domain contains velocity values of small magnitude.Where smoke is present,we also seed 8 tracers if the density exceeds a small threshold(0.01 in our tests).

    3.7 Temporal filtering

    When applied as described,our method can display temporal flickering artifacts:because we always fetch the velocity from only the frameNsteps back,this allows partial decoupling between sets of frames separated byNsteps(e.g.,forN=4,frame 5 interpolates its starting velocity from frame 1,whereas frame 6 starts from frame 2,allowing the two sequences to gradually deviate over time).We introduce a temporal filtering technique to mitigate this issue.Instead of sampling velocity from a single frame,we fetch the velocities from multiple sources and blend them together.Our blending recipe is as follows:

    whereW=iwiandNi=N?i.To accommodate the effect of temporal filtering,we replacewithin Algorithm 3.In our examples,we pickwi=αi?1whereα < 1 is a user-specified parameter which we set to α=0.9.

    3.8 Static solids,liquids,and external forces

    To straightforwardly extend our method to support solid boundaries and liquids,rather than explicitly storing pressure,we store the change in velocity due to the pressure projection:Although this increases memory consumption,it provides the benefit that we can automatically account for the extrapolated velocity without special care.External forcesf,such as gravity,buoyancy,or user interaction,can likewise be added to the change:

    4 Results

    All examples in Figs.1–3 were run on a Linux machine with a 10-core Intel Core i7-6950X CPU at 3.00 GHz.We applied interpolation error correction(see Section 3.4)and spatially adaptive integration(see Section 3.6)in all cases except as noted.

    Figure 1 demonstrates how simulation quality improves as we increaseN.This simulation was run on a 1283grid.Our modified advection scheme usingN=16 took approximately 5.4 s per time step,corresponding to roughly 46%of the simulation time.The right bottom of Fig.1 shows an example without error correction.Without this correction,the velocity field tends to smooth out more quickly due to numerical diffusion arising from interpolation between grids and tracer particles.Note that in the video in the Electronic Supplementary Material(ESM),some Mach-band-like artifacts are noticeable,but this is solely due to insufficient sample rays in our ray marching algorithms.

    Fig.1 Three dimensional rising smoke.Left to right,top to bottom:semi-Lagrangian advection,and our method(forN=4,N=16,and N=16 without interpolation error correction);Nis the number of preceding time steps used by our method.

    Figure 2 shows a spiral maze experiment as also performed by Mullen et al.[13].We set up the same experiment with semi-Lagrangian advection,MacCormack advection with WENO interpolation,and our method with variableN.WhenNreached 32,we observed that our method successfully passed the test,in that an initial vortex propagates all the way to the maze’s center.We provide results for other schemes in the ESM.

    The bottom of Fig.2 visualizes the spatial adaptivity used in our method.When applied to Fig.1,our spatial adaptivity speeds up the backtrace calculation 2.8 times on average.

    Finally,Fig.4 shows kinetic energy plots with various ratios of estimated interpolation error on a 2D Taylor–Green vortex test.When we did not apply our correction,we observed that the kinetic energy decreased significantly.On the other hand,when we corrected 100%of the estimated error,we observed that the kinetic energy increased slightly.

    Figure 3 plots the observed kinetic energy on a 2D Taylor–Green vortex test.As expected,our method retains kinetic energy for a longer duration than other schemes.

    Fig.2 Top:a crawling vorticity experiment using our method(N=32).Vorticity is initiated on the left wall and is allowed to crawl along the spiral walls,ultimately reaching the center of the maze(far right).Bottom:our adaptivity approach is visualized for a velocity field traced 32 steps back.We seed 4 tracer particles per cell in cells highlighted with red,and use only a single tracer particle everywhere else.The overlaid velocities in red indicate the velocity field 32 steps back.

    Fig.3 Kinetic energy in the 2D Taylor–Green vortex test.

    Fig.4 Kinetic energy in the 2D Taylor–Green vortex test for various ratios of estimated interpolation error.

    5 Discussion

    5.1 Observations

    In practice,the choice of an effective value forN depends critically on the accuracy of the integration scheme used.We observed that in two dimensions,our four-point sampling technique typically allowed us to step backwards at most 32 time steps without apparent artifacts.Stepping back further than this induced numerical instabilities,such as velocity fluctuations:whenNexceeds some tolerable number,our 8-or 4-point integration scheme may not be able to accurately calculate the gradient integral due to significant deformation of grid cells.

    In our preliminary tests we tried to adaptively change the maximum backtrace count over space depending on the flow complexity.However,we often fell into the situation that either kinetic energy quickly decreased or numerical diffusion excessively took place,and found it difficult to control the number.

    We also applied our method to liquids,but found that the visual improvement was subtle.We suspect that this is because interior vorticity does not play a dominant role in many liquid scenes,as also suggested by Zhang et al.[14].

    We explored use of two different interpolation schemes in our method:tri-or bi-linear interpolation,and sixth-order WENO interpolation.Although WENO interpolation showed slightly superior accuracy,we felt that the increased runtime was not worth the cost.In the 3D rising smoke example(see Fig.1),the same setup with WENO interpolation took about 19 times longer on average.

    Notethatalthoughourmethoddevisesan advection operator to better retain kinetic energy over a long duration,it does not offer exact preservation.If this was desired,one might prefer to use a strictly energy-preserving integrator[13].

    We observed that our interpolation error correction can increase the kinetic energy in some scenarios.Although we were unable to identify the source of the energy increase,it only takes place for a short duration and it eventually decreases in dynamically changing scenarios.

    Our correction scheme may introduce an additional step,but we note that its cost is negligible when compared to that of our whole backtracing phase.

    5.2 Limitations

    The primary drawback of our method is the added computational cost and memory requirements compared to basic semi-Lagrangian advection.These are approximatelyNtimes larger,because we must repeat a semi-Lagrangian-style backtracing stepN times.Fortunately,our method is fully parallelizable and portable to modern GPUs,which suggests a strong potential for acceleration.Also,the pressure solution step can often dominate the simulation cost(e.g.,taking 90%for smoke[15])by a factorO(N2g)if a preconditioned conjugate gradient method is used,forNggrid cells.Since the semi-Lagrangian method hasO(Ng)and our method hasO(NNg),our method scales better than the pressure solution if N<Ng.

    6 Conclusions and future work

    This paper has introduced a reduced-dissipation velocity advection scheme for fluid animation.The key attribute of our method is to integrate the timevarying pressure gradient along the trajectory to avoid dissipation from resampling the velocity at every time step.Our approach is easy to implement and successfully suppresses numerical diffusion,allowing us to better preserve small-scale turbulence and kinetic energy over the alternative MacCormack advection scheme.In future,we would like to extend our method to minimize the drift of plasticity for Eulerian solid simulation(e.g.,for the material point method),and thus better preserve elasticity.

    Acknowledgements

    ThisworkwassupportedbyNSERC(Grant RGPIN-04360-2014)and JSPS KAKENHI(Grant 17H00752).The authors thank Toshiya Hachisuka for insightful discussions.

    Electronic Supplementary MaterialSupplementary material is available in the online version of this article at https://doi.org/10.1007/s41095-018-0117-9.

    av在线app专区| 亚洲精品一区蜜桃| 在线免费观看不下载黄p国产| 久久精品久久久久久久性| 18禁观看日本| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 3wmmmm亚洲av在线观看| 久久午夜综合久久蜜桃| 亚洲久久久国产精品| 亚洲内射少妇av| 精品亚洲乱码少妇综合久久| 中文字幕亚洲精品专区| av国产久精品久网站免费入址| 91久久精品国产一区二区成人| 久久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 亚州av有码| 如日韩欧美国产精品一区二区三区 | 成人国产av品久久久| 在线观看免费高清a一片| 天美传媒精品一区二区| 啦啦啦中文免费视频观看日本| 久久精品久久精品一区二区三区| 男男h啪啪无遮挡| 午夜福利视频精品| 91在线精品国自产拍蜜月| 免费观看无遮挡的男女| 好男人视频免费观看在线| 五月伊人婷婷丁香| 国产精品一国产av| 日本与韩国留学比较| 亚洲精品日韩av片在线观看| 国产av码专区亚洲av| 成人亚洲欧美一区二区av| 一个人看视频在线观看www免费| 国产免费又黄又爽又色| 丝袜在线中文字幕| 美女视频免费永久观看网站| 一级黄片播放器| 欧美3d第一页| 少妇熟女欧美另类| 少妇熟女欧美另类| 麻豆乱淫一区二区| 丰满乱子伦码专区| 国产精品一国产av| 色网站视频免费| 免费大片黄手机在线观看| 国产精品免费大片| 国产一区二区三区av在线| 亚洲av二区三区四区| 成人免费观看视频高清| 大陆偷拍与自拍| 亚洲第一区二区三区不卡| 交换朋友夫妻互换小说| 边亲边吃奶的免费视频| 交换朋友夫妻互换小说| 亚洲av日韩在线播放| 日韩人妻高清精品专区| 一级,二级,三级黄色视频| 汤姆久久久久久久影院中文字幕| 亚洲av国产av综合av卡| av在线观看视频网站免费| 国产黄频视频在线观看| 美女主播在线视频| 精品国产一区二区久久| 日日撸夜夜添| 免费久久久久久久精品成人欧美视频 | 久久久久久久大尺度免费视频| 在线亚洲精品国产二区图片欧美 | 亚洲欧美成人综合另类久久久| 久久精品久久久久久噜噜老黄| av福利片在线| 亚洲综合色惰| 国产亚洲欧美精品永久| 黄片播放在线免费| 91久久精品国产一区二区成人| 老司机亚洲免费影院| 一级黄片播放器| 久久久久久久大尺度免费视频| 国产爽快片一区二区三区| 久久久久久久亚洲中文字幕| 少妇被粗大的猛进出69影院 | 日日啪夜夜爽| 91成人精品电影| 精品人妻在线不人妻| 91精品三级在线观看| 亚洲在久久综合| 国产高清不卡午夜福利| 成年美女黄网站色视频大全免费 | 亚洲欧美中文字幕日韩二区| 最近2019中文字幕mv第一页| h视频一区二区三区| 亚洲av不卡在线观看| 久久久久久人妻| 又黄又爽又刺激的免费视频.| kizo精华| 国产成人精品福利久久| 全区人妻精品视频| 亚洲精品乱码久久久久久按摩| 日本色播在线视频| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| 有码 亚洲区| av天堂久久9| 91精品国产国语对白视频| 成人无遮挡网站| 人妻少妇偷人精品九色| 国产黄色视频一区二区在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美 亚洲 国产 日韩一| 中文字幕精品免费在线观看视频 | 能在线免费看毛片的网站| 春色校园在线视频观看| 黄色视频在线播放观看不卡| 亚洲精品第二区| 九九爱精品视频在线观看| 国产精品久久久久成人av| 国产精品秋霞免费鲁丝片| 在线天堂最新版资源| 伦精品一区二区三区| 亚洲少妇的诱惑av| 精品一区二区三区视频在线| 青春草亚洲视频在线观看| 一区在线观看完整版| 黑丝袜美女国产一区| 国产日韩欧美亚洲二区| 亚洲四区av| 狂野欧美激情性xxxx在线观看| 国产精品一国产av| 国产男女超爽视频在线观看| 日韩一区二区视频免费看| 亚洲精品乱码久久久v下载方式| 一区二区三区乱码不卡18| 精品久久久久久久久av| 有码 亚洲区| 美女福利国产在线| 久久国内精品自在自线图片| 久久精品夜色国产| 亚洲av不卡在线观看| 日本91视频免费播放| 国产又色又爽无遮挡免| 久久精品国产亚洲av涩爱| 日本-黄色视频高清免费观看| 亚洲精品视频女| 欧美日韩成人在线一区二区| 精品久久久久久电影网| 国产精品免费大片| 啦啦啦中文免费视频观看日本| 毛片一级片免费看久久久久| 男人爽女人下面视频在线观看| 人妻少妇偷人精品九色| 国产精品一二三区在线看| 亚洲图色成人| 亚洲av在线观看美女高潮| 日韩电影二区| 亚洲经典国产精华液单| 免费高清在线观看视频在线观看| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 午夜视频国产福利| 国产亚洲av片在线观看秒播厂| 午夜免费观看性视频| 国产av码专区亚洲av| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 黄色怎么调成土黄色| 免费日韩欧美在线观看| 九九爱精品视频在线观看| 麻豆成人av视频| 91久久精品电影网| 久久久久久久久大av| 久久精品久久精品一区二区三区| 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 国产男女超爽视频在线观看| 五月伊人婷婷丁香| 美女xxoo啪啪120秒动态图| 亚洲国产精品一区三区| 一本色道久久久久久精品综合| 日本vs欧美在线观看视频| 日韩精品有码人妻一区| 日韩伦理黄色片| 精品国产乱码久久久久久小说| 欧美日韩精品成人综合77777| 国产 一区精品| 亚洲美女黄色视频免费看| 街头女战士在线观看网站| 在线观看免费日韩欧美大片 | 亚洲一级一片aⅴ在线观看| 亚洲国产av新网站| 日本wwww免费看| 亚洲精品乱久久久久久| 日产精品乱码卡一卡2卡三| 亚洲国产欧美在线一区| 国产免费一区二区三区四区乱码| 亚洲五月色婷婷综合| 在线观看免费视频网站a站| 午夜福利在线观看免费完整高清在| 午夜av观看不卡| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 精品视频人人做人人爽| 精品熟女少妇av免费看| 99久久中文字幕三级久久日本| 18禁在线无遮挡免费观看视频| 亚洲av不卡在线观看| 国产一区二区三区综合在线观看 | 国产精品一区二区在线观看99| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 26uuu在线亚洲综合色| 插逼视频在线观看| 国产女主播在线喷水免费视频网站| 婷婷成人精品国产| 久久久久久久国产电影| av福利片在线| 亚洲欧美一区二区三区黑人 | 80岁老熟妇乱子伦牲交| 美女视频免费永久观看网站| 国产黄色视频一区二区在线观看| 精品卡一卡二卡四卡免费| 综合色丁香网| 日韩中文字幕视频在线看片| 国产一区二区在线观看日韩| 22中文网久久字幕| 日韩强制内射视频| a级毛片在线看网站| 免费高清在线观看日韩| www.av在线官网国产| 99re6热这里在线精品视频| 国产成人一区二区在线| 精品人妻在线不人妻| 新久久久久国产一级毛片| 国产无遮挡羞羞视频在线观看| 插阴视频在线观看视频| 精品一区二区三区视频在线| 精品亚洲成国产av| 18在线观看网站| 国产精品99久久久久久久久| 极品少妇高潮喷水抽搐| 国产日韩欧美视频二区| 卡戴珊不雅视频在线播放| 色吧在线观看| 91午夜精品亚洲一区二区三区| av有码第一页| 国产av一区二区精品久久| 在线亚洲精品国产二区图片欧美 | 久久久欧美国产精品| 嘟嘟电影网在线观看| 国产亚洲精品久久久com| 男女高潮啪啪啪动态图| 男女啪啪激烈高潮av片| 成年美女黄网站色视频大全免费 | 内地一区二区视频在线| 久久99热6这里只有精品| 国产精品熟女久久久久浪| 国产精品久久久久久av不卡| 精品一区在线观看国产| 久久久久精品久久久久真实原创| 亚洲av国产av综合av卡| 精品熟女少妇av免费看| 精品熟女少妇av免费看| 中文字幕人妻丝袜制服| 人人妻人人澡人人爽人人夜夜| 久久久久国产网址| 99re6热这里在线精品视频| 成人午夜精彩视频在线观看| 精品视频人人做人人爽| 久久国产精品男人的天堂亚洲 | 国产免费视频播放在线视频| 黄色怎么调成土黄色| 青春草亚洲视频在线观看| 色哟哟·www| 五月玫瑰六月丁香| 中国美白少妇内射xxxbb| 尾随美女入室| 秋霞伦理黄片| 久热这里只有精品99| 国产色婷婷99| 亚洲三级黄色毛片| 日韩电影二区| 精品人妻在线不人妻| 成年女人在线观看亚洲视频| 乱人伦中国视频| 成人二区视频| 另类精品久久| 久久久久久久国产电影| 三上悠亚av全集在线观看| 国产精品久久久久久精品古装| 日韩一区二区三区影片| 黄色视频在线播放观看不卡| 亚洲国产精品成人久久小说| 国产精品嫩草影院av在线观看| 少妇 在线观看| 亚洲五月色婷婷综合| 麻豆精品久久久久久蜜桃| 99热全是精品| 纯流量卡能插随身wifi吗| 久久久久久久大尺度免费视频| 亚洲不卡免费看| 亚洲欧美色中文字幕在线| 国产日韩欧美在线精品| 一区二区日韩欧美中文字幕 | 久久综合国产亚洲精品| 中国国产av一级| 午夜福利网站1000一区二区三区| 看免费成人av毛片| 看十八女毛片水多多多| 99视频精品全部免费 在线| 亚洲欧美精品自产自拍| 日韩人妻高清精品专区| 亚洲av国产av综合av卡| 欧美精品一区二区免费开放| 免费人妻精品一区二区三区视频| 婷婷色综合大香蕉| 一区二区av电影网| 99热网站在线观看| 在线观看三级黄色| 99九九线精品视频在线观看视频| 午夜免费鲁丝| 免费观看无遮挡的男女| 一二三四中文在线观看免费高清| 久久影院123| 国产高清国产精品国产三级| 国产成人免费无遮挡视频| 美女内射精品一级片tv| 99九九在线精品视频| 黄色毛片三级朝国网站| 免费观看的影片在线观看| 嘟嘟电影网在线观看| 日本欧美视频一区| 99国产精品免费福利视频| 久久久国产精品麻豆| 日本黄大片高清| av网站免费在线观看视频| 一区二区三区精品91| 亚洲色图 男人天堂 中文字幕 | 一级黄片播放器| 成人18禁高潮啪啪吃奶动态图 | 国产成人freesex在线| 亚洲精品乱码久久久久久按摩| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| 日本午夜av视频| av卡一久久| 乱码一卡2卡4卡精品| 男女免费视频国产| 男女高潮啪啪啪动态图| 国产精品国产三级国产专区5o| 尾随美女入室| 国产午夜精品久久久久久一区二区三区| 9色porny在线观看| 在线亚洲精品国产二区图片欧美 | 中文字幕av电影在线播放| 老熟女久久久| 国产成人精品久久久久久| 一级片'在线观看视频| 亚洲精品第二区| 99国产精品免费福利视频| 精品久久久久久电影网| 最近手机中文字幕大全| 精品一品国产午夜福利视频| 亚洲精品亚洲一区二区| 黄片播放在线免费| av在线app专区| 久久久久久久久久久久大奶| 日韩成人av中文字幕在线观看| 国产欧美日韩一区二区三区在线 | 中国国产av一级| 久久久久久久国产电影| 99国产综合亚洲精品| 国产精品免费大片| a级毛色黄片| 亚洲成色77777| 少妇的逼好多水| 欧美 日韩 精品 国产| 欧美三级亚洲精品| 搡老乐熟女国产| 亚洲精品中文字幕在线视频| 国产精品.久久久| 黑人高潮一二区| 亚洲欧美日韩另类电影网站| 人妻制服诱惑在线中文字幕| 制服诱惑二区| 精品国产国语对白av| 国产淫语在线视频| 亚洲精品亚洲一区二区| 高清不卡的av网站| 伊人久久国产一区二区| 国产免费一级a男人的天堂| 久久影院123| 久久久久久久久久久丰满| 国产男女超爽视频在线观看| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 99视频精品全部免费 在线| 有码 亚洲区| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 中文字幕最新亚洲高清| 国产69精品久久久久777片| 日韩一区二区视频免费看| 久久久午夜欧美精品| 亚洲美女视频黄频| 国产成人免费无遮挡视频| 亚洲三级黄色毛片| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 一个人免费看片子| 男的添女的下面高潮视频| 久久影院123| 国产乱人偷精品视频| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 亚洲欧美日韩卡通动漫| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 老司机影院成人| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 亚洲精品456在线播放app| 中文字幕人妻丝袜制服| 制服人妻中文乱码| videos熟女内射| 成人手机av| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡| 大码成人一级视频| 久热久热在线精品观看| 久久久久久久久久久久大奶| 国模一区二区三区四区视频| 国产成人午夜福利电影在线观看| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 少妇人妻 视频| 人妻系列 视频| 制服丝袜香蕉在线| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 久久精品久久久久久噜噜老黄| 九色亚洲精品在线播放| 精品人妻熟女毛片av久久网站| 亚洲国产欧美在线一区| 999精品在线视频| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 亚洲中文av在线| 欧美性感艳星| 男女无遮挡免费网站观看| 久久久久久伊人网av| 免费看av在线观看网站| 久久久久久久久久久久大奶| 国产精品久久久久久av不卡| 免费看不卡的av| 五月玫瑰六月丁香| 热re99久久精品国产66热6| 久久热精品热| 国产免费一区二区三区四区乱码| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 久久久久久久国产电影| 欧美xxⅹ黑人| 卡戴珊不雅视频在线播放| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 汤姆久久久久久久影院中文字幕| 一区二区三区乱码不卡18| 91精品三级在线观看| 亚洲av.av天堂| 亚洲av综合色区一区| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品在线电影| 精品一区在线观看国产| 国产成人精品一,二区| 最黄视频免费看| 99热6这里只有精品| 免费观看在线日韩| 久久午夜福利片| 欧美+日韩+精品| 亚洲欧洲日产国产| 亚洲国产毛片av蜜桃av| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| 狠狠婷婷综合久久久久久88av| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 国产成人精品久久久久久| 国产男女内射视频| 国产亚洲一区二区精品| 欧美日本中文国产一区发布| 色吧在线观看| 亚洲综合精品二区| 午夜免费观看性视频| 国产精品无大码| 一二三四中文在线观看免费高清| 高清在线视频一区二区三区| 日本免费在线观看一区| 久久久精品94久久精品| 亚洲av综合色区一区| av.在线天堂| 免费大片18禁| 97在线人人人人妻| 我的老师免费观看完整版| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 亚洲精品亚洲一区二区| 久久久久精品性色| 国产女主播在线喷水免费视频网站| 欧美 亚洲 国产 日韩一| 老司机影院毛片| 亚洲婷婷狠狠爱综合网| 欧美日本中文国产一区发布| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级| 男女无遮挡免费网站观看| 大码成人一级视频| 国产免费又黄又爽又色| 国产成人精品婷婷| 日韩精品免费视频一区二区三区 | 久久久午夜欧美精品| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 亚洲国产色片| 交换朋友夫妻互换小说| 国产 精品1| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 午夜福利网站1000一区二区三区| 男人爽女人下面视频在线观看| 在线天堂最新版资源| 亚洲综合精品二区| av.在线天堂| 大香蕉97超碰在线| 我的老师免费观看完整版| 在现免费观看毛片| 国产成人精品无人区| 国产片特级美女逼逼视频| 亚洲图色成人| 精品久久久久久电影网| 国产亚洲精品第一综合不卡 | 一本—道久久a久久精品蜜桃钙片| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成国产av| 成人国语在线视频| 亚洲av成人精品一区久久| av免费在线看不卡| 国产一区有黄有色的免费视频| 国产精品国产三级国产av玫瑰| 国产高清三级在线| 国产男人的电影天堂91| 99久久精品一区二区三区| 中文字幕最新亚洲高清| 欧美+日韩+精品| 久久97久久精品| 久久久久久久久久久免费av| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 一本一本综合久久| 亚洲av欧美aⅴ国产| 麻豆乱淫一区二区| 日本色播在线视频| 中文字幕免费在线视频6| 草草在线视频免费看| 国产日韩欧美亚洲二区| 国产一区亚洲一区在线观看| 久热这里只有精品99| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 国产综合精华液| 日韩熟女老妇一区二区性免费视频| av电影中文网址| 男的添女的下面高潮视频| 黄色视频在线播放观看不卡| 亚洲精品,欧美精品| 亚洲精品国产av蜜桃| 女人精品久久久久毛片| 大又大粗又爽又黄少妇毛片口| 一级a做视频免费观看| 亚洲精品久久成人aⅴ小说 | 久久精品久久久久久久性| 国产一区二区在线观看日韩| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 毛片一级片免费看久久久久| 国产精品久久久久久久电影| 成年人午夜在线观看视频| 日韩一本色道免费dvd| 丝袜在线中文字幕| 成人国产麻豆网| 亚洲精品一区蜜桃|