• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantative measuring technique for thetemperature of flow fields in schlieren systems

    2018-10-15 11:03:10ZHANGXiongxingWANGWeiLIUGuanghaiGUOZilongHURui
    中國光學(xué) 2018年5期
    關(guān)鍵詞:紋影刀口光源

    ZHANG Xiong-xing, WANG Wei*, LIU Guang-hai, GUO Zi-long, HU Rui

    (1.School of Optoelectronics Engineering,Xi′an Technological University,Xi′an 710021,China;2.Sichuan Physcience Optics and Fine Mechanics Co.,Ltd.,Mianyang 621900,China)

    Abstract: In order to study temperature field measurement techniques of Schlieren systems, the principle of Schlieren quantitative measuring techniques is expounded. Based on the relationship between the grayness of a Schlieren image, along with the area of a light source, we propose an algorithm that is dependent on Schlieren to calculate flow field temperature. Firstly, a transmission Schlieren system is built on an optical platform and a hot plate is placed in the test area. Schlieren images are then captured by using a CCD camera, which are uploaded and stored on a computer for image processing. Finally, the algorithm is used to get the measured values of the temperature field, which then are compared with those by thermocouple measurement. The experimental results show that, when the temperature of the hot plate is set at 50 ℃ or 90 ℃, the relative errors of the flow field temperature measurement are less than 10%, the reliability of the algorithm is therefore proved and the quantitative measurement of temperature fields based on Schlieren techniques is realized.

    Key words: schlieren;quantitative measurement;flow field;image gray magnitude

    1 Introduction

    引 言

    In modern flow field measurement, as the demand for non-contact flow field temperature measurement grows, traditional instruments are failing to satisfy observation requirements. Schlieren measuring techniques through optics has been attracting much attention for its multiple outstanding characteristics, among which are its informative demonstration of flow fields, its non-invasive but high level of quantitative precision, and its low cost. This is especially true for the measurement of temperature in flow fields when compared to traditional methods using probes. Using Schlieren measuring techniques, one can measure the temperature of flow fields without affecting the flow field itself[1-6].

    在現(xiàn)代流場測量中,對于非接觸式流場溫度定量測量需求逐步增強,傳統(tǒng)流場顯示設(shè)備己很難滿足觀測需求。以紋影定量測量技術(shù)為代表的光學(xué)顯示技術(shù)備受關(guān)注,其顯著特點是流場信息量大、非侵入定量測量精度高、成本低。特別是對于流場的溫度測量,相比傳統(tǒng)的探針測量方式,利用紋影定量技術(shù)可以在不影響流場本身特性的前提下,滿足溫度場測量需求[1-6]。

    Since year 2000, Schlieren measurement technology has seen rapid development. In 2008, C. Alvarezherreraetal.[7]performed reconstruction using an orthogonal decomposition method and observed the combustion temperature of two flames from fuels mixed partially and fully with air. It was discovered that there were structural differences in the flame but it didn't find the flame′s relevant temperature ranges. In 2009, M.K.Campbelletal.[8]set a reflective Schlieren measuring device above a metal hot plate, selected two temperatures, and observed their differences using a thermocouple with reasonable consistency. However, since the temperature range used was somewhat narrow, there is no way to tell how the results will vary under more extreme temperatures. In 2012, A. Martínezgonzálezetal.[9]used traditional Schlieren measuring tools to simultaneously take measurements of speed and temperature, but did so with a relatively large margin of error for a series of different temperature values. In 2016, A.Martínezgonzálezetal.[10]analyzed lab results using two pictures taken at different temperatures and discovered that changes in the camera′s exposure allowed measurements at different temperature ranges. However, the published results failed to fully analyze the phenomenon. Domestic research of Schlieren systems is progressively increasing in importance. In 2013, Jifei Yeetal.[11-12]used a multi-coloured Schlieren method to measure the density of axis-symmetric flow fields. However, the fabrication of light colour filters is relatively difficult. In 2015, Sheng Meng,etal., from Zhejiang University of Technology.[13-14], used a Z-shaped Schlieren system and standard spectrophotometry to quantify flame temperature. That same year, China Aerodynamics and Research Development Center′s Jun Zhangetal.[15]used background Schlieren techniques with flow field density and temperature distribution to perform measurements, but background Schlieren techniques are more appropriately used with large-scale measurements.

    自2000年以后,紋影定量技術(shù)得到了迅猛發(fā)展。2008年,Alvarezherrera C等人[7]利用一種正交分解的方法對充分和部分兩種空氣混合的燃料燃燒的火焰溫度場進(jìn)行重建,找出兩種火焰結(jié)構(gòu)上的差異,但是并沒有測量出火焰的溫度值;2009年,Campbell M K等人[8]利用反射式紋影儀測量出金屬加熱平臺上方的空氣溫度,選取兩個溫度值,與熱電偶所測量的溫度值進(jìn)行比較,得到較好的一致性。由于加熱平臺選取溫度值較為單一,無法比較低溫度值和高溫度值范圍內(nèi)測量誤差;2012年,Martínezgonzález A等人[9]利用傳統(tǒng)紋影儀實現(xiàn)了溫度和速度同時測量,其對可控加熱平臺設(shè)定一系列溫度值進(jìn)行測量,但是測量誤差偏大;2016年,Martínezgonzález A等人[10]通過實驗對不同溫度值的圖片進(jìn)行分析,發(fā)現(xiàn)通過改變相機的曝光時間,可以測量不同范圍的溫度值,但是沒有提出具體的理論分析。國內(nèi)對紋影定量測量技術(shù)的研究也逐漸重視,2013年,葉繼飛等人[11-12]采用彩虹紋影法對軸對稱流場的密度場進(jìn)行了定量測量,但彩色濾光片的制作較難;2015年,浙江工業(yè)大學(xué)孟昇等人[13-14]利用“Z”字形紋影系統(tǒng),采用標(biāo)準(zhǔn)光度法對火焰溫度進(jìn)行了定量化;同年,中國空氣動力研究與發(fā)展中心的張俊等人[15]利用背景紋影技術(shù)對流場的密度和溫度分布進(jìn)行了測量,但背景紋影技術(shù)適用于大視場的定量測量。

    From the above, one can see that there is no standard method of calculating the temperature of Schlieren systems or verifying tests in this field. Using Schlieren measurement principles as a foundation, the relationship between degrees of grayness in Schlieren images and the amount of source light obstruction is first analyzed, a method of calculating flow field temperature is proposed, an appropriate measurement scope is meticulously analyzed, and the results of a laboratory test on temperature field measurements to verify the aforementioned algorithm is described.

    綜上可以看出,紋影系統(tǒng)的溫度定量測量技術(shù)在計算方法上并沒有一個完整的理論推導(dǎo)和試驗驗證。而本文的創(chuàng)新點在于,以紋影法的定量測量原理為基礎(chǔ),分析了紋影圖像灰度值大小與未被遮擋的光源像面積的關(guān)系,提出了一套完整的流場溫度定量計算方法,詳細(xì)分析了該方法的測量范圍,并通過溫度場定量測量試驗,驗證了這套方法的可行性。

    2 Measurement Principles

    測量原理

    Light rays whose indexes of refraction are inconsistent are dispersed unevenly. As seen in Fig.1, the three different coloured regions depict that the internal positions of one flow field are adjacent.

    光線通過折射率不均勻的流場時會發(fā)生偏折,如圖1所示,圖中3塊不同顏色的區(qū)域表示了一個流場內(nèi)部3個相鄰區(qū)域。

    Fig.1 Transmission of light beam in media 圖1 光在介質(zhì)中的傳播

    Light follows the Huygens principle when passing through a transparent medium. Because of changes in the index of refraction, the velocity of the light wave can change, along with its direction. This leads to the following relationship:

    光在透明介質(zhì)中傳播時遵循惠更斯原理,而折射率的改變會導(dǎo)致波前光線速度發(fā)生改變化,光束的方向也會有所不同,由此即可獲得如下關(guān)系:

    (1)

    While working with formula 1, because the neighbouring flow fields are very close, the following formula 2 is created:

    在式(1)中,由于流場相鄰區(qū)域的折射率非常接近,經(jīng)過化簡后得到公式(2):

    (2)

    Becauseθis a very small angle, they-axis can be written as:

    因為θ是一個非常小的角度,以y軸方向為例分析:

    (3)

    Combining this with formula (2) and integrating with respect to thex-axis yields

    將其帶入公式(2),并沿z軸方向做一次積分得到式(4):

    (4)

    After light passes through a flow field it is refracted toward a blade, as shown in Fig.2.

    在光線通過流場區(qū)域后偏折角與刀口的偏移量如圖2所示。

    Fig.2 Relationship between deflection angle θ and offset a 圖2 偏折角θ與偏移量a關(guān)系圖

    From Fig.2, one can see that the angle of lightθcan be refracted by offset a at the blade, depending on the nature of the focal plane:

    從圖2中可看出,光線的偏移角θ會在刀口處產(chǎn)生一定的偏移量a,根據(jù)焦平面的性質(zhì)則有:

    a=f2tanθ≈f2θ.

    (5)

    The following flow field density formula, formula (6), is obtained by combining formulas (4) and (5) with the Gladstone-Dale law:

    結(jié)合公式(4)、(5)和格拉斯通-戴爾(Gladstone-Dale)定律可得到流場密度梯度公式(6):

    (6)

    In Equation (6),Krepresents the Gladstone-Dale constant,Lrepresents the length of the flow field along the optical path, andf2represents the focal length of Schlieren lens 2, all of which are constant. After simplifying formula 6, the density value of the flow field with respect to they-axis can be obtained, as shown in formula 7.

    式中,K表示Gladstone-Dale常數(shù),L表示流場沿光路方向的長度,f2表示紋影系統(tǒng)透鏡2的焦距,以上3個值均為常量。對公式(6)進(jìn)行化簡后即可得到流場關(guān)于y軸方向的密度值,如式(7)所示:

    (7)

    In equation (7),ρyrepresents the density to be measured,ρ0represents the reference density,ξ0represents the reference edge position, andξ1represents the offset of the light. Combined with the ideal gas state equation, the temperature of the gas flow field is obtained as follows:

    式中,ρy表示待測密度,ρ0表示基準(zhǔn)密度,ξ0表示參考刀口位置,ξ1表示光線的偏移量。再結(jié)合理想氣體狀態(tài)方程,可得到氣體流場的溫度如下:

    (8)

    WhereT0is surrounding temperature,ρ0is the surrounding air density,Tyis the temperature to be measured, andρyis the density to be measured. It can be seen from formula 8 that the integral with respect to the amount of refracted light is key to calculating gas flow field temperature.

    式中,T0為周圍環(huán)境溫度,ρ0為周圍環(huán)境空氣密度,Ty為待測溫度,ρy為待測密度。由公式(8)可以看出,其中關(guān)于光線偏折量的一次積分是計算氣體流場溫度的關(guān)鍵所在。

    3 Measurement Methods and Data Processing

    測量流程與數(shù)據(jù)處理方法

    By analyzing of the principles of quantitative measurement of Schlieren, it can be obtained that:Due to the different densities in the flow field, the light will undergo different degrees of offset when passing through the flow field, and different degrees of light refraction will cause different gray values on the Schlieren image. Therefore, the main idea of the algorithm is to establish the relationship between the gray level of the Schlieren image and the refraction of the light. This requires calibration between the offset of the light and the gray value of the Schlieren image.

    經(jīng)過對紋影定量測量原理的分析可得:由于流場內(nèi)密度不同導(dǎo)致光線在穿過流場時,會發(fā)生不同程度的偏移,而不同程度的光線偏移會造成紋影圖像上灰度值的不同,故紋影儀流場溫度測量的主體思想為構(gòu)建紋影圖像灰度大小與光線偏移量這二者之間的關(guān)系。這就需要對兩者作出標(biāo)定。

    The calibration method used herein is the calibration Schlieren method, which is to convert the relationship between the offset of the light relative to the blade and the gray scale of the Schlieren image into the relationship between the relative light offset of the blade and the grayness of the Schlieren image. As shown in Fig.3, the two relative motions are actually identical in terms of the area of the occluded light from the source.

    本文所采用的標(biāo)定方法為定標(biāo)紋影法,就是將光線相對刀口的偏移量與紋影圖像灰度變化的關(guān)系轉(zhuǎn)化為刀口相對光線偏移量與紋影圖像灰度變化的關(guān)系,如圖3所示,兩種相對運動實際對遮擋光源像面積上是一致的。

    Fig.3 Relationship between the position of the blade and light source image 圖3 刀口切割量與光源像的位置關(guān)系示意圖

    The specific method of establishing the relationship between the grayness of the Schlieren image and the refraction of light is:start with a measurement area with no flow fields, place the blade in a position in which the light is not being obscured, then slowly and successively move the blade by Δauntil it completely covers the area. Use a CCD camera to record all of the obscured light and stop when the entire image has been recorded. Set the longitudinal coordinate of any point on the grain image toi, the latitudinal coordinate toj, and use the superscriptsto indicate the amount of light obstruction applied by the blade.Hs[i,j] indicates the grayness of the horizontal and vertical coordinates of the Schlieren picture atiandjwhen no fluid is added. The grayness of a point, the degree of occlusion and position of the blade edge is determined by the point in which source light is first obstructed.

    紋影圖像灰度與刀口裝置遮擋量曲線關(guān)系建立的具體方法是:在測量區(qū)域內(nèi)不添加任何流場,將刀口從不遮擋光源像的位置開始,以固定Δa逐步遮擋光源像,CCD相機記錄刀口逐步遮擋所捕獲的紋影圖像,當(dāng)?shù)犊趯⒐庠聪裢耆趽鯐r停止。設(shè)紋影圖像上任意點的橫坐標(biāo)為i、縱向坐標(biāo)為j,上標(biāo)s表示刀口遮擋量,Hs[i,j]表示沒有流體加入時紋影圖像上橫縱坐標(biāo)分別為i、j點的灰度值;刀口遮擋位置程度由光源像剛被遮擋開始到剛好全被遮擋結(jié)束來決定。

    Fig.4 Curve of relationship between image grayness and blade edge occlusion 圖4 圖像灰度與刀口遮擋量關(guān)系曲線

    Since the integral of the denominator in equation (8) is related to the obstruction of light, the obstruction of light then determines the size of the image of the unobstructed light source. This then affects the camera′s recorded grayness from the Schlieren image. The principle behind the proposed calculation method is to record the changes in the obstructed light from beginning to end. If the blade′s edge is regarded as a line on the circular light source image, the positional relationship between the blade edge and the light source image can be equivalent to the three different positional relationships shown in Fig.5.

    由于式(8)中分母上的一次積分與光線的偏移量有關(guān),而光線偏移量又決定了未被遮擋光源像面積的大小,進(jìn)而影響紋影圖像在相機中的灰度大小。故該計算方法的核心理念是找出光源像面積被遮擋前后的的變化量。若將刀口看作圓形光源像上的弦,刀口和光源像的位置關(guān)系可以等價為圖5表示的3種不同位置關(guān)系。

    Fig.5 Area change schematic diagram of the source image 圖5 光源像面積變化示意圖

    The black solid line indicates the reference position of the blade′s edge, and the red solid line indicates the position after the blade is moved, that is, the position of the blade after the light is moved. The three anglesα,β, andθrepresent the triangle′s apex angle, formed by the light source′s center and perimeter. Generally, these angles are decided by the degree to which the light fans outward. Because the size of the image is inversely proportional to the amount of light obstructed by the blade, the change in grayness is similar to that in Fig.5, where it is equal to the change in the area between the black and red lines. These 3 instances are calculated as follows:

    圖中實線1表示刀口的參考位置,實線2表示刀口移動后的位置,即等價于光線移動后的刀口位置,α、β、θ三者表示光源像圓心和刀口形成的三角形頂角的角度,一般這個角度等于所應(yīng)對的扇形角角度。由于圖像灰度值的大小與刀口遮擋量成反比,因此灰度值的變化相當(dāng)于圖5當(dāng)中實線1與實線2之間的光源像面積變化。對于3種情況的計算如下:

    When a line is on the center of the circle:

    當(dāng)一弦在圓心上時:

    (9)

    When the two lines are on the same side:

    當(dāng)兩弦在圓心同側(cè)時:

    (10)

    When the two lines are on either side of the circle′s center:

    當(dāng)兩弦在圓心兩側(cè)時:

    (11)

    In these equations,ris the radius of the light source in the image, which can be calculated from the displacement of the blade′s edge in the calibration curve, and ΔSis the change in area between the solid black line and the solid red line, denoted as bothS1andS2in equations 9 and 10. TheS0,S1andS2in equation (11) are the three parts between the red and black strings, that is, the area of the two circular areas, the black triangular area and the red triangular area. With this, formula (8) can modified to:

    其中,r為光源像的半徑,可由標(biāo)定曲線中刀口位移量計算得出,ΔS為實線1與實線2之間區(qū)域面積變化,式(9)和式(10)中S1與S2均為弦1與弦2分別與圓形成的下方閉合部分的面積;式(11)中S0、S1和S2為紅黑弦之間的3個部分即兩個扇形區(qū)域面積、上部三角區(qū)域面積和下部三角區(qū)域面積。此時公式(8)可變化為:

    (12)

    To summarize, the process for quantitatively calculating flow field temperature is:

    ①After adjusting the Schlieren′s light path toward the observation area, determine the calibration curve and the radius of the image of the source light,r.

    ②After adding the flow field, adjust the blade′s position such that the image′s contrast is appropriate, then record the blade′s position.

    ③Capture the image of the Schlieren when there is a flow field, record the grayness of the observation area on the image, then refer to the calibration curve using the blade′s positiona2.

    ④Analyse the positional relationship betweena1anda2, then use either of the formulas (9), (10), and (11) to calculate the area difference ΔS.

    ⑤Use the calculated ΔSin formula (12),from which the corresponding air temperature can be discovered.

    綜上所述,紋影流場的溫度定量計算流程為:

    ①完成紋影光路的調(diào)節(jié)后,對需要測量的區(qū)域,先作出標(biāo)定曲線,并計算出光源像半徑r;

    ②加入流場后調(diào)節(jié)刀口位置,以圖像對比度較好為準(zhǔn),并記下此時刀口的位置a1;

    ③捕獲有流場時紋影圖像,將圖像上測量區(qū)域的灰度值,通過標(biāo)定曲線找到對應(yīng)的刀口位置a2;

    ④通過分析a1與a2的位置關(guān)系,找出相應(yīng)情況的計算公式(9)、(10)及(11),計算面積變化量ΔS;

    ⑤再將ΔS計算帶入公式(12),即可得到相應(yīng)的空氣流場溫度信息。

    4 Experimental Process

    實驗過程

    The experiment makes use of traditional Schlieren transmissions. The entire setup is shown in Fig.6. The relevant equipment includes: a 520 nm LED monochromatic light source, a 50.8 mm diameter double-bonded lens group, a blade setup, a CCD camera, and an electronically controlled hot plate.

    實驗采用傳統(tǒng)透射式紋影光路,所搭的試驗平臺如圖6所示。主要設(shè)備包括:520 nm的LED單色光源,直徑為50.8 mm的雙膠合透鏡組,刀口裝置,CCD相機和電控加熱平臺。

    Fig.6 Experimental platform 圖6 實驗平臺

    In order to control the thickness of the flow of light during calculation, the object to be measured is the heated air above the rectangular hot plate, which is set to 50 ℃ and 90 ℃. The results of the experiment are compared with the measurements of a thermocouple in order to verify the validity of the algorithm. The experiment was conducted in a closed environment where the temperature was 20 ℃(293 K) and the air density was 1.29 g/cm3. It is known from the Gladstone-Dale formula that the relationship between the density and refractive index when the flow field is a gas is as follows:

    為了控制該計算方法中流場沿光路方向的厚度這一變量,被測對象為矩形電控加熱平臺上方的受熱空氣,加熱平臺的溫度分別設(shè)定50 ℃與90 ℃。通過比較熱電偶的測量值與實驗結(jié)果相進(jìn)行驗證。測量實驗在20 ℃(293 K)下的封閉環(huán)境中進(jìn)行,環(huán)境密度為1.29 g/cm3,由Gladstone-Dale公式可知,流場為氣體時,其密度與折射率之間的關(guān)系如下:

    n-1=ρK,

    (13)

    In formula (13),nis the refractive index of the fluid,ρis the density of the gas, andKis the Gladstone-Dale constant, which is generally determined by the gas′s composition, among other characteristics. Furthermore, the relationship of a wavelength of a wave of light as it passes through a gas and the Gladstone-Dale constant is as follows:

    公式(13)中,n為流體的折射率,ρ為氣體的密度,K為Gladstone-Dale常數(shù),而這個常數(shù)一般由氣體的組分等特性決定,并且受光波長的影響,當(dāng)氣體為空氣時,光波波長與Gladstone-Dale常數(shù)的關(guān)系如下:

    (14)

    In which,λ, or the wavelength, is 520 nm, whileKis 2.261×10-4m3/kg.

    式中,λ為光波波長,其值為520 nm,K值約為2.261×10-4m3/kg。

    Using to the position of the blade in the calibration curve, it is not difficult to obtain the radius of the circular light source image using the blade′s positiond2, where no source light is blocked, and the blade positiond1, where it is blocked completely, as demonstrated in formula (15):

    根據(jù)標(biāo)定曲線中刀口從完全不遮擋光源像的位置d2到完全遮擋光源像的位置d1,不難得出圓形光源像的半徑大小為式(15):

    0.845 mm .

    (15)

    The hot plate was added to the observation area and set to the appropriate temperature(50 ℃ and 90 ℃). When the hot plate reached the target temperature and stabilized, the Schlieren images were captured, as shown in Fig.7. In the figure, there are obvious fluctuations in the grayness of the image. From the darker areas, it is clear how the temperature is changing against the background of the image. Lighter areas rise on they-axis while darker areas fall.

    將加熱平臺植入待測區(qū)域并設(shè)定好溫度值(50 ℃與90 ℃),待其平臺表面穩(wěn)定并達(dá)到設(shè)定值后開始捕獲紋影圖像,結(jié)果如圖7所示。在圖中有明顯的亮暗變化,從亮暗區(qū)域的分界就可以看出溫度在該分界處的變化方向,比背景圖亮的區(qū)域,溫度變化方向沿y軸向上;比背景圖暗的區(qū)域,溫度變化方向沿y軸向下。

    Fig.7 Schlieren image on the heating platform at different temperatures 圖7 不同溫度下加熱平臺上方紋影圖像

    The red squares in Fig.7 highlight the observation area of the image. The grayness of any point in the Schlieren image is found on the calibration curve. Given the position of the knife edge and the change of the grayness of the point, one can analyze the change in obstructed light of the image area. Using the appropriate formula, ΔSis calculated, and the final temperature value of the point is then found using formula (8).

    圖7中方塊區(qū)域為測量區(qū)域,查詢紋影圖像中某點灰度值的標(biāo)定曲線,找到該點灰度值變化量對應(yīng)的刀口位置,分析刀口切割光源像面積的變化關(guān)系,并帶入相應(yīng)公式,計算出ΔS,最后通過公式(8)算出該點的溫度值。

    5 Data Analysis

    數(shù)據(jù)分析

    In order to demonstrate the feasibility of the formula, the results of the experiment are compared with the measurement of a thermocouple on the hot plate, which measures in the same direction of the flow field at distances of 0.0 cm, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm and 4.0 cm from the surface of the hot plate. The average temperature was measured 100 times at each height, allowing the actual temperatures to be compared with the calculated temperatures. Tab.1 and 2 show the measured and calculated temperatures at each of the 9 heights. Fig.8 shows a graph of the temperature at different heights, given by both the calculation and the thermocouple.

    為了表明該計算方法的可行性,試驗利用電熱偶探針由平臺表面,沿著空氣流場流動的方向依次測量,每次測量間距離平臺為0.0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0 cm,并且在每個高度測量100次取平均溫度值。再與所計算出的溫度值相比較。表1和表2為這9個高度位置上,由算法計算的溫度值與電熱偶測量值對比表。圖8為算法得出的受熱空氣的溫度值與測溫儀得出的溫度值對比曲線圖。

    Tab.1 ComparisonTable of measurement values at 50℃ 表1 50 ℃測量值對比表

    Tab.2 ComparisonTable of measurement values at 90 ℃ 表2 90 ℃下測量值對比表

    Fig.8 Schlieren image on the heating platform at different temperatures 圖8 定量算法計算值與測溫儀測量值比較圖(上)50 ℃和(下)90 ℃

    From the Fig.8, it is clear that there is a big drop in temperature, after which the measured temperature slowly and stably declines. This is because the closer the air is to the platform, the stronger the heating effect and the weaker the influence of the surrounding environment. Contrarily, as the heat from the hot plate is weaker, the influence from the environment is stronger. Tabl.1 and 2 reflect this fast-to-slow phenomenon, where both the measured result from the thermocouple and the result of the calculation reflect this consistently. However, at the surface of the hot plate, one can sea a huge discrepancy between the results of the measurement and calculation at 90 ℃, with consistency returning thereafter. It is believed that this is because the heat exceeds the measurement range at this point. The method of analyzing this measurement range follows.

    從圖8中不難看出,距離加熱平臺表面越遠(yuǎn),期間測量數(shù)值有一個相當(dāng)大的陡變時期,經(jīng)過這個陡變期后,測量數(shù)值基本保持穩(wěn)中有降的趨勢。這是因為距離平臺越近空氣的受加熱作用越強且受到周圍環(huán)境的影響越弱,反之受熱作用越弱且受到周圍環(huán)境的影響越強。由表1和表2中也能夠看出同樣的溫度變化趨勢,用測溫儀測量的數(shù)據(jù)與紋影算法計算的數(shù)值相吻合。但是在圖8下圖和表2中,可以明顯看出,溫度在90 ℃時,該計算方法對于緊貼平臺表面位置的測量有一個非常大的誤差,考慮之后計算出的溫度與測量值相差無幾,初步斷定此時已經(jīng)超出該計算方法其量程,以下是具體分析過程。

    5.1 Algorithm Measurement Range

    算法測量量程

    The core of the calculation is to measure the change in the light that′s being occluded. From formula (12) and the results of the experiment, it can be seen that the proposed calculation method is limited by its scope in temperature. This range is determined by the reference temperatureT0(equivalent reference densityρ0). The main reasons for this are as follows:

    由于算法的核心理念是找出光源像面積被遮擋前后的變化量。從公式(12)和試驗結(jié)果中不難看出,該算法對溫度測量范圍有所限制,測量范圍由基準(zhǔn)溫度T0(等同基準(zhǔn)密度ρ0)決定,其主要原因有以下兩點:

    (1)The scope of grayness of the camera. When making the calibration curve using the blade and image, the 8-bit grayscale camera will be unable to produce shades that fit on the calibration curve whenever a shade of light surpasses it′s 0-255 shade range. Therefore, this method is only valid within the range set by the calibration curve, and that range is restricted to a camera′s 0-255 shades.

    (1)相機的灰度范圍。在作圖像灰度與刀口切割量的標(biāo)定曲線時,相機的8位灰度值范圍(0~255)會對測量范圍造成影響,因為當(dāng)灰度值一旦超過255或者低于0時,其光線的偏折是無法通過標(biāo)定曲線來取值的。故該方法只有在標(biāo)定曲線的線性范圍內(nèi)有效且標(biāo)定曲線的線性范圍不能超過灰度范圍0~255;

    (2)The area of the light source on the image. If the measured object is the same medium and the focal length of the second Schlieren lens remains constant,and ifKandf2in formula (8) are constant values, then the measurement scope is the formula′s ΔS, which is directly influenced by the knife′s position and the size of the light source on the image. Generally, the blade′s position should be such that it cuts the light source by half, but in reality this is affected by different Schlieren measuring devices and the size of the Schlieren points on the light source's image. It may seem as though using a larger light source will make a greater measurement range but this actually causes the sensitivity to Schlieren systems and flow fields to fall drastically. Researchers planning to perform this experiment should take this into consideration when selecting a light source.

    (2)光源像面積大小。如果測量對象為同一介質(zhì)且第二個紋影透鏡的焦距保持不變,即公式(8)中的K值與f2為定值,那么限制測量范圍的就是ΔS,而ΔS受刀口參考位置和光源像面積大小二者影響,一般來說,刀口的參考位置理論上為切割光源像一半,但實際由不同紋影設(shè)備的成像效果而定;而光源像面積受到所使用的紋影點光源的影響,雖然表面看似如果用發(fā)光面積較大的光源會讓測量范圍變大,但是發(fā)光面積過大的會使整個紋影測量系統(tǒng)對流場的靈敏程度下降很多,這就需要試驗人員在挑選紋影光源的時候做出平衡選擇。

    (3)The standard temperature(or standard density). From formula (7), it is apparent that the highest and lowest measurement of the algorithm′s temperature is manipulated byρ0. The formula itself produces the change in the temperature, but only does so using formula (12), which adds to the standard temperature in order to calculate the actual temperature.

    (3)基準(zhǔn)溫度(或基準(zhǔn)密度)。從式(7)可以看出,該計算方法測量溫度的最大值與最小值與公式中的ρ0有關(guān),該方法計算出的本來就是一個溫度變化量,只不過是通過式(12)將這個溫度變化量附加到基準(zhǔn)溫度上,進(jìn)而得出實際溫度。

    In summary, the grayness of calibration curve used in this experiment has a scope of 0-180, which did not exceed the camera′s most extreme values. Also, the value of ΔSis dependent on the relationship between the position of the blade and the light source. In the experiment, the radius of the light source′s image was 0.845 mm, which causes ΔSto have a scope of 0-1.569 mm2. Therefore, according to formula (12), it can be deduced that the temperature range for the experiment′s temperature range is -8~55.3 ℃. Because of this, when the hot plate′s temperature is set to 90 ℃, the calculation is no longer appropriate for use. As the temperature was out of range, the resulting temperature from the calculation had a large error.

    綜上所述,本實驗標(biāo)定曲線的灰度范圍為0~180,未超過相機的最大灰度范圍;而ΔS值一般根據(jù)刀口與光源像位置關(guān)系來決定。實驗中光源像半徑為0.845 mm,故ΔS的范圍為0~1.569 mm2,那么根據(jù)式(12)可以得出本實驗的測量范圍為-8~55.3 ℃。因此在加熱平臺為90 ℃時,該計算方法已經(jīng)不能適用,實際溫度已超出其量程,進(jìn)而導(dǎo)致出現(xiàn)非常大的相對誤差。

    5.2 Error Analysis

    誤差分析

    According to the analysis of the algorithm′s range set out in 5.1, the error analysis for measurements that fall within the range are as follows:the measured temperature is expressed by formula (8), whoseρyvalue has a significant influence on the results. Furthermore, the algorithm′s error comes from ΔS, whose formula of error transfer is:

    根據(jù)5.1算法量程分析結(jié)果,對其在量程范圍內(nèi)的測量數(shù)據(jù)進(jìn)行誤差分析:測量溫度的表達(dá)式(8),其中分母ρy為主要影響參數(shù),而該參數(shù)的誤差主要來源于ΔS,其誤差傳遞公式為:

    (16)

    The algorithm′s Δ(ΔS) is the difference between the actual amount of change of the unoccluded light source image area and the measured unoccluded light source image area change. The actual measured area of the change in source light comes from two points:The first is the researcher′s measurement of the radius of the light source′s image. The second is the researcher′s judgement of the position of the blade in relation to the light source. Both of these points are a result of the fact that it is impossible to obtain a measurement of the obstruction of light when making the calibration curve, which in turn is because the camera demands a minimum difference in the level of obstruction as the knife is being shifted. Therefore, the measured diameter of the light source′s image and the position of the measured light source will have some discrepancy. This form of error, the adjustment of the used equipment and the equipment itself all lead to the systematic error.

    式中,Δ(ΔS)為實際的未遮擋光源像面積的變化量與實際測量的未遮擋光源像面積變化量之間的差值。實際測量的未遮擋光源像面積變化量主要來源于兩點:一是試驗人員對光源像半徑大小的讀數(shù)存在誤差;二是試驗人員對刀口遮擋光源像位置的判定誤差。由于相機對連續(xù)的刀口遮擋時有一個最小遮擋量的圖像區(qū)別度,其一定要明顯,而在做標(biāo)定曲線時,無法獲得連續(xù)的刀口遮擋量。故在光源像半徑讀取和光源像位置的判定上會有一定的偏差。這類誤差與試驗所用的儀器本身誤差和調(diào)節(jié)儀器時產(chǎn)生的誤差,均屬于系統(tǒng)誤差。

    By comparing and analyzing Fig.8 and Tab.1 and Tab.2 with regards to their measured and calculated temperatures, it is apparent that:calculating the temperature and measuring the temperature of flow fields in Schlieren give a relative error of less than 10%; algorithmic calculation of the temperature of Schlieren produces reasonably accurate results and; such method is applicable to measuring Schlieren flow fields.

    從對比圖8、表1和表2中測量值與算法計算值之間的差異,再結(jié)合上述分析,不難看出:在紋影儀空氣流場溫度定量測量試驗中,算法的相對誤差總體小于10%,說明紋影儀溫度定量算法具有較好的準(zhǔn)確性,對紋影法測量空氣氣體流場具備一定借鑒意義。

    6 Conclusion

    結(jié) 論

    This paper built Schlieren models and used their principles of measurement in order to analyze the relationship between a light source′s image and the position of a blade. From this, a relationship between the blade and the grayness of an image was obtained, which in turn provided a method of measuring Schlieren temperature. This paper used laboratory measurements and calculations to carefully analyze and provide detail about the shortcomings of the algorithm. The results are:when measuring the temperature of Schlieren flow fields, the proposed algorithmic method has relatively accurate results, providing error that falls under 10% compared to methods using tools of measurement.

    本文從紋影定量測量原理的基礎(chǔ)上,以典型的紋影系統(tǒng)為基礎(chǔ),通過分析刀口與光源像的位置關(guān)系,以得到刀口位置與灰度值的對應(yīng)關(guān)系,進(jìn)而給出一種紋影定量計算方法,并對其測量范圍和實驗結(jié)果作了詳細(xì)分析,彌補了在紋影定量計算推導(dǎo)中的不足。結(jié)果表明:在紋影儀空氣流場溫度定量測量試驗中,紋影儀溫度定量算法具有較好的準(zhǔn)確性,該計算方法的相對誤差小于10%,對紋影法測量氣體流場溫度具備一定的借鑒意義。

    猜你喜歡
    紋影刀口光源
    直接紋影成像技術(shù)初步研究
    《光源與照明》征訂啟事
    光源與照明(2019年3期)2019-06-15 09:21:04
    現(xiàn)代紋影技術(shù)研究進(jìn)展概述①
    刀口
    牡丹(2018年31期)2018-01-03 12:33:26
    綠色光源
    Marangoni對流的紋影實驗分析
    術(shù)后刀口感染脂肪液化裂開放置負(fù)壓引流管應(yīng)用分析
    持續(xù)泵入刀口沖洗對于預(yù)防封閉負(fù)壓引流堵管的應(yīng)用研究
    影響冷沖壓模具跳屑因素分析
    科技連載:LED 引領(lǐng)第三次照明革命——與傳統(tǒng)照明的對比(一)
    国产精品免费视频内射| 天堂中文最新版在线下载| 日韩欧美国产一区二区入口| 免费在线观看视频国产中文字幕亚洲 | 考比视频在线观看| 国产老妇伦熟女老妇高清| 精品欧美一区二区三区在线| 精品欧美一区二区三区在线| 久久这里只有精品19| 国产熟女午夜一区二区三区| 亚洲七黄色美女视频| 成年人免费黄色播放视频| 久久亚洲精品不卡| 男人舔女人的私密视频| 一级a爱视频在线免费观看| 免费日韩欧美在线观看| 久久综合国产亚洲精品| www.精华液| 99久久精品国产亚洲精品| 三级毛片av免费| 热99re8久久精品国产| 亚洲成国产人片在线观看| 啪啪无遮挡十八禁网站| 最近中文字幕2019免费版| 欧美在线黄色| 热re99久久精品国产66热6| 欧美国产精品va在线观看不卡| 黄色a级毛片大全视频| 法律面前人人平等表现在哪些方面 | 可以免费在线观看a视频的电影网站| 国产熟女午夜一区二区三区| 国产精品成人在线| 纵有疾风起免费观看全集完整版| 中文字幕人妻丝袜制服| 性高湖久久久久久久久免费观看| 午夜福利一区二区在线看| 精品亚洲乱码少妇综合久久| 老熟妇仑乱视频hdxx| 免费在线观看影片大全网站| 不卡av一区二区三区| 91精品国产国语对白视频| 91麻豆av在线| 两性夫妻黄色片| 一级片'在线观看视频| 国产国语露脸激情在线看| 成人黄色视频免费在线看| 男女边摸边吃奶| 啪啪无遮挡十八禁网站| 久久人妻福利社区极品人妻图片| 国产欧美日韩精品亚洲av| 啦啦啦免费观看视频1| 日本91视频免费播放| 亚洲精品一区蜜桃| 黄色 视频免费看| 熟女少妇亚洲综合色aaa.| 国产极品粉嫩免费观看在线| 免费看十八禁软件| 交换朋友夫妻互换小说| 国产亚洲精品久久久久5区| 久久女婷五月综合色啪小说| 91麻豆精品激情在线观看国产 | 午夜激情av网站| 9191精品国产免费久久| 99久久99久久久精品蜜桃| 一级毛片精品| 国产成人精品久久二区二区免费| 欧美精品av麻豆av| 老司机福利观看| 91麻豆av在线| 三级毛片av免费| 99热网站在线观看| 久久久久久亚洲精品国产蜜桃av| 99久久精品国产亚洲精品| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美成人综合另类久久久| 亚洲熟女精品中文字幕| 国产黄频视频在线观看| 超色免费av| 人成视频在线观看免费观看| 美女脱内裤让男人舔精品视频| 捣出白浆h1v1| 亚洲成av片中文字幕在线观看| 精品人妻熟女毛片av久久网站| 老汉色av国产亚洲站长工具| 欧美黄色片欧美黄色片| 亚洲精品美女久久久久99蜜臀| 亚洲国产日韩一区二区| 国产欧美亚洲国产| 人人妻人人爽人人添夜夜欢视频| 午夜福利,免费看| h视频一区二区三区| 日韩精品免费视频一区二区三区| 久久精品国产a三级三级三级| 嫩草影视91久久| 少妇粗大呻吟视频| av线在线观看网站| 国产在线一区二区三区精| 三上悠亚av全集在线观看| 欧美97在线视频| 午夜免费观看性视频| 亚洲精品美女久久久久99蜜臀| 精品人妻熟女毛片av久久网站| 女人久久www免费人成看片| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av | 淫妇啪啪啪对白视频 | 亚洲国产精品成人久久小说| 一本大道久久a久久精品| 丰满少妇做爰视频| 国精品久久久久久国模美| 青春草亚洲视频在线观看| 国产高清国产精品国产三级| 久久久久精品国产欧美久久久 | 人妻人人澡人人爽人人| 一级毛片电影观看| 日本猛色少妇xxxxx猛交久久| 大码成人一级视频| 老司机福利观看| 男人爽女人下面视频在线观看| 黑人猛操日本美女一级片| 久久久精品94久久精品| 一级毛片电影观看| 搡老乐熟女国产| 成人影院久久| 黑人欧美特级aaaaaa片| 亚洲欧美日韩高清在线视频 | 最新在线观看一区二区三区| 久久这里只有精品19| 99久久精品国产亚洲精品| 一本色道久久久久久精品综合| 国产精品亚洲av一区麻豆| 成人国产av品久久久| 老汉色av国产亚洲站长工具| 岛国毛片在线播放| 免费高清在线观看日韩| 色94色欧美一区二区| 黑丝袜美女国产一区| 国产av精品麻豆| 国产男女超爽视频在线观看| 香蕉丝袜av| 久久女婷五月综合色啪小说| 欧美激情极品国产一区二区三区| www.av在线官网国产| 国产在视频线精品| 亚洲欧洲日产国产| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人 | 欧美日韩黄片免| 欧美日韩黄片免| 999久久久国产精品视频| videos熟女内射| 日韩 欧美 亚洲 中文字幕| 日韩 欧美 亚洲 中文字幕| 国产又爽黄色视频| 欧美在线黄色| a级片在线免费高清观看视频| 91麻豆精品激情在线观看国产 | 少妇被粗大的猛进出69影院| kizo精华| 老汉色av国产亚洲站长工具| 午夜福利免费观看在线| 美女大奶头黄色视频| 亚洲五月婷婷丁香| 亚洲一卡2卡3卡4卡5卡精品中文| bbb黄色大片| 亚洲国产欧美在线一区| 黑人欧美特级aaaaaa片| 天天躁日日躁夜夜躁夜夜| 在线 av 中文字幕| 欧美精品亚洲一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 国产在线观看jvid| 国产免费av片在线观看野外av| 美女国产高潮福利片在线看| 国产成人免费无遮挡视频| 在线观看舔阴道视频| 下体分泌物呈黄色| 狠狠精品人妻久久久久久综合| 波多野结衣av一区二区av| 在线观看免费视频网站a站| avwww免费| 亚洲男人天堂网一区| 国产男女超爽视频在线观看| 久久99一区二区三区| 日本av免费视频播放| 十分钟在线观看高清视频www| 大码成人一级视频| 久久久精品94久久精品| 欧美中文综合在线视频| 久久ye,这里只有精品| 亚洲色图综合在线观看| 国产免费视频播放在线视频| www日本在线高清视频| 亚洲精品一卡2卡三卡4卡5卡 | tube8黄色片| 欧美变态另类bdsm刘玥| 精品久久久久久久毛片微露脸 | 高清av免费在线| 国产精品 欧美亚洲| 亚洲欧美日韩高清在线视频 | 一本综合久久免费| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三区在线| 国产精品久久久av美女十八| 久热这里只有精品99| 啦啦啦 在线观看视频| 欧美日韩亚洲高清精品| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 久久人妻熟女aⅴ| 国产色视频综合| 一本色道久久久久久精品综合| 成人18禁高潮啪啪吃奶动态图| 日日夜夜操网爽| 天天躁日日躁夜夜躁夜夜| 男人爽女人下面视频在线观看| 亚洲专区中文字幕在线| 美女中出高潮动态图| 国产一区二区激情短视频 | 伦理电影免费视频| 国产精品一区二区免费欧美 | a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 大陆偷拍与自拍| 亚洲av国产av综合av卡| 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 91精品伊人久久大香线蕉| 午夜激情av网站| 中文字幕制服av| 国产在线观看jvid| 美女高潮喷水抽搐中文字幕| 一个人免费在线观看的高清视频 | 婷婷丁香在线五月| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 国产亚洲av高清不卡| 十八禁高潮呻吟视频| 亚洲久久久国产精品| 久久人人爽av亚洲精品天堂| 欧美乱码精品一区二区三区| 一级a爱视频在线免费观看| 午夜免费成人在线视频| 在线永久观看黄色视频| 久久国产精品大桥未久av| 国产成人精品久久二区二区91| 中文欧美无线码| 亚洲综合色网址| 午夜免费鲁丝| 一边摸一边抽搐一进一出视频| 在线亚洲精品国产二区图片欧美| 精品一区二区三卡| 蜜桃在线观看..| 中国美女看黄片| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 亚洲av片天天在线观看| 久久国产精品影院| 国产在线观看jvid| 日本a在线网址| 国产国语露脸激情在线看| 制服人妻中文乱码| 岛国在线观看网站| 18禁观看日本| 宅男免费午夜| 国产av精品麻豆| 欧美日韩福利视频一区二区| 亚洲国产精品一区三区| 色老头精品视频在线观看| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区 | 欧美日本中文国产一区发布| 国产精品 国内视频| 老司机午夜十八禁免费视频| 久久影院123| 岛国在线观看网站| 人人妻,人人澡人人爽秒播| 久久av网站| 中亚洲国语对白在线视频| 最新在线观看一区二区三区| 啦啦啦在线免费观看视频4| 国产亚洲av高清不卡| 国产真人三级小视频在线观看| 女人久久www免费人成看片| 老司机午夜福利在线观看视频 | 欧美大码av| 成年av动漫网址| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 手机成人av网站| 亚洲精品一二三| 国产精品成人在线| 久久99热这里只频精品6学生| 亚洲精品成人av观看孕妇| 他把我摸到了高潮在线观看 | 精品免费久久久久久久清纯 | 青春草视频在线免费观看| 天堂中文最新版在线下载| 高清av免费在线| 一级a爱视频在线免费观看| 久久av网站| 久久天躁狠狠躁夜夜2o2o| 久久久久视频综合| 男男h啪啪无遮挡| 黄色 视频免费看| 宅男免费午夜| 电影成人av| 高清在线国产一区| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 久久精品国产综合久久久| 999精品在线视频| a级片在线免费高清观看视频| 国产福利在线免费观看视频| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 婷婷色av中文字幕| 亚洲国产精品999| 欧美亚洲 丝袜 人妻 在线| 一级毛片电影观看| 久久久久网色| 午夜影院在线不卡| 少妇裸体淫交视频免费看高清 | 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网 | 久久影院123| 亚洲精品第二区| 午夜福利一区二区在线看| 国产精品香港三级国产av潘金莲| 国产xxxxx性猛交| 国产av精品麻豆| 日韩制服骚丝袜av| 看免费av毛片| 激情视频va一区二区三区| 国产又色又爽无遮挡免| 男女边摸边吃奶| 中文字幕高清在线视频| 国产一区有黄有色的免费视频| av超薄肉色丝袜交足视频| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 久久精品久久久久久噜噜老黄| 色视频在线一区二区三区| 少妇粗大呻吟视频| 国产欧美亚洲国产| 日韩中文字幕视频在线看片| 国产精品一区二区在线不卡| 另类精品久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一区蜜桃| 香蕉丝袜av| 午夜成年电影在线免费观看| 久久久久国产精品人妻一区二区| 18禁国产床啪视频网站| 国产黄频视频在线观看| 国产av国产精品国产| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 国产激情久久老熟女| 一级黄色大片毛片| 久久亚洲国产成人精品v| 桃红色精品国产亚洲av| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的| 久久天堂一区二区三区四区| 欧美成狂野欧美在线观看| 淫妇啪啪啪对白视频 | 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 一级片'在线观看视频| 777久久人妻少妇嫩草av网站| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 在线十欧美十亚洲十日本专区| 国产亚洲av片在线观看秒播厂| 男女之事视频高清在线观看| 老司机福利观看| 不卡一级毛片| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 91精品伊人久久大香线蕉| 久久狼人影院| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 亚洲精品国产区一区二| 视频区欧美日本亚洲| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看 | 18在线观看网站| 青青草视频在线视频观看| 老熟妇仑乱视频hdxx| 午夜福利在线免费观看网站| 操美女的视频在线观看| 一本久久精品| avwww免费| 免费高清在线观看视频在线观看| 精品国内亚洲2022精品成人 | 亚洲成av片中文字幕在线观看| 久9热在线精品视频| 欧美人与性动交α欧美软件| 99re6热这里在线精品视频| 最黄视频免费看| 久久精品亚洲熟妇少妇任你| 天天躁狠狠躁夜夜躁狠狠躁| 又大又爽又粗| 久久国产精品人妻蜜桃| 日韩制服丝袜自拍偷拍| 伊人亚洲综合成人网| 亚洲精品久久午夜乱码| 99国产极品粉嫩在线观看| 满18在线观看网站| 9色porny在线观看| av线在线观看网站| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 一级毛片电影观看| 无遮挡黄片免费观看| 午夜福利在线观看吧| xxxhd国产人妻xxx| av天堂在线播放| 男女边摸边吃奶| 中文字幕高清在线视频| 免费看十八禁软件| 亚洲综合色网址| 动漫黄色视频在线观看| 成年人免费黄色播放视频| 国产一区二区在线观看av| 久久久久网色| 国产精品二区激情视频| 亚洲人成电影免费在线| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 国产av又大| 亚洲精品国产av成人精品| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 99久久综合免费| 午夜福利乱码中文字幕| 免费观看a级毛片全部| 高清欧美精品videossex| 国产又色又爽无遮挡免| bbb黄色大片| 亚洲国产精品成人久久小说| 深夜精品福利| 亚洲精品乱久久久久久| 日韩一区二区三区影片| 国产在线免费精品| 老司机福利观看| 亚洲精品国产区一区二| 美女脱内裤让男人舔精品视频| 婷婷丁香在线五月| 成人av一区二区三区在线看 | 久久午夜综合久久蜜桃| 亚洲av成人不卡在线观看播放网 | 亚洲自偷自拍图片 自拍| 宅男免费午夜| 九色亚洲精品在线播放| 十八禁网站网址无遮挡| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 国产免费av片在线观看野外av| cao死你这个sao货| 久久 成人 亚洲| 他把我摸到了高潮在线观看 | 精品熟女少妇八av免费久了| 亚洲国产精品成人久久小说| 亚洲av日韩精品久久久久久密| 正在播放国产对白刺激| 啦啦啦免费观看视频1| 18禁黄网站禁片午夜丰满| 精品少妇一区二区三区视频日本电影| 久久女婷五月综合色啪小说| 制服人妻中文乱码| 免费少妇av软件| 黄色片一级片一级黄色片| 日韩一区二区三区影片| 男女之事视频高清在线观看| 免费在线观看日本一区| 国产av一区二区精品久久| 欧美黄色淫秽网站| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| www.精华液| 亚洲成人免费av在线播放| 国产欧美日韩一区二区精品| av免费在线观看网站| 精品国产一区二区三区久久久樱花| 9色porny在线观看| 成年动漫av网址| 夜夜夜夜夜久久久久| 悠悠久久av| 18在线观看网站| 在线十欧美十亚洲十日本专区| videosex国产| 国产一区二区 视频在线| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 汤姆久久久久久久影院中文字幕| 不卡av一区二区三区| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| 一区福利在线观看| 成人国产av品久久久| 精品国产国语对白av| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 成年动漫av网址| 精品欧美一区二区三区在线| 国产在线一区二区三区精| 久久九九热精品免费| a 毛片基地| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| 一本一本久久a久久精品综合妖精| 一级片'在线观看视频| 日本五十路高清| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 大型av网站在线播放| 一本久久精品| 性高湖久久久久久久久免费观看| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 亚洲国产av影院在线观看| 婷婷成人精品国产| 久久久久国内视频| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 一边摸一边抽搐一进一出视频| 日本a在线网址| 老司机影院成人| 免费高清在线观看日韩| 国产av国产精品国产| 欧美黑人欧美精品刺激| 成人影院久久| 宅男免费午夜| 91老司机精品| 亚洲精品美女久久久久99蜜臀| 中国国产av一级| 欧美午夜高清在线| 欧美另类一区| 午夜福利一区二区在线看| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 精品久久蜜臀av无| 搡老岳熟女国产| 国产97色在线日韩免费| 精品亚洲成a人片在线观看| 热99re8久久精品国产| 黄色 视频免费看| 中文欧美无线码| 欧美日韩黄片免| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 久久精品成人免费网站| 欧美日韩av久久| 日韩人妻精品一区2区三区| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 欧美成人午夜精品| 日韩大码丰满熟妇| 久久久精品区二区三区| 免费人妻精品一区二区三区视频| 激情视频va一区二区三区| 大型av网站在线播放| 99国产精品一区二区三区| 欧美激情高清一区二区三区| 在线观看舔阴道视频| 亚洲九九香蕉| 超碰成人久久| 纵有疾风起免费观看全集完整版| www日本在线高清视频| 美女大奶头黄色视频| 五月天丁香电影| 69av精品久久久久久 | 日日爽夜夜爽网站| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 无限看片的www在线观看| 男女免费视频国产| 午夜激情av网站| 十八禁人妻一区二区| 国产一级毛片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 在线亚洲精品国产二区图片欧美| 一区在线观看完整版| 国产高清视频在线播放一区 | 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看| 久热爱精品视频在线9| 两性夫妻黄色片|