• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Property of a Three-dimensional Copper Metal-organic Framework①

    2018-10-12 03:49:18GAOYuJieTIANChongBinTANGJingXiaoCUIMeiYanZHOUChuangYuFENGMeiLingHUANGXiaoYing
    結(jié)構(gòu)化學(xué) 2018年9期

    GAO Yu-Jie TIAN Chong-Bin TANG Jing-Xiao CUI Mei-Yan ZHOU Chuang-Yu FENG Mei-Ling HUANG Xiao-Ying

    ?

    Magnetic Property of a Three-dimensional Copper Metal-organic Framework①

    GAO Yu-Jiea,bTIAN Chong-BinbTANG Jing-Xiaoa,bCUI Mei-YanbZHOU Chuang-YucFENG Mei-Lingb②HUANG Xiao-Yingb②

    a(College of Chemistry, Fuzhou University, Fuzhou 350002, China)b(State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)c(College of Chemistry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

    A copper metal-organic framework (MOF) compound based on 2,5-thiophenedi- carboxylic acid (H2TDC) ligand, namely Cu(TDC)(H2O)?DMA (1, DMA =,?-dimethylace- tamide), has been synthesized in gram-scale via a one-pot solvothermal route in a high yield of 81.3%.Single-crystal X-ray analysis reveals that the structure of 1 features a three-dimensional (3D) open framework constructed by TDC interconnecting 1D chains of [-Cu(COO)(H2O)Cu-].Thermal property was investigated by TG-MS.The magnetic measurements indicate the existence of weak antiferromagnetic interactions between the Cu2+centers in 1.

    metal-organic framework, copper, solvothermal synthesis, structure, magnetic property;

    1. INTRODUCTION

    Metal-organic frameworks (MOFs), as a promi- sing class of crystalline organic-inorganic hybrid materials with properties of gas adsorption and separation, catalysis, luminescence and so on, have received great attention in the past three decades[1-4].As the targeted applications of MOFs become more prevalent, it is more and more important to control and predict the structures of these materials.Signi- ficant results have originated from the “reticular synthesis” approach by Yaghi et al.that defines the secondary building unit (SBU) as a rigid center and the organic linker as a rigid spoke connecting two or more centers together[5,6].While Ferey et al.presents “controlled SBU technique” in which the individual SBU is synthesized prior to MOF synthesis and used as a “seed” for crystal growth, effectively directing MOFs with various types of frameworks[7].Com- pared to the limited number of metallic elements as a single nod, the diverse SBUs are more effective in constructing MOFs with novel structures and excellent properties[8].For instance, compounds with one-dimensional (1D) spin-chain are often found to exhibit various fascinating magnetic properties[9, 10].

    The ligand 2,5-thiophenedicarboxylic acid (H2TDC) is a representative of the heterocyclic dicarboxylic acid family.The H2TDC ligand is an aromatic rigid molecule and the sulphur atom of its thiophene ring contains a lone pair of electrons which can be easily delocalized within the ring.Thus the networks constructed from the H2TDC ligand often exhibitgood stability and unique physical and chemical properties[11].Up to now, the H2TDC ligand has been used to construct MOFs with all kinds of metal ions[8,12-16].For instance, the Cu2+ion having diverse coordination modes could form a variety of compounds such as 0D-[Cu(TDC)(nnen)2]·H2O(nnen=,?-dimethylethylenediamine), 1D-{[Cu2(l-TDC)2(ampy)2]2DMF}(ampy = 2-amino- methylpyridine), 2D-[Cu2(TDC)2(NH3)4], 2D-{[Cu2(TDC)2(MeOH)2]4}, and 3D-[Cu(TDC)-(bpy)(H2O)](bpy) (bpy = 4,4?-bipyridine)[11,17-26].Herein, we report the synthesis, characterization, and magnetic property of a Cu-TDC compound, namely Cu2(TDC)2(H2O)2?2DMA (1).Although itssingle crystal structure has been reported recently, the magnetic property of 1 has not been studied in detail[27].Moreover, as the different synthetic method for 1 from that in literature[27]was applied here, the gram-scale synthesis with high yield (81.31%) has been realized.The 3D framework of 1 is constructed fromthe 1D [-Cu(COO)(H2O)Cu-]chains as SBUs interconnected by TDC ligands.The magnetic property has been investigated deeply revealing the existence of weak antiferromagnetic interactions between the Cu2+centers in 1.

    2 EXPERIMENTAL

    Materials and synthesis CuCl2·2H2O (99.9%, Shanghai Qingong Chemical Co.Ltd.), 2,5-thiophenedicarboxylic acid (99%, Wuhan Chifei Chemical Co.Ltd.),,?-dimethylacetamide (DMA) solvent (99%, Sinopharm Chemical Reagent Co.Ltd.) and tap water were used without further purification.

    Synthesis of 1 A mixture of CuCl2·2H2O (0.1 mmol, 0.0170 g) and H2TDC (0.1 mmol, 0.0172 g) in 2 mL,?-dimethylacetamide (DMA) and 1 mL H2O was stirred under ambient conditions until homogeneous.The resulting mixture was sealed in a 23 mL Teflon-lined stainless-steel reactor, heated at 90 °C for 3 days and then cooled to room tempera- ture.Blue block-like crystals were obtained by filtration without any impurities.The crystalline pro- ducts were air-dried.Anal.Calcd.for C20H26N2O12S2Cu2: C, 35.45; H, 3.87; N, 4.13%.Found: C, 35.37; H, 3.92; N, 4.12%.

    Gram-scale synthesis of 1 A mixture of CuCl2·2H2O (4 mmol, 0.6819 g), H2TDC (4 mmol, 0.6881 g) in 20 mL DMA and 10 mL H2O was stirred under ambient conditions until homogeneous.The resulting mixture was sealed in a 100 mL Teflon- lined stainless-steel reactor, heated at 90 °C for 3 days and then cooled to room temperature.Blue block-like crystals were obtained without any impurity.The crystalline products were air-dried (Yield: 1.102 g, 81.31% based on Cu).

    Physical measurements Elemental analyses (EA) of C, H, and N were measured by a German Elementary Vario EL III instrument.Thermogra- vimetric analysis-mass spectroscopy (TG-MS) was carried out with a STA449C-QMS403C thermal analysis-quadrupole mass spectrometer at a heating rate of 10oC/min under a nitrogen atmosphere.Magnetic susceptibility was measured under an applied field of 1000 Oe from 300 to 2 K by a commercial Magnetic Property Measurement System (MPMS).Magnetization was measured at 2 K in an applied field from 0 to 8 T by the Quantum Design Physical Property Measurement System (PPMS).Powder X-ray diffraction (PXRD) patterns were performed with a Miniflex II diffractometer at 30 kV and 15 mA using Cu(1.54178 ?) in the angular range of 2= 5~55° at room temperature.The simulated PXRD pattern through single-crystal X-ray data was generated by using the Mercury program.The single-crystal X-ray diffraction intensity data for 1 were collected using a XCaliburE diffractometer with graphite-monochromatic Mo(0.71073 ?) at 295(2) K.The structure was solved by direct methods and refined by full-matrix least-squares on2by using the program SHELX-2016.

    3 RESULTS AND DISCUSSION

    3.1 Gram-scale synthesis and thermal stability

    A recent report indicated that compound1couldbe solvothermally synthesized by employing CuCl2·2H2O and H2TDC ligand as reactants in the single solvent of DMA, while a mixed-solvent solvothermal method was adopted in our synthesis, that is, H2O functioned as the auxiliary solvent, which could not only reduce the cost of synthesis but also help in increasing the yield of 1 greatly.Moreover, in our work, the gram-scale synthesis of 1 could be realized through a facile, one-pot and economical route, which could easily produce more than 1.0 g pure crystalline samples (Fig.1a).Remarkably, PXRD confirms the phase purity of the air-dried products without washing or manual selection (Fig.1b).Moreover, the yield with our synthetic method could reach 81.31% (based on Cu) which is much higher than that in the reported synthetic method (yield: 37%, based on Cu)[27].TGA-MS analysis showed that the molecular-ion mass peaks of DMA (/= 87) and H2O (/= 18) could be detected at the weight-loss step until 380oC (Fig.2).Thus the sharp weight loss of 1 that began at 100oC and finished at 380oC could be attributed to the removal of DMA and H2O molecules and the pyrolysis of the framework at the same time.After 380oC, the weight loss continued to 800oC.

    Fig.1. (a) Photo of the crystalline product of 1 via agram-scale synthesis without washing or manual selection.(b) PXRD patten of 1 and the simulated calculated from single-crystal X-ray data of 1

    Fig.2. TG-MS curves of 1

    3.2 Description of the crystal structure of compound 1

    Although thesingle-crystal structure of this com- pound has been reported recently[27],some details have not been described such as the secondary bon- ding, hydrogen bonding interactions and topology analysis.In this section, we thus further investigate the structure of 1.The structure of 1 features a 3D open framework fabricated by TDC2-ligands, H2O molecules and Cu2+nodes, with DMA molecules located in the channels.Its asymmetric unit contains one formula unit including two halves of Cu2+ions (Cu(1) and Cu(2)), one TDC2-ligand, one coordina- ted H2O molecule and one free DMA molecule (Fig.3a).The two Cu2+ions adopt different coordination geometries.Cu(1) is occupied by four oxygen atoms from four TDC2-ligands in the equatorial plane and coordinated by two H2O mole- cules in the apical positions through secondary bonding (Cu(1)–O(5), 2.542(2) ?; Fig.3b and S1a), while Cu(2) is coordinated by four oxygen atoms from two TDC2–ligands and two H2O molecules in the equatorial plane and coordinated by two oxygen atoms from two TDC2–ligands in the apical positions through weak secondary bonding (Cu(2)–O(3), 2.703(2) ?; Fig.3b and S1b).Each TDC2-ligand links to four Cu2+ions with its three carboxylic oxygen atoms (O(1), O(2), O(3)) through three coordination bonds and one secondary bond, leaving the fourth oxygen atom O(4) being uncoordinated but forming hydrogen bond with the coordinated water molecule O(5) (Fig.S1c).The O(5)–H(5A)?O(4)i(i:–1/2, –+1/2,+1/2) hydrogen bond distance andangle are 2.549(3)? and 164(4)o,respectively (Table S3).Along theaxis, the carboxylic groups of TDC2-ligands together with coordinated H2O molecules interconnect the Cu(1) and Cu(2) ions to form a [Cu1-Cu2-Cu1-Cu2]array characteristic of the SBU of [-Cu1-(COO)(H2O)-Cu2-](Fig.3b).Each chain links to other four same chains via TDC2-ligands along theandaxes.As a result, a 3D framework is formed containing large rhombohedral channels along theaxis with window size of 10.21 × 10.21 ?2in which the DMA mole- cules are located (Fig.3c).Note that the DMA molecules interact with the frameworkO–H···O and C–H···S hydrogen bonds; the O(5)–H(5B)···O(6) and C(10)–H(10C)···S(1)ii(ii.–+3/2,+1/2,–+3/2) hydrogen bond distances andangles are 2.623(4) and 3.534(10) ?, and 167(4) and 122.0o,respectively (Table S3).From the topological point of view, the 3D framework of 1 is a gwg net (Fig.3d).

    3.3 Magnetic property

    As compounds with one-dimensional (1D) spin- chain or based on copper are often found to have interesting magnetic properties[10, 28-29], the tempera- ture-dependent magnetic susceptibility of 1 was measured under a magnetic field of 1000 Oe in the temperature range of 2~300 K.The magnetic property of 1 is shown in the form ofmversusplot (Fig.4a), wheremis the molar magnetic susceptibility for one Cu2+ion.At room temperature, the value ofmis 0.43 cm3?K?mol-1, which is somewhat higher than the spin-only value (0.38 cm3?K?mol-1for= 1/2 and= 2.0) expected for an uncoupled Cu2+ion.With the decrease of temperature from 300 to 2 K, themvalues decreased smoothly and reached a value of 0.017 cm3?K?mol-1at 2 K.This phenomenon is indicative of antiferromagnetic interaction in 1, as suggested by the negative Weiss constant= ?29.38 K, obtained from the data of 1/mversusin the temperature range of 50~300 K by the Curie-Weiss law (Fig.S2).The magnetization increases linearly with increasing the magnetic field, and reaches a value of 0.116 Nat 8 T, which is lower than the saturation value of one Cu2+ion (1 Nfor= 2.0), suggesting again the antiferromagnetic interaction in 1 (Fig.4b).To confirm the presence of long range of antiferro- magnetic ordering, the heat capacity data were collected from 2 to 30 K.Fig.S3 shows the absence of-like peak, indicating a short-range antiferromag- netic ordering.

    To estimate the exchange coupling constant between the adjacent Cu2+ions,mdata were fitted by using the infinite-chain mode of classical spins derived by Fisher with= ?ΣS?S+1(stands for the exchange constant between the adjacent Cu2+ions, andSis the classical spin vector).The results can be fitted using the numerical expression for< 0 and the corresponding analytical expression is as follows[30]:

    Fig.3. (a) Structural fragment of 1.Symmetry codes: i:+1,+1; ii: –+1/2,+1/2, –+1/2; iii:–1/2, –+1/2,+1/2; iv: –+1, –+1, –+1; v:+1/2, –+1/2,+1/2.(b) [-Cu1-(COO)(H2O)-Cu2-]chain in 1.The secondary bonds are shown as dotted lines.(c) View of the 3D open-framework along the-axis in 1.The hydrogen bonds are shown as dotted yellow lines.(d) Topological net of gwg in 1

    Fig.4. (a) Experimental and calculated temperature dependence ofmfor 1.(b) Plot of the reduced magnetizationversus the applied fieldat 2 K for 1

    with= –/

    The best fit in the whole temperature range gives= 2.18,= –25.34 cm?1, and= 5.25 × 10?6.The fitting result also reveals weak antiferromagnetic interaction between the Cu2+centers.The shortest distance of Cu???Cu is 3.3066(1) ? and the magnetic interactions among the spin centers were very weak.In comparison, thevalue (?29.38 K) andvalue (?25.34 cm?1) of 1 are significantly larger than the corresponding values (= ?1.31 K and= ?1.68 cm?1) of a reported compound [Cu(TDC)(dpa)](dpa = 4,4?-dipyridylamine)[26].

    4 CONCLUSION

    Using a facile solvothermal method, a copper based metal organic material has been synthesized.Remarkably, the ultrahigh yield (81.31%)of the compound has been reached in a one-pot and economical route.The 3D framework of the compound is constructed by TDC ligands intercon- necting 1D [-Cu1-(COO)(H2O)-Cu2-]chains.The magnetic property has been investigated deeply, which reveals weak antiferromagnetic interaction between the Cu2+centers in 1.

    (1) Zhuang, J.L.; Terfort, A.; Woll, C.Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: a review.2016, 307, 391–424.

    (2) Li, J.R.; Sculley, J.; Zhou, H.C.Metal-organic frameworks for separations.2012, 112, 869–932.

    (3) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C.Enzyme-MOF (metal-organic framework) composites.2017, 46, 3386–3401.

    (4) O'Keeffe, M.; Yaghi, O.M.Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets.2012, 112, 675–702.

    (5) Chae, H.K.; Siberio-Perez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O'Keeffe, M.; Yaghi, O.M.A route to high surface area, porosity and inclusion of large molecules in crystals.2004, 427, 523–527.

    (6) Tranchemontagne, D.J.; Mendoza-Cortes, J.L.; O'Keeffe, M.; Yaghi, O.M.Secondary building units, nets and bonding in the chemistry of metal-organic frameworks.2009, 38, 1257–1283.

    (7) Serre, C.; Millange, F.; Surble, S.; Ferey, G.A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units.2004, 43, 6286–6289.

    (8) Mihaly, J.J.; Zeller, M.; Genna, D.T.Ion-directed synthesis of indium-derived 2,5-thiophenedicarboxylate metal-organic frameworks: tuning framework dimensionality.2016, 16, 1550–1558.

    (9) He, Z.; Guo, W.; Cui, M.; Tang, Y.Synthesis and magnetic properties of new tellurate compounds Na4MTeO6(M = Co and Ni) with a ferromagnetic spin-chain structure.2017, 46, 5076–5081.

    (10) Tang, Q.; Li, P.F.; Zou, Z.M.; Liu, Z.; Liu, S.X.A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain.2017, 246, 329–333.

    (11) Yang, J.; Lutz, M.; Grzech, A.; Mulder, F.M.; Dingemans, T.J.Copper-based coordination polymers from thiophene and furan dicarboxylates with high isosteric heats of hydrogen adsorption.2014, 16, 5121–5127.

    (12) Zheng, X.F.; Li, W.Q.; Du, J.; Luo, X.Z.; Liu, M.M.; Yu, Y.; Tian, L.J.Diverse structural assemblies of silver-thiophene-2,5-dicarboxylate coordination complexes contribute to different proton-conducting performances.2016, 18, 7814–7822.

    (13) Wei, T.T.; Xie, H.; Ma, H.C.; Lei, Z.Q.; Liu, J.C.; Yao, X.Q.Synthesis, structure and properties of interpenetrated twofold 3D pillar-layered coordination polymers based on an N-centered tripodal ligand.2016, 26, 341–343.

    (14) Sample, A.D.; LaDuca, R.L.Effect of metal coordination environment on topology of coordination polymers containing 2,5-thiophenedicarboxylate and long-spanning dipyridine ligands.2014, 421, 18–25.

    (15) Liu, B.; Guo, J.; Zhou, S.; Wang, Q.W.; Li, X.M.; Li, C.B.Synthesis and crystal structure of a two-dimensional coordination polymer constructed by thiophene-2,5-dicarboxylic acid and 1,4-bis(imidazol-1-yl)-butane.2013, 32, 199–204.

    (16) Huang, X.H.; Huang, C.C.; Wang, J.G.; Liu, D.S.; Sun, R.Q.Syntheses, structures and photoluminescence of two new layered lanthanide coordination polymers with thiophenedicarboxylic acid and 1,10-phenanthroline.2009, 28, 1367–1372.

    (17) Eddaoudi, M.; Kim, J.; Vodak, D.; Sudik, A.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M.Geometric requirements and examples of important structures in the assembly of square building blocks.2002, 99, 4900–4904.

    (18) Yesilel, O.Z.; Ilker, I.; Soylu, M.S.; Darcan, C.; Suzen, Y.Synthesis, crystal structures and antimicrobial properties of copper(II)-thiophene-2,5- dicarboxylate complexes with N-donor ligands.2012, 39, 14–24.

    (19) Abourahma, H.; Bodwell, G.J.; Lu, J.J.; Moulton, B.; Pottie, I.R.; Walsh, R.B.; Zaworotko, M.J.Coordination polymers from calixarene-like [Cu2(dicarboxylate)2]4building blocks: structural diversity via atropisomerism.2003, 3, 513–519.

    (20) Yesilel, O.Z.; Ilker, I.; Buyukgungor, O.Three copper(II) complexes of thiophene-2,5-dicarboxylic acid with dissimilar ligands: synthesis, IR and UV-Vis spectra, thermal properties and structural characterizations.2009, 28, 3010–3016.

    (21) An, Z.; Zhu, L.H.; Hu, Y.S.; Zhu, L.Synthesis and crystal structure of a new Cu(II) compound with 2,5-thiophenedicarboxylic acid and 1,10-phenanthroline.2015, 45, 21–23.

    (22) Chen, B.L.; Mok, K.F.; Ng, S.C.; Feng, Y.L.; Liu, S.X.Synthesis, characterization and crystal structures of three diverse copper(II) complexes with thiophene-2,5-dicarboxylic acid and 1,10-phenanthroline.1998, 17, 4237–4247.

    (23) Yang, S.Y.; Yuan, H.B.; Xu, X.B.; Huang, R.B.Influential factors on assembly of first-row transition metal coordination polymers.2013, 403, 53–62.

    (24) Chen, B.L.; Mok, K.F.; Ng, S.C.; Drew, M.G.B.Syntheses, structures and properties of copper(II) complexes with thiophene-2,5-dicarboxylic acid (H2Tda) and nitrogen-containing ligands.1999, 18, 1211–1220.

    (25) Sample, A.D.; LaDuca, R.L.Interleaved and entangled divalent metal thiophenedicarboxylate coordination polymers with an extremely long-spanning and flexible dipyridylamide ligand.2016, 443, 198–206.

    (26) Braverman, M.A.; Szymanski, P.J.; Supkowski, R.M.; LaDuca, R.L.Synthesis, structure and magnetic properties of a pair of copper dicarboxylate/dipyridylamine coordination polymers with a non-interpenetrated CdSO4topology.2009, 362, 3684–3690.

    (27) Li, W.W.; Guo, Y.; Zhang, W.H.A porous Cu(II) metal-organic framework: synthesis, crystal structure and gas adsorption properties.2017, 1143, 20–22.

    (28) Majumder, A.; Gramlich, V.; Rosair, G.M.; Batten, S.R.; Masuda, J.D.; El Fallah, M.S.; Ribas, J.; Sutter, J.P.; Desplanches, C.; Mitra, S.Five new cobalt(II) and copper(II)-1,2,4,5-benzenetetracarboxylate supramolecular architectures: syntheses, structures, and magnetic properties.2006, 6, 2355–2368.

    (29) Castro, I.; Luisa Calatayud, M.; Barros, W.P.; Carranza, J.; Julve, M.; Lloret, F.; Marino, N.; De Munno, G.Ligand effects on the structure and magnetic properties of alternating copper(II) chains with 2,2?-bipyrimidine- and polymethyl-substituted pyrazolates as bridging ligands.2014, 53, 5759–5771.

    (30) Estes, W.E.; Gavel, D.P.; Hatfield, W.E.; Hodgson, D.J.Magnetic and structural characterization of dibromo- and dichlorobis(thiazole) copper(II).1978, 17, 1415–1421.

    3 January 2018;

    28 February 2018 (CCDC 1569063)

    ① This project was supported by the NNSFC (No.21771183), and Chunmiao project of Haixi Institute of Chinese Academy of Sciences (CMZX-2014-001)

    E-mail: Feng Mei-Ling, female, professor, research field: hybrid materials.Fax: +86-591-63173146; E-mail: fml@fjirsm.ac.cn; Huang Xiao-Ying, male, professor, research field: structure chemistry. Fax: +86-591-63173145, E-mail: xyhuang@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1944

    三上悠亚av全集在线观看| 国产激情久久老熟女| 另类亚洲欧美激情| 国产精品亚洲一级av第二区| 色综合婷婷激情| 欧美黄色淫秽网站| 中文字幕人妻熟女乱码| 在线观看午夜福利视频| 国产有黄有色有爽视频| 国产精品av久久久久免费| 午夜福利在线观看吧| 久久久久久久精品吃奶| 久久久久久久精品吃奶| 热99re8久久精品国产| 777米奇影视久久| 黄色片一级片一级黄色片| 国产精品美女特级片免费视频播放器 | 国产精品免费大片| 男人的好看免费观看在线视频 | 欧美乱色亚洲激情| 精品久久久久久久久久免费视频 | 极品教师在线免费播放| 久热这里只有精品99| 久久久久久免费高清国产稀缺| 女性被躁到高潮视频| 窝窝影院91人妻| 国产精品 欧美亚洲| 欧美人与性动交α欧美精品济南到| 性色av乱码一区二区三区2| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 窝窝影院91人妻| 丰满人妻熟妇乱又伦精品不卡| 成人手机av| 一个人免费在线观看的高清视频| 精品一区二区三卡| 日韩中文字幕欧美一区二区| 黑人欧美特级aaaaaa片| 99热国产这里只有精品6| 在线看a的网站| 岛国毛片在线播放| 国产淫语在线视频| 99国产极品粉嫩在线观看| 亚洲精品成人av观看孕妇| 色综合婷婷激情| 国产高清国产精品国产三级| 久久草成人影院| 国产精品秋霞免费鲁丝片| 丝袜人妻中文字幕| 最近最新中文字幕大全免费视频| 国产亚洲欧美在线一区二区| 亚洲精品美女久久av网站| 一区福利在线观看| 99久久人妻综合| 亚洲中文字幕日韩| 老司机在亚洲福利影院| 色播在线永久视频| 怎么达到女性高潮| 久久影院123| 免费av中文字幕在线| 久久久国产成人精品二区 | 欧美日韩成人在线一区二区| 狠狠婷婷综合久久久久久88av| 日本黄色日本黄色录像| 少妇被粗大的猛进出69影院| 亚洲美女黄片视频| 丝瓜视频免费看黄片| 久久久久久免费高清国产稀缺| a级毛片黄视频| 又黄又爽又免费观看的视频| 免费在线观看视频国产中文字幕亚洲| 啦啦啦在线免费观看视频4| 国产片内射在线| 大片电影免费在线观看免费| 亚洲人成电影免费在线| 欧美乱妇无乱码| 亚洲一区二区三区欧美精品| 日本a在线网址| 叶爱在线成人免费视频播放| 90打野战视频偷拍视频| 成人亚洲精品一区在线观看| 99精品欧美一区二区三区四区| 午夜福利一区二区在线看| 国产精品香港三级国产av潘金莲| 丁香欧美五月| 色在线成人网| 91成人精品电影| 欧美 日韩 精品 国产| 日韩中文字幕欧美一区二区| 欧美成人午夜精品| 欧美日韩亚洲高清精品| 女同久久另类99精品国产91| 国产精品亚洲一级av第二区| 久久久久久免费高清国产稀缺| 中文亚洲av片在线观看爽 | 深夜精品福利| 在线永久观看黄色视频| 欧美av亚洲av综合av国产av| 精品亚洲成国产av| 久久人人97超碰香蕉20202| 亚洲精品一卡2卡三卡4卡5卡| 不卡av一区二区三区| 王馨瑶露胸无遮挡在线观看| 激情视频va一区二区三区| 日韩制服丝袜自拍偷拍| 成年版毛片免费区| 不卡av一区二区三区| 午夜福利影视在线免费观看| 9191精品国产免费久久| 欧美日韩国产mv在线观看视频| 亚洲中文日韩欧美视频| xxx96com| 精品国产乱子伦一区二区三区| xxx96com| 成人18禁高潮啪啪吃奶动态图| 国产精品 欧美亚洲| 在线av久久热| 亚洲欧美激情综合另类| 欧美人与性动交α欧美精品济南到| 久久久国产成人免费| 一区在线观看完整版| 高清毛片免费观看视频网站 | 热re99久久精品国产66热6| 在线观看免费视频日本深夜| 女性被躁到高潮视频| 老熟妇乱子伦视频在线观看| 少妇 在线观看| 一边摸一边做爽爽视频免费| 日本黄色视频三级网站网址 | 成人黄色视频免费在线看| 香蕉丝袜av| 亚洲九九香蕉| 大型av网站在线播放| 最近最新中文字幕大全免费视频| 天天操日日干夜夜撸| a在线观看视频网站| 99精品久久久久人妻精品| 欧美日韩福利视频一区二区| 免费看十八禁软件| 中文欧美无线码| 一区二区三区精品91| 男人的好看免费观看在线视频 | 最新在线观看一区二区三区| 操出白浆在线播放| 99热国产这里只有精品6| 麻豆国产av国片精品| 成年人黄色毛片网站| 欧美人与性动交α欧美精品济南到| 99精品久久久久人妻精品| 欧美成狂野欧美在线观看| 如日韩欧美国产精品一区二区三区| 久久香蕉激情| 久久久久久久精品吃奶| 国产三级黄色录像| 国产精品久久久av美女十八| 韩国精品一区二区三区| 美女视频免费永久观看网站| www.自偷自拍.com| tube8黄色片| 午夜福利一区二区在线看| 啪啪无遮挡十八禁网站| 超色免费av| 成人国语在线视频| 看片在线看免费视频| 亚洲全国av大片| 高清视频免费观看一区二区| 国产一区二区激情短视频| 午夜亚洲福利在线播放| 国产熟女午夜一区二区三区| 美女 人体艺术 gogo| 成熟少妇高潮喷水视频| 亚洲精品久久午夜乱码| 国产精品98久久久久久宅男小说| 日韩中文字幕欧美一区二区| 国产深夜福利视频在线观看| 久久久国产欧美日韩av| 在线视频色国产色| 在线观看免费视频网站a站| 久久精品国产清高在天天线| 亚洲熟妇中文字幕五十中出 | 大型黄色视频在线免费观看| 精品人妻1区二区| 久久狼人影院| 国产一区二区激情短视频| 亚洲av第一区精品v没综合| 一边摸一边抽搐一进一小说 | 自线自在国产av| 日本精品一区二区三区蜜桃| 国产一区二区三区在线臀色熟女 | 一边摸一边抽搐一进一小说 | 丝袜在线中文字幕| 99国产极品粉嫩在线观看| 丁香欧美五月| 国产蜜桃级精品一区二区三区 | 色婷婷av一区二区三区视频| 大码成人一级视频| 又黄又粗又硬又大视频| 国产精品亚洲一级av第二区| 亚洲成人国产一区在线观看| 国产成人精品无人区| 一区二区三区精品91| 99久久国产精品久久久| 少妇的丰满在线观看| 亚洲精品国产色婷婷电影| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区免费| 一本大道久久a久久精品| 亚洲专区国产一区二区| 免费在线观看影片大全网站| 99久久人妻综合| 在线观看免费视频网站a站| 一本一本久久a久久精品综合妖精| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 日韩大码丰满熟妇| 99热国产这里只有精品6| 老司机午夜福利在线观看视频| √禁漫天堂资源中文www| 久久久久久久久免费视频了| 国产成人精品久久二区二区免费| 美女国产高潮福利片在线看| 精品一区二区三区视频在线观看免费 | 国产成人精品在线电影| 免费人成视频x8x8入口观看| 波多野结衣一区麻豆| 国产区一区二久久| 制服诱惑二区| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 真人做人爱边吃奶动态| 欧美日韩瑟瑟在线播放| 亚洲三区欧美一区| 精品人妻1区二区| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 电影成人av| 国产麻豆69| 亚洲精品国产一区二区精华液| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 午夜福利乱码中文字幕| 在线天堂中文资源库| 香蕉国产在线看| 国产精品免费大片| 色综合婷婷激情| 建设人人有责人人尽责人人享有的| 亚洲片人在线观看| 午夜亚洲福利在线播放| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 一级毛片女人18水好多| 久久国产精品影院| 人人妻,人人澡人人爽秒播| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| 国产区一区二久久| 黄色毛片三级朝国网站| 9热在线视频观看99| 男女午夜视频在线观看| 亚洲精品粉嫩美女一区| 亚洲五月婷婷丁香| 校园春色视频在线观看| 国产成+人综合+亚洲专区| 亚洲专区中文字幕在线| 老汉色av国产亚洲站长工具| 日韩大码丰满熟妇| 国产片内射在线| 女性被躁到高潮视频| 好男人电影高清在线观看| 丰满的人妻完整版| 欧美激情高清一区二区三区| 91国产中文字幕| 老司机福利观看| 久久国产亚洲av麻豆专区| 动漫黄色视频在线观看| 国产又色又爽无遮挡免费看| 黑丝袜美女国产一区| 免费观看a级毛片全部| 最近最新中文字幕大全电影3 | 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 精品久久久久久,| 免费高清在线观看日韩| 中文字幕人妻熟女乱码| 久久人妻av系列| 亚洲专区国产一区二区| av在线播放免费不卡| 久久精品人人爽人人爽视色| 老司机午夜十八禁免费视频| 啦啦啦在线免费观看视频4| 亚洲欧美激情在线| 久久狼人影院| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 日韩免费高清中文字幕av| 亚洲成人免费av在线播放| 黑丝袜美女国产一区| 免费观看a级毛片全部| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 国产一区有黄有色的免费视频| 久久久国产精品麻豆| tocl精华| 欧美大码av| 亚洲专区国产一区二区| 国产在线观看jvid| 国产精品一区二区在线观看99| 18在线观看网站| 精品午夜福利视频在线观看一区| a级毛片黄视频| 99热只有精品国产| 日本一区二区免费在线视频| 国产在线精品亚洲第一网站| 又黄又爽又免费观看的视频| 亚洲精品在线观看二区| 19禁男女啪啪无遮挡网站| 99riav亚洲国产免费| 亚洲avbb在线观看| 高清欧美精品videossex| 纯流量卡能插随身wifi吗| 亚洲av美国av| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美 日韩 精品 国产| 在线免费观看的www视频| 老鸭窝网址在线观看| 精品久久蜜臀av无| netflix在线观看网站| 午夜视频精品福利| www.999成人在线观看| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 中文字幕精品免费在线观看视频| 欧美+亚洲+日韩+国产| 老汉色av国产亚洲站长工具| 国产色视频综合| 最近最新中文字幕大全电影3 | 国产高清videossex| 久久久久久亚洲精品国产蜜桃av| 午夜免费鲁丝| 三上悠亚av全集在线观看| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 飞空精品影院首页| 欧美日本中文国产一区发布| 成年人黄色毛片网站| 中文字幕高清在线视频| 午夜视频精品福利| 老汉色av国产亚洲站长工具| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| 欧美 日韩 精品 国产| 99精品欧美一区二区三区四区| 高清毛片免费观看视频网站 | 亚洲一卡2卡3卡4卡5卡精品中文| 50天的宝宝边吃奶边哭怎么回事| 久久久精品区二区三区| 国产欧美亚洲国产| 大香蕉久久成人网| 久久热在线av| 日本黄色视频三级网站网址 | 夫妻午夜视频| 97人妻天天添夜夜摸| 国产精品免费一区二区三区在线 | 在线播放国产精品三级| 久热爱精品视频在线9| a级片在线免费高清观看视频| av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 建设人人有责人人尽责人人享有的| 男女床上黄色一级片免费看| 99香蕉大伊视频| av国产精品久久久久影院| 精品亚洲成国产av| 一边摸一边抽搐一进一小说 | 在线观看免费视频网站a站| a在线观看视频网站| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 午夜福利免费观看在线| 大码成人一级视频| 国产精品一区二区精品视频观看| 丰满的人妻完整版| 欧美日韩成人在线一区二区| 高潮久久久久久久久久久不卡| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人爽人人夜夜| 欧美黄色淫秽网站| a级毛片黄视频| 在线永久观看黄色视频| 国产精品偷伦视频观看了| av国产精品久久久久影院| 久久人人97超碰香蕉20202| 最近最新中文字幕大全免费视频| 欧美精品av麻豆av| 老司机靠b影院| 久久中文字幕人妻熟女| 国产男女内射视频| 精品国产超薄肉色丝袜足j| 色94色欧美一区二区| 91麻豆av在线| 久久国产精品影院| 岛国毛片在线播放| 欧美一级毛片孕妇| 亚洲精品在线美女| 老司机影院毛片| 亚洲精品国产一区二区精华液| 日韩免费av在线播放| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 精品国产一区二区三区久久久樱花| 久久影院123| 成人国产一区最新在线观看| 亚洲精品中文字幕一二三四区| 黄色丝袜av网址大全| 三上悠亚av全集在线观看| 少妇裸体淫交视频免费看高清 | 亚洲午夜理论影院| 免费少妇av软件| 亚洲人成电影观看| 国精品久久久久久国模美| 久热这里只有精品99| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 久久九九热精品免费| 在线观看66精品国产| 久久人妻熟女aⅴ| www.熟女人妻精品国产| www.自偷自拍.com| 国产精品成人在线| 精品国产国语对白av| 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 黄片小视频在线播放| 99热国产这里只有精品6| 美国免费a级毛片| 日韩欧美一区二区三区在线观看 | 久久午夜综合久久蜜桃| ponron亚洲| 人成视频在线观看免费观看| 国产精品一区二区在线观看99| 波多野结衣一区麻豆| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| av免费在线观看网站| 国产精品av久久久久免费| 欧美精品av麻豆av| 亚洲少妇的诱惑av| 在线观看午夜福利视频| 亚洲午夜理论影院| 国产av一区二区精品久久| 久久热在线av| av天堂在线播放| 免费看十八禁软件| 黄色毛片三级朝国网站| av在线播放免费不卡| 欧美日韩视频精品一区| 91九色精品人成在线观看| 午夜福利欧美成人| 久久久国产成人免费| 色婷婷久久久亚洲欧美| 天堂√8在线中文| av网站在线播放免费| 黄色 视频免费看| 国产成人精品久久二区二区91| 精品少妇久久久久久888优播| 色在线成人网| 99精品久久久久人妻精品| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 丁香六月欧美| 国产av一区二区精品久久| 精品国产一区二区久久| 国产视频一区二区在线看| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 久久香蕉激情| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 啦啦啦免费观看视频1| 99香蕉大伊视频| 黑人巨大精品欧美一区二区mp4| 日韩视频一区二区在线观看| 91大片在线观看| 亚洲第一av免费看| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 高清毛片免费观看视频网站 | 后天国语完整版免费观看| 色老头精品视频在线观看| 国产精品.久久久| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 夫妻午夜视频| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 在线观看66精品国产| 在线看a的网站| netflix在线观看网站| 日本精品一区二区三区蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲美女黄片视频| 麻豆国产av国片精品| 中文亚洲av片在线观看爽 | 99国产精品99久久久久| 亚洲av美国av| 多毛熟女@视频| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| ponron亚洲| 欧美亚洲 丝袜 人妻 在线| 女性被躁到高潮视频| 天天添夜夜摸| 国产99久久九九免费精品| 国产不卡av网站在线观看| 婷婷丁香在线五月| 久久精品国产a三级三级三级| 成人手机av| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 久久天堂一区二区三区四区| 国产单亲对白刺激| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 人妻丰满熟妇av一区二区三区 | 精品国产一区二区三区久久久樱花| 啦啦啦视频在线资源免费观看| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9 | 亚洲视频免费观看视频| 老司机福利观看| 午夜福利视频在线观看免费| 国产成人av教育| 一进一出抽搐gif免费好疼 | 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片 | 亚洲欧美一区二区三区久久| 亚洲精品粉嫩美女一区| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 高清av免费在线| 一级a爱片免费观看的视频| av片东京热男人的天堂| 亚洲 国产 在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美| 成年人黄色毛片网站| 欧美日韩黄片免| 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 男人的好看免费观看在线视频 | 国产精品 国内视频| 女同久久另类99精品国产91| 亚洲五月天丁香| 亚洲五月色婷婷综合| 中文欧美无线码| 三上悠亚av全集在线观看| x7x7x7水蜜桃| 久久久久久人人人人人| 制服诱惑二区| 身体一侧抽搐| 日韩有码中文字幕| 精品电影一区二区在线| 欧美日韩成人在线一区二区| 久久香蕉精品热| 亚洲精品自拍成人| 中文亚洲av片在线观看爽 | 欧美乱码精品一区二区三区| 午夜福利在线免费观看网站| 丝袜美足系列| 黑丝袜美女国产一区| 午夜91福利影院| 黄色视频,在线免费观看| 在线国产一区二区在线| 露出奶头的视频| 午夜91福利影院| 极品教师在线免费播放| 精品久久久精品久久久| 丝袜美腿诱惑在线| 91九色精品人成在线观看| 99国产综合亚洲精品| 欧美乱色亚洲激情| 最近最新中文字幕大全免费视频| 久久国产精品影院| 国产色视频综合| 国产高清视频在线播放一区| 免费在线观看亚洲国产| 国产成人系列免费观看| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 亚洲人成伊人成综合网2020| 男女午夜视频在线观看| 中文字幕色久视频| 国产主播在线观看一区二区| svipshipincom国产片| 久久亚洲精品不卡| 国产精品一区二区在线不卡|