• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organic Carboxylate Ligand Tuned Topological Variations in Three Zn(II) Coordination Polymers: Syntheses, Crystal Structures and Photoluminescent Properties①

    2018-10-12 03:53:40LIUChngQingYANGJinXiZHANGXinQINYeYnYAOYunGen
    結(jié)構(gòu)化學(xué) 2018年9期

    LIU Chng-Qing YANG Jin-Xi ZHANG Xin QIN Ye-Yn YAO Yun-Gen

    ?

    Organic Carboxylate Ligand Tuned Topological Variations in Three Zn(II) Coordination Polymers: Syntheses, Crystal Structures and Photoluminescent Properties①

    LIU Chang-Qinga, bYANG Jin-XiaaZHANG XinaQIN Ye-YanaYAO Yuan-Gena②

    a(350002)b(100039)

    Three new Zn(II) coordination polymers, namely [Zn2(suc)2(bib)2]n·nH2O (1), [Zn(glu)(bib)]n·4nH2O (2), and [Zn(adp)(bib)]n(3) (bib = 1,4-bis(N-imidazolyl)butane, H2suc = succinic acid, H2glu = glutaric acid, H2adp = adipic acid) have been hydrothermally synthesized and structurally characterized.Compound 1 features a 3D framework with 4-connected hxg-d topological network, compound 2 is comprised of 2D 44-sql-type sheets, and the adjacent 2D sheets are further packed into a 3D supramolecular architecture via intermolecular hydrogen- bonding interactions, and compound 3 is a 3D framework with 4-fold interpenetrating dia topology.The structural comparison of these three compounds demonstrates that the topological variations can be well controlled by employing aliphatic dicarboxylate ligands with different spacer lengths.Moreover, the thermal stabilities and photoluminescent properties of them were also studied in detail.

    zinc(II) compound, aliphatic dicarboxylate ligands, hydrothermal reaction, meso-helix, hydrogen bond, photoluminescence;

    1 INTRODUCTION

    Coordination polymers (CPs), as an emerging class of functional materials, are getting more and more attention because of their appealing frame- works as well as huge potential applications in luminescence sensing, magnetism, gas adsorption and selective separation, heterogeneous catalysis, and so on[1-7].During the self-assembly process, there exist several unpredictable factors, such as coordina- tion geometry of the central metal ion, solvent system, the conformation of organic ligand, pH value, reaction temperature, directing agent and so on, that can significantly affect the final molecular architec- ture, which makes controllable syntheses of crys- talline materials with desired frameworks and properties more difficult[8-11].To realize the con- trollable synthesis at molecular level, the selection of an appropriate synthetic strategy and organic ligand is crucial to construct the extended CPs.

    Among the widely used strategies, mixed-ligand self-assembly strategy is one of the most effective methods to construct the CPs with predictable struc- tures[12-16].Generally speaking, mixed carboxylate and dipyridyl or diimidazolyl-based ligands are the preferred organic build blocks in the crystal engineering.Inspired by this strategy, a series of Zn(II) and Cd(II) CPs based on pyridyl or imidazolyl based bridging ligands and aliphatic dicarboxylic acids have been successfully synthesized by our group[17-20].To further expand the study, in this work, we selected three flexible aliphatic dicarboxylic acids with different spacer lengths as the main ligands and 1,4-bis(N-imidazolyl)butane as the auxiliary ligand to assemble the Zn(NO3)2, successfully obtaining three new Zn(II) coordination polymers of 1, 2 and 3.Single-crystal X-ray diffraction analyses revealed that compound 1 features a 3D 4-connected hxg-d topological framework, compound 2 features a 2D 44-sql-type topological framework and compound 3 displays a 3-fold interpenetrating dia topological framework.

    2 EXPERIMENTAL

    2.1 Materials and equipments

    All chemicals were purchased commercially and used without further purification except for the bib ligand.The bib ligand was prepared according to the literature procedures[21].The FT-IR spectra were recorded from KBr pellets in the range of 400~4000 cm-1on a Nicolet Magna 750 FT-IR spectrometer.PXRD patterns were taken on a Rigaku Dmax2500 X-ray diffractometer (Cu-radiation,= 1.54056 ?) with a step size of 0.05°.TGA analysis was measured on a Netzsch STA 449C thermal analyzer at a heating rate of 10 °C·min?1under a nitrogen atmosphere.Elemental analyses (C, H and N) were performed on an EA1110 CHNS-0 CE Elemental Analyzer.Fluorescence spectra of the solid samples were performed on an Edinburgh Analytical instrument FLS920.

    2.2 Synthesis of {[Zn2(suc)2(bib)2]·H2O}n (1)

    A mixture of Zn(NO3)2·6H2O (60 mg, 0.2 mmol), H2suc (0.024 g, 0.2 mmol), bib (0.039 g, 0.2 mmol), and NaHCO3(0.034, 0.4 mmol) in a molar ratio of 1:1:1:2 and 10 mL H2O was placed in a 23 mL Teflon-lined stainless vessel, then the vessel was sealed and heated to 110 oC.The temperature was held for 60 h, then the vessel was cooled to room temperature over 60 h to lead to the formation of colorless block crystals of 1 (yield: 72% based on Zn).Anal.Calcd.for 1 (C28H38N8O9Zn2): C, 44.13; H, 4.99; N, 14.71%.Found: C, 44.38; H, 5.18, N, 14.48%.IR (solid KBr pellet,/cm-1) for compound 1: 3111(m), 1622(m), 1560(s), 1536(s), 1523(m), 1471(w), 1444(w), 1387(s), 1296(w), 1243(m), 1181(m), 1104(s), 1037(w), 951(m), 883(w), 846(m), 763(m), 753(m), 659(m), 626(m).

    2.3 Synthesis of {[Zn(glu)(bib)]·4H2O}n (2)

    Compound 2 was synthesized in a similar manner to 1 except that H2glu was used instead of H2suc.Colorless block-like crystals were isolated in 48% yield (based on Zn).Anal.Calcd.for 2 (C15H28N4O8Zn): C, 39.32; H, 6.12; N, 12.23%.Found: C, 39.58; H, 5.98, N, 12.48%.IR (solid KBr pellet,/cm-1) for compound 2: 3128(s), 2944(s), 1605(s), 1535(w), 1460(w), 1446(w), 1407(m), 1374(m), 1340(m), 1265(w), 1149(w), 1108(m), 1093(m), 1062(w), 954(m), 872(w), 788(m), 734(m), 661(m), 628(w).

    2.4 Synthesis of {Zn(adp)(bib)}n (3)

    Compound 3 was synthesized in a similar manner to 1 except that H2adp was used instead of H2suc.Colorless block-like crystals were isolated in 71% yield (based on Zn).Anal.Calcd.for 3 (C16H22N4O4Zn): C, 48.03; H, 5.50; N, 14.01%.Found: C, 47.89; H, 5.76, N, 14.33%.IR (solid KBr pellet,/cm-1) for compound 3: 3125(s), 2950(m), 1616(s), 1531(s), 1467(w), 1443(m), 1400(s), 1341(w), 1306(m), 1292(s), 1240(m), 1149(w), 1109(s), 1034(w), 949(s), 916(s), 856(m), 791(m), 731(m), 657(s), 636(m).

    2.5 Structure determination

    The single-crystal structure data for compounds 1~3 were performed on an Oxford Xcalibur E diffractometer (Mo-radiation,= 0.71073 ?, graphite monochromator) at room temperature.Absorption corrections were applied using the SADABS program[22].The structure was solved by direct methods and refined by full-matrix least- squares on2using the SHELXL-97 program[23].All of the non-hydrogen atoms were refined anisotro- pically, and the C-bound H atoms were generated by a riding model on idealized positions.The hydrogen atoms of lattice water molecules of 2 were located from successive Fourier syntheses.However, for 1, no appropriate hydrogen atoms of disordered lattice water molecules were obtained.Crystal data and structure refinement details are summarized in Table 1.Experimental details for the structure determination are presented in Table 1.Selected bond lengths and bond angles are listed in Table S1~S3.

    Table 1. Summary of Crystal Data and Structure Refinements for 1~3

    =?||F|–|F||/?|F|,wR= [Σ(F2–F2)2/Σ(F2)2]1/2

    3 RESULTS AND DISCUSSION

    3.1 Description of structure 1

    Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the noncentrosym- metric space groupwith a Flack parameter[24, 25]of –0.01(3), indicating a large degree of enantiomeric purity within the crystal.The asymmetric unit of 1 contains two independent Zn(II) cations, two suc2-ligands, two bib ligands and one lattice water molecule (Fig.1a).The two kinds of Zn atoms all take the distorted [ZnN2O2] tetrahedral geometriescoordinating to two oxygen atoms from two individual suc2-ligands and two nitrogen atoms from two different bib ligands.The Zn–O/N bond lengths are in the range of 1.931(12)~2.001(12) ?, and the O/N–Zn–O/N bond angles vary from 94.7(6) to 120.7(7)°, which are similar to those reported in other Zn(II) compounds[19, 20].

    Two kinds of bib ligands displayandconformations, respectively.They act as bidentate ligands coordinated to the Zn(II) centers to form an infinite-helix with a pitch of 35.419 ? (Fig.1c).Similarly, bis-monodenate suc2-ligands connect Zn(II) ions into a [Zn(suc)]nsingle-stranded- helix with a pitch of 13.389 ? (Fig.1b).Two types of-helix share the Zn(II) centers to generate a 3D framework (Fig.1d).Topological analysis of com- pound 1 reveals that it is a 4-connected uninodal hxg-d network with point symbol {65·8} (Fig.1e).Because of the flexibility of the suc2-and bib ligand, a non-centrosymmetric {ZnO2N2} center is formed, and combined with the symmetrical bridging ligands which show an unsymmetrical linkage.The arrange- ment of components crystallized into an acentric structure.

    Fig.1. (a) Coordination environment of the Zn(II) atom in 1 (Symmetry codes: a = 0.5+, 0.5+,; b = 1.5+, 0.5+,; c =, 1–, 0.5+).(b) and (c) View of the meso-helical chain constructed by Zn(II) atoms and suc2-/bib ligands.(d) Perspective view of the 3D framework along the-axis.(e) Schematic view of the hxg-d topology of structure 1

    3.2 Description of structure 2

    When the longer ligand glu2-was introduced into the system, compound 2 was obtained.Single-crystal X-ray structural analysis reveals that the asymmetric unit of 2 consists of one independent Zn(II) cation, one glu2?anion, two half bib ligands, and four lattice water molecules.As shown in Fig.2a, each Zn(II) cation is four-coordinated by two carboxylate oxygen atoms from two glu2-anions and two nitrogen atoms from two bib molecules in a distorted tetrahedral geometry.Similar to compound 1, two kinds of bib ligands act as2-bridge coordinated to the Zn(II) centers to yield an infinite 1D-helix with a pitch of 21.494 ?, where the bib ligands exhibit theandconformation and the two imidazole rings of each bib are parallel.These-helixes are further linked by2-glu2-ligands to generate a 2D puckered (4, 4) sheet.

    Fig.2. (a) Coordination environment of the Zn(II) cation of 2 (symmetry codes: a = 1+, 1+,; b = 2–, 3–, –; c = 1–, 2–, 1–).(b) (top) View of the meso-helical chain constructed by Zn(II) atoms and bib ligands; (bottom) Perspective view of the (4, 4) network connected by Zn(II) ions, glu2-, and bib ligands.(c) Parallel stacking fashion of the layered frameworks in 2.(d) View of the water hexamer and their coordination environments in 2 (Symmetry codes: e =, 1+,; f = 2?, 2?, ?; g = ?1+, ?1+,; h = 1?, 1?, ?; i= 1?, ?, ?).(e) View of the 3D supramolecular architecture of 2 formed by hydrogen-bonding interactions

    A close inspection of the structure discloses a cyclic water tetramer in 2.As depicted in Fig.2d, two crystallographically independent lattice water molecules and their symmetry-related ones (O1w, O1wh, O4wg, O4wf) are interconnected with each other by strong hydrogen bonding to generate a cyclic (H2O)4water cluster.Within the cyclic water tetramer, O1w and O1wh act as both hydrogen bond acceptors and donors, and the O4wg and O4wf serve as hydrogen bond donors.Additional O2we and O2wi showing hydrogen bond acceptors bonded to O1w and O1wh to give the overall water hexamer cluster.Moreover, such water hexamer clusters are connected with carboxyl oxygen atoms (O1, O3) by H-bonding interactions to form an overall 3D supramolecular architecture.In addition, water molecules O3w acted as hydrogen bond donors to link carboxyl oxygen atoms (O2, O4) to sustain the stabilization of the 3D architecture.The H-bonding parameters are summarized in Table 2.

    Table 2. Hydrogen-bonding Geometrical Parameters (?, o) of Compound 2

    Symmetry codes: e =, 1+,; f = 2?, 2?, ?; g = ?1+, ?1+,; i = 1?, ?, ?; j = ?1+,,

    Fig.3. (a) View of the coordinated environment of Zn(II) centers in compound 3.(b) View of the- helical chain constructed by Zn(II) atoms and adp2-ligands.(c) Perspective view of the 3D framework along the-axis.(d) An adamantanoid unit cage unit of 3.(e) Space-filling diagram and Schematic representation of the four interpenetrating adamantanoid cages

    3.3 Description of structure 3

    When glu2?is replaced with a longer adp2?ligand, a 4-fold interpenetrating dia structure was obtained.In compound 3, the Zn(II) center is situated on a 2-fold axis (site occupancy factor (SOF) = 0.5), and other 2-fold axis of rotation passing through the midponits of C(3)?C(3) and C(8)?C(8) bisected the adp2-anion and bib ligand; thus, the asymmetric unit comprises one-half of the formula.Each Zn(II) cation is four-coordinated, having a distorted tetrahe- dral ZnO2N2environment consisting of two N atoms from two different bib ligands, and two carboxylate oxygen atoms from two different adp2-anions.

    The flexible ligand adp2-adoptsconforma- tion to link the Zn(II) ions into a single-stranded-helix with a pitch of 11.783 ? (Fig.3b), which further combines the bib ligands to give a 3D framework with the point symbol 66and the long symbol 62·62·62·62·62·62, typical of a diamondoid topology (Fig.3c).A single adamantanoid frame- work possesses maximum dimensions (the longest intracage distances across the unit along the direc- tions) of 18.78 × 40.27 × 11.78 ?3(2a × 4b × c) (Fig.3d), which allows the other three selfsame nets to penetrate, forming a 4-fold interpenetrating architec- ture without available space (Fig.3e).

    3.4 Powder X-ray diffraction (PXRD) analysis and thermal stability analysis

    The powder X-ray diffraction (PXRD) experi- ments were carried out to confirm the phase purity.As illustrated in Fig.S1, the measured PXRD pat- terns of 1~3 closely match their simulated spectra from single-crystal data, confirming the phase purity of the compounds.

    The thermogravimetric analyses (TGA) were carried out on crystalline samples of 1~3 to study the thermal stability of these compounds.As shown in Fig.S2, compound 1 lost lattice water molecules (obsd.2.49%, calcd.2.37%) in the range of 30~120 °C, and the remaining framework is thermally stable up to 300 °C, at which the framework begins to collapse.The TG curve of compound 2 reveals a steady weight loss between room temperature and 110 °C, corresponding to the departure of lattice watermolecules (obsd.15.34%, calcd.15.73%).Upon further increasing the temperature, the organic ligands start decomposing at 280 °C, forming an unidentified pro- duct.For compound 3, there are not lattice and coor- dination water molecules in the structure, thus the TG curve shows that the structure remains stable up to 290 °C.The major weight loss between 290 and 630 °C is attributed to the decomposition of organic ligands in the product, and the remaining weight corresponds to the formation of ZnO (obsd.20.44%, calcd.19.89%).

    3.5 Luminescent properties

    Powdered solid samples of 1~3 were examined in order to investigate their photoluminescent properties.As shown in Fig.4, upon excitation of 360 nm, these three compounds are luminescent with the emission bands at 424 nm for 1, 425 nm for 2 and 415 nm for 3, respectively.All showed broad emission profiles with emission maxima occurring in the violet regions, and tails into the blue-violet region.The solid-state emission spectra of the free bib ligand and three kinds of aliphatic carboxylate ligands were also measured to understand the nature of the emission band.The bib ligand shows the maxima emission at 430 nm (ex= 360 nm) which presumably originate from*→or*→transition.Notably, the alipha- tic dicarboxylate ligands are non-fluorescent in the visible light range, as reported previously[26].The resemblance between the emissions of 1~3 and the free bib shows they exhibit similar emission maxima, which indicates that the emissions of 1~3 are probably attributed to the intraligand*→transi- tions.We can see that all Zn(II) atoms in 1~3 are located in a tetrahedral four-coordinated environment, and the imidazole rings of bib ligands show similar-stacking interactions, so the local environments are largely similar, perhaps resulting in similar luminescent.The observed enhancement of the inten- sity for some peaks originated from the coordination action of the dicarboxylate ligands and the N-donor ligands to the Zn(II) ions, which increases the con- formational rigidity of the ligand, thus reducing the loss of energy through a radiationless pathway[27].

    Fig.4. Emission and excitation spectra (inset) of 1~3 in the solid-state at room temperature

    4 CONCLUSION

    In summary, three new CPs based on Zn(II) have been synthesized under hydrothermal conditions.By increasing the spacer length of dicarboxylate, three compounds of 1~3 display various structures ran- ging from 2D 44-sql sheet (2) to 3D hxg-d network (1) and 4-fold interpenetrating dia net (3).It demonstrates that the tecton elongation strategy was efficiently used to fine-tune the resultant structures of the compounds.Thus, the present work can represent a fine example for constructing functional MOFs by the rational choice of organic ligands with specific spacer groups.

    (1) Heine, J.; Müller-Buschbaum, K.Engineering metal-based luminescence in coordination polymers and metal-organic frameworks.2013, 42, 9232–9242.

    (2) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y.Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.2014, 43, 6011–6061.

    (3) Xuan, W.M.; Zhou, C.F.; Liu, Y.; Cui, Y.Mesoporous metal-organic framework materials.2012, 41, 1677–1695.

    (4) Pang, J.D.; Jiang, F.L.; Wu, M.Y.; Yuan, D.Q.; Zhou, K.; Qian, J.J.; Su, K.Z.; Hong, M.C.Coexistence of cages and one-dimensional channels in a porous MOF with high H2and CH4uptakes.2014, 50, 2834–2836.

    (5) He, Y.B.; Zhou, W.; Qian, G.D.; Chen, B.L.Methane storage in metal-organic frameworks.2014, 43, 5657–5678.

    (6) He, Y.B.; Chen, F.L.; Li, B.; Qian, G.D.; Zhou, W.; Chen, B.L.Porous metal-organic frameworks for fuel storage.2018, DOI: 10.1016/j.ccr.2017.10.002.

    (7) He, Y.B.; Zhou, W.; Chen, B.L.Microporous metal-organic frameworks for storage and separation of small hydrocarbons.2012, 48, 11813–11831.

    (8) Wen,G.L.; Wang, Y.Y.; Zhang, W.H.; Ren, C.; Liu, R.T.; Shi, Q.Z.Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands..2010, 12, 1238–1251.

    (9) Yang,J.X.; Zhang, X.; Cheng, J.K.; Zhang, J.; Yao, Y.G.pH influence on the structural variations of 4,4-oxydiphthalate coordination polymers.2012, 12, 333–345.

    (10) Zhang, X.; Huang, Y.Y.; Yao, Y.G.Two distinct Dy-isophthalates induced by different solvents.2012, 1024, 146–150.

    (11) Zhao,X.L.; Zhang, L.L.; Ma, H.Q.; Sun, D.; Wang, D.X.; Feng, S.Y.; Sun, D.F.Solvent-controlled Cd(II) metal-organic frameworks constructed from a tetrapodal silicon-based linker.2012, 2, 5543–5549.

    (12) Hao, H.J.; Sun, D.; Liu, F.J.; Huang, R.B.; Zheng, L.S.Discrete octamer water cluster and 1D T5(2) water tape trapped in two luminescent Zn(II)/1,2-bis(imidazol-1?-yl)ethane/dicarboxylate hosts: from 2D (4,4) net to 3D 5-fold interpenetrated diamond network.2011, 11, 5475–5482.

    (13) Yao, X.Q.; Zhang, M.D.; Hu, J.S.; Li, Y.Z.; Guo, Z.J.; Zheng, H.G.Two porous zinc coordination polymers with (10,3) topological features based on a N-centered tripodal ligand and the conversion of a (10,3)-d subnet to a (10,3)-a subnet.2011, 11, 3039–3044.

    (14) Li,F.F.; Shi, Z.Z.; Ma, L.F.; Wu, X.J.; Wang, L.Y.Self-assembly of three cadmium(II) complexes based on 5-methylisophthalic acid and flexible bis(imidazole) ligands with different spacer lengths.2013, 407, 153–159.

    (15) Yang,Y.; Yang, J.; Du, P.; Liu, Y.Y.; Ma, J.F.A series of metal-organic frameworks based on a semi-rigid bifunctional ligand 5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalic acid and flexible N-donor bridging ligands..2014, 16, 6380–6390.

    (16) Zhang,J.; Chew, E.; Chen, S.M.; Pham, J.T.H.; Bu, X.H.Three-dimensional homochiral transition-metal camphorate architectures directed by a flexible auxiliary ligand.2008, 47, 3495–3497.

    (17) Yang,J.X.; Qin, Y.Y.; Ye, R.P.; Zhang, X.; Yao, Y.G.Employing mixed-ligand strategy to construct a series of luminescent Cd(II) compounds with structural diversities.2016, 18, 8309–8320.

    (18) Yang,J.X.; Zhai, J.Q.; Zhang, X.; Qin, Y.Y.; Yao, Y.G.Tuning different kinds of entangled metal-organic frameworks through modifying the spacer group of aliphatic dicarboxylate ligands and reactant ratio.2016, 45, 711–723.

    (19) Yang,J.X.; Qin, Y.Y.; Cheng, J.K.; Yao, Y.G.Tuning different kinds of entangled networks by varying N-donor ligands: from self-penetrating to multi-Interpenetrating.2014, 14, 1047–1056.

    (20) Yang,J.X.; Qin, Y.Y.; Cheng, J.K.; Zhang, X.; Yao, Y.G.Construction of a series of Zn(II) compounds with different entangle motifs by varying flexible aliphatic dicarboxylic acids.2015, 15, 2223–2234.

    (21) Hoskins, B.F.; Robson, R.; Slizys, D.A.An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2(bix = 1,4-bis(imidazol-1-ylmethyl)benzene).1997, 119, 2952–2953.

    (22) Sheldrick,G.M.SADABS.University of G?ttingen: G?ttingen, Germany 1996.

    (23) Sheldrick, G.M.University of G?ttingen, Germany 1997.

    (24) Bernardinelli, G.; Flack, H.D.Least-squares absolute-structure refinement.Practical experience and ancillary calculations,1985,A41, 500–511.

    (25) Flack, H.D.On enantiomorph-polarity estimation.1983, A29, 876–881.

    (26) Uebler,J.W.; Wilson, J.A.; LaDuca, R.L.Donor disposition and aliphatic conformation effects on structure in luminescent zinc dicarboxylate coordination polymers with isomeric dipyridylamide coligands.2013, 15, 1586–1596.

    (27) Zheng,S.L.; Tong, M.L.; Tan, S.D.; Wang, Y.; Shi, J.X.; Tong, Y.X.; Lee, H.K.; Chen, X.M.Syntheses, structures, and properties of three novel coordination polymers of silver(I) aromatic carboxylates with hexamethylenetetramine exhibiting unique metal-interaction.2001, 20, 5319–5325.

    11 January 2018;

    17 April 2018 (CCDC 1585770-1585772)

    the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09030102), National Key R&D Program of China (2017YFB0307301), and the Science Foundation of Fujian Province

    .E-mail: yyg@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1949

    在线观看美女被高潮喷水网站 | 国产一区二区在线av高清观看| 成人特级黄色片久久久久久久| 在线观看舔阴道视频| 亚洲avbb在线观看| 久久九九热精品免费| 欧美性感艳星| 男女下面进入的视频免费午夜| 久久精品91蜜桃| 久久久久国产精品人妻aⅴ院| 日韩大尺度精品在线看网址| 久久精品国产99精品国产亚洲性色| 欧美成狂野欧美在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲熟妇熟女久久| 在线观看一区二区三区| ponron亚洲| 亚洲中文字幕日韩| 熟妇人妻久久中文字幕3abv| 窝窝影院91人妻| 男女做爰动态图高潮gif福利片| 国产免费一级a男人的天堂| 少妇熟女aⅴ在线视频| 啦啦啦观看免费观看视频高清| 人妻久久中文字幕网| 麻豆av噜噜一区二区三区| 亚洲国产色片| 久久久色成人| 69av精品久久久久久| 国产一区二区激情短视频| 亚洲激情在线av| 亚洲成人精品中文字幕电影| 老熟妇仑乱视频hdxx| 天堂影院成人在线观看| 高清在线国产一区| 两人在一起打扑克的视频| 国产成人aa在线观看| 真人一进一出gif抽搐免费| 一本久久中文字幕| 最近中文字幕高清免费大全6 | 国产三级中文精品| 国产av一区在线观看免费| 亚洲avbb在线观看| 日韩欧美在线二视频| 久久伊人香网站| 成年女人毛片免费观看观看9| 两人在一起打扑克的视频| 成人鲁丝片一二三区免费| 又爽又黄无遮挡网站| 女人被狂操c到高潮| 夜夜夜夜夜久久久久| 女人被狂操c到高潮| 国产成人欧美在线观看| 99久国产av精品| 欧美xxxx性猛交bbbb| bbb黄色大片| 日本撒尿小便嘘嘘汇集6| 欧美成狂野欧美在线观看| 国产亚洲av嫩草精品影院| 最近中文字幕高清免费大全6 | 97碰自拍视频| 无遮挡黄片免费观看| 美女大奶头视频| 日韩成人在线观看一区二区三区| 亚洲自拍偷在线| 精华霜和精华液先用哪个| 色噜噜av男人的天堂激情| 3wmmmm亚洲av在线观看| 亚洲美女视频黄频| 黄色女人牲交| 久久中文看片网| 精品午夜福利在线看| 国产成人福利小说| 九九热线精品视视频播放| 国产精品自产拍在线观看55亚洲| 丰满人妻一区二区三区视频av| 国产免费av片在线观看野外av| 色综合亚洲欧美另类图片| 婷婷六月久久综合丁香| 九九久久精品国产亚洲av麻豆| www.色视频.com| 精品一区二区免费观看| 国产伦精品一区二区三区视频9| 午夜福利欧美成人| 国产免费av片在线观看野外av| 日本精品一区二区三区蜜桃| 亚洲内射少妇av| 床上黄色一级片| 露出奶头的视频| 超碰av人人做人人爽久久| 欧美性感艳星| 日日干狠狠操夜夜爽| 十八禁人妻一区二区| 国产伦人伦偷精品视频| 岛国在线免费视频观看| 精品久久久久久久末码| 精品欧美国产一区二区三| 一个人免费在线观看电影| a级毛片免费高清观看在线播放| av在线天堂中文字幕| 日韩欧美免费精品| 久久久久久久精品吃奶| 最近最新免费中文字幕在线| 在现免费观看毛片| 简卡轻食公司| 国产美女午夜福利| 首页视频小说图片口味搜索| 色av中文字幕| 国产精品久久电影中文字幕| 一级av片app| 在线播放国产精品三级| 国产高清三级在线| 国产综合懂色| 亚洲三级黄色毛片| 精品久久久久久久人妻蜜臀av| 久久久久久久久久成人| 精品福利观看| 日本黄大片高清| 人人妻人人澡欧美一区二区| 少妇被粗大猛烈的视频| 国产精品免费一区二区三区在线| 天堂√8在线中文| 欧美一区二区国产精品久久精品| 成人午夜高清在线视频| 亚洲av免费高清在线观看| 国内精品久久久久久久电影| 亚洲男人的天堂狠狠| 精品久久久久久久久久免费视频| 啦啦啦韩国在线观看视频| 中文资源天堂在线| 亚洲色图av天堂| 悠悠久久av| 少妇被粗大猛烈的视频| 99热只有精品国产| 国产一区二区亚洲精品在线观看| 亚洲av一区综合| 一区二区三区四区激情视频 | 69人妻影院| 久久久久国内视频| 99热6这里只有精品| 婷婷丁香在线五月| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产伦在线观看视频一区| 欧美不卡视频在线免费观看| 麻豆久久精品国产亚洲av| av在线观看视频网站免费| 色综合亚洲欧美另类图片| 麻豆国产97在线/欧美| 午夜亚洲福利在线播放| 18美女黄网站色大片免费观看| 能在线免费观看的黄片| 如何舔出高潮| 亚洲在线观看片| 国产亚洲精品综合一区在线观看| 网址你懂的国产日韩在线| 一区二区三区高清视频在线| 日韩成人在线观看一区二区三区| 久久久成人免费电影| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 久久久久国内视频| 亚洲欧美激情综合另类| 欧美高清性xxxxhd video| 国产探花在线观看一区二区| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽| 每晚都被弄得嗷嗷叫到高潮| 婷婷色综合大香蕉| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 精品熟女少妇八av免费久了| 亚洲人成网站在线播| 丁香六月欧美| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 国产不卡一卡二| 国产成人福利小说| 狠狠狠狠99中文字幕| 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 午夜日韩欧美国产| 变态另类成人亚洲欧美熟女| 午夜福利在线在线| 黄片小视频在线播放| 亚洲七黄色美女视频| 毛片女人毛片| 男人狂女人下面高潮的视频| 欧美潮喷喷水| 欧美最新免费一区二区三区 | 床上黄色一级片| 久久6这里有精品| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 我要搜黄色片| 精品人妻熟女av久视频| 国产精品电影一区二区三区| 国产欧美日韩精品一区二区| 欧美日韩瑟瑟在线播放| 亚洲专区中文字幕在线| 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 麻豆av噜噜一区二区三区| 日日夜夜操网爽| 久久香蕉精品热| 人人妻人人澡欧美一区二区| 五月玫瑰六月丁香| 亚洲黑人精品在线| 99久久精品国产亚洲精品| 午夜精品一区二区三区免费看| 变态另类成人亚洲欧美熟女| 亚洲精品一区av在线观看| 欧美精品国产亚洲| 毛片一级片免费看久久久久 | 少妇人妻一区二区三区视频| 亚洲成人中文字幕在线播放| 亚洲精品粉嫩美女一区| 中亚洲国语对白在线视频| 成年免费大片在线观看| 日日摸夜夜添夜夜添小说| 网址你懂的国产日韩在线| 亚洲精品在线观看二区| 美女黄网站色视频| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 精品久久久久久久久久久久久| 18+在线观看网站| 欧美三级亚洲精品| 久久亚洲精品不卡| 久久久久久久午夜电影| 禁无遮挡网站| 内地一区二区视频在线| 韩国av一区二区三区四区| 又粗又爽又猛毛片免费看| www.色视频.com| 国产精品自产拍在线观看55亚洲| 一本久久中文字幕| 人妻久久中文字幕网| 9191精品国产免费久久| 午夜福利在线观看免费完整高清在 | a在线观看视频网站| 亚洲人成电影免费在线| 无人区码免费观看不卡| 久久精品国产亚洲av天美| 99国产精品一区二区三区| 亚洲真实伦在线观看| 亚洲国产欧美人成| 亚洲欧美清纯卡通| 99久国产av精品| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 男女床上黄色一级片免费看| 国产成人影院久久av| 级片在线观看| 亚洲专区国产一区二区| 午夜福利欧美成人| 欧美性猛交╳xxx乱大交人| 在线观看美女被高潮喷水网站 | 永久网站在线| 日本一二三区视频观看| av福利片在线观看| 婷婷丁香在线五月| 午夜激情福利司机影院| 日韩欧美在线二视频| 欧美绝顶高潮抽搐喷水| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 男女视频在线观看网站免费| 最新在线观看一区二区三区| 中文字幕高清在线视频| 在线观看av片永久免费下载| 久久99热这里只有精品18| 51午夜福利影视在线观看| 国产亚洲欧美98| 国产成+人综合+亚洲专区| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 午夜精品在线福利| 日本一本二区三区精品| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 国产一区二区三区在线臀色熟女| 成人av在线播放网站| 亚洲欧美日韩高清在线视频| 黄色一级大片看看| 男人舔女人下体高潮全视频| 91在线精品国自产拍蜜月| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 日韩人妻高清精品专区| 国产高清视频在线观看网站| 亚洲国产色片| 啦啦啦韩国在线观看视频| 不卡一级毛片| 日韩中字成人| 男女之事视频高清在线观看| 亚洲人与动物交配视频| 亚洲三级黄色毛片| 成人特级黄色片久久久久久久| 亚洲av.av天堂| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 搞女人的毛片| 精品久久久久久久久亚洲 | 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 免费一级毛片在线播放高清视频| 久久久久久九九精品二区国产| 天堂√8在线中文| a级毛片免费高清观看在线播放| 禁无遮挡网站| 男人狂女人下面高潮的视频| 99国产精品一区二区三区| 亚洲欧美清纯卡通| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 自拍偷自拍亚洲精品老妇| 丰满乱子伦码专区| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 欧美+亚洲+日韩+国产| or卡值多少钱| 免费在线观看成人毛片| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 亚洲成a人片在线一区二区| 91九色精品人成在线观看| 国产午夜精品久久久久久一区二区三区 | 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看 | 日本a在线网址| 精品久久久久久成人av| 国产毛片a区久久久久| 国产主播在线观看一区二区| 欧美zozozo另类| 国产av一区在线观看免费| 黄色日韩在线| 3wmmmm亚洲av在线观看| 欧美在线一区亚洲| www.熟女人妻精品国产| 久久香蕉精品热| 天堂√8在线中文| 欧美xxxx性猛交bbbb| 18+在线观看网站| 国产真实伦视频高清在线观看 | 精品久久国产蜜桃| 桃色一区二区三区在线观看| 国产成+人综合+亚洲专区| 中文字幕人成人乱码亚洲影| 亚洲精华国产精华精| 国产精品永久免费网站| 国产精品亚洲一级av第二区| 天堂√8在线中文| 亚洲欧美激情综合另类| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 欧美高清性xxxxhd video| 成人av一区二区三区在线看| 成人午夜高清在线视频| 亚洲人成网站高清观看| av天堂在线播放| 亚洲精品久久国产高清桃花| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 精品国产三级普通话版| 男女视频在线观看网站免费| 夜夜躁狠狠躁天天躁| 成人国产一区最新在线观看| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 国产午夜精品论理片| 他把我摸到了高潮在线观看| 亚洲国产色片| 国产精品99久久久久久久久| 免费av毛片视频| 一进一出抽搐动态| 免费看光身美女| 国产91精品成人一区二区三区| 精品一区二区三区视频在线| 免费av观看视频| 91av网一区二区| 亚洲av熟女| 国产aⅴ精品一区二区三区波| 999久久久精品免费观看国产| 舔av片在线| 人妻久久中文字幕网| 亚洲第一区二区三区不卡| 国产精品自产拍在线观看55亚洲| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区色噜噜| 黄色视频,在线免费观看| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 全区人妻精品视频| 国产一区二区三区在线臀色熟女| 内地一区二区视频在线| av在线蜜桃| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 我的老师免费观看完整版| 欧美一区二区亚洲| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 亚洲午夜理论影院| 我的女老师完整版在线观看| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 欧美精品国产亚洲| 人妻久久中文字幕网| 日韩免费av在线播放| 亚洲精华国产精华精| 赤兔流量卡办理| 亚洲精品成人久久久久久| 性色avwww在线观看| 国产亚洲精品av在线| 欧美午夜高清在线| 一级黄片播放器| 熟女电影av网| 极品教师在线免费播放| 久久久精品大字幕| 亚洲精品在线观看二区| 一本久久中文字幕| 赤兔流量卡办理| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 国产精品三级大全| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清无吗| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 日韩欧美在线二视频| 91av网一区二区| 美女高潮喷水抽搐中文字幕| 久久久久性生活片| 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 日韩亚洲欧美综合| 久久精品国产亚洲av涩爱 | 美女xxoo啪啪120秒动态图 | av欧美777| 成年免费大片在线观看| 1000部很黄的大片| 18美女黄网站色大片免费观看| 91九色精品人成在线观看| 精品午夜福利在线看| 国产成人啪精品午夜网站| 国产av在哪里看| 男人和女人高潮做爰伦理| 成人国产综合亚洲| 99国产综合亚洲精品| 国产色婷婷99| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站 | 在线观看av片永久免费下载| 中国美女看黄片| 日本熟妇午夜| 最近视频中文字幕2019在线8| 亚洲三级黄色毛片| 丰满的人妻完整版| 亚洲人成网站在线播| 亚洲精品一区av在线观看| 亚洲国产色片| 网址你懂的国产日韩在线| 性色av乱码一区二区三区2| av专区在线播放| 久久久久久久久大av| 性欧美人与动物交配| 久久久久久九九精品二区国产| 97热精品久久久久久| 欧美激情久久久久久爽电影| 亚洲av一区综合| 欧美潮喷喷水| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 麻豆成人午夜福利视频| 久久精品91蜜桃| 嫁个100分男人电影在线观看| 亚洲av二区三区四区| 国产黄色小视频在线观看| 日日摸夜夜添夜夜添av毛片 | av在线天堂中文字幕| 看片在线看免费视频| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 丁香欧美五月| 美女高潮的动态| 国产野战对白在线观看| 亚洲欧美激情综合另类| 久久精品人妻少妇| 一进一出抽搐动态| 国产高潮美女av| 俺也久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 91久久精品国产一区二区成人| 久久精品国产亚洲av涩爱 | 色精品久久人妻99蜜桃| 成年版毛片免费区| 欧美激情在线99| 757午夜福利合集在线观看| 69人妻影院| 国产精品乱码一区二三区的特点| 亚洲最大成人av| 国产av麻豆久久久久久久| 亚洲av成人av| 午夜精品一区二区三区免费看| 亚洲精品色激情综合| 国产综合懂色| 久久精品国产清高在天天线| 国产精品永久免费网站| 国产主播在线观看一区二区| 精品99又大又爽又粗少妇毛片 | 精品国产三级普通话版| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 国产中年淑女户外野战色| 欧美一区二区精品小视频在线| 久久久国产成人免费| 免费在线观看影片大全网站| 在现免费观看毛片| 一区二区三区激情视频| 亚洲五月婷婷丁香| 中文亚洲av片在线观看爽| 性色avwww在线观看| 熟女电影av网| 久久性视频一级片| 国产精品久久久久久久电影| 国模一区二区三区四区视频| 在线a可以看的网站| 在线观看午夜福利视频| 波野结衣二区三区在线| 中亚洲国语对白在线视频| av福利片在线观看| 天天躁日日操中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 亚洲av电影在线进入| 人人妻人人看人人澡| 色综合站精品国产| 看片在线看免费视频| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品一区二区| 久久久久久国产a免费观看| 中文字幕久久专区| 精品久久久久久久久av| a级一级毛片免费在线观看| 90打野战视频偷拍视频| 少妇的逼水好多| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添av毛片 | 丰满乱子伦码专区| 欧美高清成人免费视频www| 中文字幕熟女人妻在线| 一本综合久久免费| 欧美成人性av电影在线观看| 内射极品少妇av片p| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区 | 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| www.999成人在线观看| 小蜜桃在线观看免费完整版高清| 欧美性感艳星| 国产精品一区二区三区四区免费观看 | 免费看日本二区| 一级a爱片免费观看的视频| 精品日产1卡2卡| 国产高清激情床上av| 99热这里只有精品一区| 一进一出好大好爽视频| 99热这里只有是精品50| АⅤ资源中文在线天堂| 少妇的逼水好多| 亚洲av不卡在线观看| 无遮挡黄片免费观看| 色av中文字幕| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 天堂√8在线中文| 午夜日韩欧美国产| 欧美一区二区亚洲|