• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2-Ti3C2 Composites with Pt Decoration as Efficient Photocatalysts for Ethylene Oxidation under Near Infrared Light Irradiation①

    2018-10-12 03:47:46ZHANGLiuXinPANXioYngWANGGungToLONGXiYIZhiGuo
    結構化學 2018年9期

    ZHANG Liu-Xin PAN Xio-Yng WANG Gung-To LONG Xi YI Zhi-Guo, c

    ?

    TiO2-Ti3C2Composites with Pt Decoration as Efficient Photocatalysts for Ethylene Oxidation under Near Infrared Light Irradiation①

    ZHANG Liu-Xiana, bPAN Xiao-Yangb②WANG Guang-Taoa②LONG XiabYI Zhi-Guob, c②

    a(453007)b(350002)c(100049)

    Efficient utilization of solar energy is highly desirable in the field of photocatalysis.However, the near-infrared part of the solar spectrum, which constitutes about 44% of sunlight, has rarely been used.Herein, we report that the TiO2coupled with MXene Ti3C2nanosheets shows promising photoactivity for ethylene oxidation under near infrared light (NIR) irradiation.Moreover, the Pt nanoparticle decoration can dramatically improve the performance of TiO2–Ti3C2nanocomposites.Within 15 minutes irradiation of the NIR light, 444 ppm of C2H4is completely removed over 1wt%Pt–TiO2–Ti3C2and the catalyst exhibits excellent stability.It is expected that our work could provide useful information for the design and synthesis of efficient and stable NIR active photocatalyst for the target applications.

    MXene, layered Ti3C2, plasmonic, ethylene degradation, NIR photocatalysis;

    1 INTRODUCTION

    Since the discovery of water splitting on TiO2electrode by Fujishima and Honda[1], the efficient utilization of solar light for photocatalysis has gained significant interest[2].TiO2, as the most promising photocatalyst, has been widely studied in the field of photocatalysis because of its outstanding physicoche- mical properties, such as earth abundance, nontoxi- city, chemical and thermal stability, and resistance to photocorrosion[3, 4].However, due to the wide band gap of TiO2, it can only be activated under UV light irradiation[5, 6].Therefore, numerous strategies have been adopted to modify TiO2for the utilization of visible light, such as surface modification[7], doping of metal[8-10]or nonmetal elements[11-14], and combi- nation with narrow band gap semiconductors[15-17].Compared with reformative methods to activate TiO2under visible light irradiation, studies aimed at utilizing near-infrared (NIR) light for photocatalytic application, which constitutes about 44% of sunlight, are rather rare.Recently, up-conversion materials have been used to transform the NIR light into UV light to activate the TiO2under NIR light irradia- tion[18-20].However, the up-conversion photocatalysts have low photocatalytic efficiency and are difficult to prepare[18-20].In addition, carbon quantum dots[21]and Bi2WO6[22]have also been coupled with TiO2and these composite photocatalysts show promising photoactivities both under UV, visible and NIR light irradiation for dyes degradation in liquid phase.However, these catalysts still exhibit limited effi- ciency under NIR light irradiation.Therefore, it is still a challenge to prepare effective NIR photoca- talyst with high stability.

    The recent and rapid development of surface plasmon resonance (SPR) mediated photocatalysis by noble metal-based composites has offered a new opportunity to overcome the limited efficiency of photocatalysts[23, 24].The SPR-induced charge transfer enables the effective harvesting of visible or even near-infrared (NIR) light to drive useful reaction processes, such as the decomposition of organic contaminants[25], and water splitting[26].Besides noble metals, it is also found that the two-dimensional Ti3C2shows strong absorption of NIR irradiation owing to the SPR effect of Ti3C2nanosheets[27-29].As the most widely studied MXene, Ti3C2has stimulated research enthusiasm because of their excellent structural stability, high electrical conductivity, and hydrophilicity[30-33], which can be obtained by selectively etching and exfoliating of Ti3AlC2powders with HF[34, 35].These fascinating properties lead to important applications, such as electrodes in lithium(Li)-ion batteries[36,37], supercapacitors[38], electrochemical biosensors[39], adsorbents[40, 41], hydrogen storage media[42, 43], catalyst supports[44-46], additives[47, 48], and many others[49-52].However, as a promising catalyst, Ti3C2has rarely been used in the field of photocatalysis.

    Herein, we demonstrate that Ti3C2coupled with TiO2can be used as a promising photocatalyst for ethylene oxidation under NIR light irradiation.Moreover, Pt nanoparticles decoration on the surface of TiO2–Ti3C2nanocomposites, i.e., the resultant Pt–TiO2–Ti3C2hybrids, could further improve the photoactivities for C2H4oxidation, which is also stable under long-term operation.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    Titanium aluminum carbide (98%, 200 mesh) was purchased from Forsman Scientific (Beijing) Co., Ltd.Hydrofluoric acid (HF, 40%), copper nitrate hydrate (Cu(NO3)2·3H2O), dibasic sodium phosphate (Na2HPO4), sodium sulfate (Na2SO4), and anhydrous ethanol (EtOH) were purchased from Sinopharm chemical regent Co., Ltd.(Shanghai, China).Deioni- zed water was supplied from local sources.All reagents and materials involved were used as received without further purification.

    2.2 Synthesis of Ti3C2

    The MXene-Ti3C2used in this study was synthe- sized as follows: Firstly, 0.3 g of Ti3AlC2powder was dispersed in 20 mL of 40% HF aqueous solution.Then the suspension was kept at 30 ℃under constant stirring for specific time period[35, 36].Subse- quently, the suspension was washed for several times using deionized water and centrifuged to get rid of the residual HF.After that, the products were dispersed in ethanol and subjected to strong ultro-sonication for 3 h and centrifugated at 4000 r.p.m.for 30 min.Finally, the powders were dried in an oven at 60 ℃ overnight.

    2.3 Synthesis of TiO2–Ti3C2

    The TiO2–Ti3C2nanocomposite was prepared by using the same procedure as the Ti3C2excepting that the reaction temperature was kept at 40 ℃ for 16 h.

    2.4 Synthesis of Pt decorated TiO2–Ti3C2

    Typically, 0.5 g of the as-synthesized TiO2–Ti3C2was added to 100 mL of deionized water with constant stirring to form a stable suspension.Then, the H2PtCl6(0.154 M) was added dropwise to the above suspension.Subsequently, the solution was heated to 80 ℃ in an oil bath under magnetic stirring for 7 h to achieve homogeneous dispersion of Pt ion precursors on the support.The obtained inky slurry was then dried in an oven at 80 ℃ for 24 h.Finally, the black powders were sintered at 300 ℃ for 1 h under H2atmosphere.

    2.5 Synthesis of Cu2(OH)PO4

    Cu2(OH)PO4microcrystals were prepared by a hydrothermal method in which stoichiometric amounts of Cu(NO3)2·3H2O and Na2HPO4were mixed into deionized water (60 mL) under constant stirring for 1 h[53].Then the suspension was trans- ferred into a 100 mL sealed Teflon-lined autoclave and followed by hydrothermal treatment at 120 ℃ for 6 h.The sample was collected by filtration, then thoroughly washed with deionized water, and finally dried in an oven at 60 ℃ for 12 h.

    2.6 Sample characterization

    Phase identification of the as-prepared samples was analyzed using X-ray diffraction (XRD) equip- ment (Rigaku Miniflex II) with Curadiation (= 0.154178 nm).The optical properties of the samples were characterized on a Perkin Elmer Lambda 900 UV/VIS/NIR spectrometer employing BaSO4as the internal reflectance sample.The spectra were recor- ded in the range from 200 to 1200 nm at ambient temperature in air atmosphere.A field-emission scanning electron microscopy (JSM-6700F) and transmission electron microscope (JUM-2010, FEI, Tecnia G2 F20 FEG TEM) were used to identify the morphology and microscopic structure of the as- synthesized samples.X-ray photoelectron spectro- scopy (XPS) measurements were carried out on a Phi Quantum 2000 spectrophotometer with Alradiation (1486.6 eV).

    2.7 Photoelectrochemical measurements

    The photoelectrochemical analysis was carried out in a conventional three-electrode cell.Ag/AgCl electrode was used as the reference electrode and Pt electrode as the counter electrode.Fluoride-tin oxide (FTO) glass was used to prepare the working electrode, which was firstly cleaned by ultrasound in ethanol for 30 min and dried at 80 ℃.The sample powders (10 mg) were ultrasonicated in 1 mL anhydrous ethanol to obtain evenly dispersed slurry.Then, the slurry was spread onto the FTO glass whose side part was protected in advance using Scotch tape.The working electrode was dried overnight under ambient conditions.A copper wire was connected to the side part of the working electrode using a conductive tape.Uncoated parts of the electrode were isolated with epoxy resin.The exposed area of the working electrode was 0.25 cm2.The photocurrent measurements were performed in a homemade three electrode quartz cell with a CHI 660D workstation under NIR light irradiation.The electrolyte was 0.2 M aqueous Na2SO4solution (pH = 6.8) without additive.

    2.8 Photocatalytic activity test

    The photocatalytic properties of the as-obtained samples were evaluated by measuring the degrada- tion of ethylene at atmospheric pressure in a custom- modified Pyrex reaction cell (volume: 450 mL) (Fig.S1).A 250 W infrared lamp was used as the infrared light source where the< 700 nm was filtered out during NIR light photocatalysis (Fig.S2).In a typical fixed-bed reaction: First, 0.4 g of photocatalyst was spread uniformly on the bottom of the reactor.Then, 200 μL of C2H4was injected into the reactor by micro-syringe.Prior to photo-irradiation, the reaction system was placed in the dark for 1 h to attain the adsorption-desorption equilibrium between the C2H4gas and the surface of the catalyst in the reactor.Then, the reactor was irradiated by a NIR light.At a certain time interval, 4 mL of gas was sampled from the reactor and the amount and type of gases were analyzed by a gas chromatograph (GC 9720 Fuli) equipped with a HP-plot/U capillary column, a molecular sieve 13X column, a flame ionization detector (FID) and a thermal conductivity detector (TCD).In a typical flow-bed reaction (Fig.S3), 0.6 g photocatalysts were firstly filled in the flow-bed pyrex reactor, and then the mixed gas consisting of 120 ppm C2H4, 78.9% N2and 21.1% O2was flowed through the photocatalysts and analyzed directly by the gas chromatograph (GC 9720 Fuli).The reactor was illuminated using the 250 W infrared lamp during the photoreactions.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of photocatalysts

    Fig.1a shows the formation of MXene Ti3C2.Briefly, when treating Ti3AlC2in HF aqueous solution, HF would selectively dissolve the Al species and produce exfoliated Ti3C2with an accordion-like architecture.Simultaneously, the Ti3C2layers are passivated with OH and F termi- nations.Fig.1b displays the XRD patterns of Ti3AlC2powders before and after HF treatment for different time period.The elimination of the strongest diffraction (104) peak of Ti3AlC2reveals the loss of Al element after HF treatment[34, 35, 47, 54].Simultaneously, the obvious shift of the (002) X-ray diffraction (XRD) peak at 9.8o to low angle direction indicates the occurrence of intercalation and delamination processes, as Al is replaced by OH and F elements[34].

    Fig.1. (a) Schematic illustration of exfoliation process for Ti3AlC2; (b) XRD patterns of Ti3AlC2before and after being etched in HF solution for different time; (c~f) SEM images of Ti3AlC2before (c) and after HF treatment for 8 h (d), 16 h (e), and 20 h (f)

    To explore the morphology changes of Ti3AlC2before and after HF treatment, SEM analysis is utilized.Fig.1c shows a typically dense layered structure of initial Ti3AlC2particle.Most of Ti3AlC2layer begins to separate after being immersed in HF solution for 8 h at 30 ℃ (Fig.1d), which is in accordance with the previously reported study[55].With the increase of treatment time, the continuous removal of Al causes further delamination, which makes the stacked sheets become thinner.As shown in Fig.1e, it can be seen that the Ti3C2is composed of lots of nanosheets and the thickness is 30 ± 10 nm.Energy dispersive spectroscopy (EDS) spectrum analysis further shows that the resultant product was composed mainly of Ti and C and a small amount of O and F (little Al) elements, which is attributed to the replacement of Al layers with OH and F (Fig.S4).These nanosheets stack together like papers with unequal spacing.At this stage, the Ti3C2layers are presumably joined together only by weak van der Waals or hydrogen forces, as demonstrated by recent study[56].However, the Ti3C2nanosheets become seriously fractured after prolonging the reaction time for 20 h, as shown in Fig.1f.Therefore, the Ti3C2obtained after HF treatment for 16 h is used for further application.Fig.S5 shows the X-ray photoelectron spectroscopy (XPS) analysis of Ti3C2.As shown in Fig.S5a, the Ti 2components of Ti3C2centered at 454.8, 455.7 and 457.2eV can be assigned as Ti–C bond, Ti–C(<1) or titanium oxycarbides, and Ti ions with reduced charge state (TiO), respectively.The C 1spectrumof the Ti3C2is fitted by five components located at 281.7, 282.2, 284.8, 286.2, and 288.6 eV, corresponding to C–Ti, C–Ti–O, C–C/C–H, C–O, and C–F bonds, respec- tively (Fig.S5b).The presence of TiOindicates that the Ti3C2is partially oxidized under this condition, although the presence of TiOcould not be detected by the XRD analysis.

    The TiO2–Ti3C2nanocomposite was prepared by the same procedure as that of Ti3C2and the reaction temperature is increased to 40 ℃.The increase of reaction temperature would result in the partial dissolution of Ti3C2.As a result, the low valence state titanium ions are obtained and further oxidized by the dissolved O2to form Ti4+ions.Subsequently, the Ti4+ions are hydrolyzed in the presence of water to form TiO2.As shown in Fig.2, TiO2–Ti3C2shows new diffraction peak at 25.4o, which can be ascribed to the (101) peak of anatase TiO2.The gravimetric study shows that the formation of TiO2on Ti3C2results in the increase mass of TiO2–Ti3C2as compared to Ti3C2(Table S1).The EDS analysis shows that the atomic ratio of C to F element in TiO2–Ti3C2is obviously decreased while the atomic ratio of Ti to O content is relatively increased (Table S2).These results further confirm the formation of TiO2–Ti3C2nanocomposite.

    Fig.2. XRD patterns of the as-synthesized samples

    Pt–TiO2–Ti3C2nanocomposites are further pre- pared by treating the mixture of TiO2–Ti3C2and H2PtCl6under H2atmosphere.No characteristic diffraction peaks are detected for Pt species in the XRD pattern of Pt–TiO2–Ti3C2nanocomposites owing to the high dispersion and low loading amount of Pt nanoparticles (Fig.2).The X-ray photoelectron spectroscopy (XPS) analysis reveals that most of Pt in 1wt%Pt–TiO2–Ti3C2is in the metallic state (Fig.S6a).As shown in Fig.S6b, the Ti 2components of 1wt%Pt–TiO2–Ti3C2centered at 454.8, 455.7, 457.2 and 459 eV can be assigned as Ti–C bond, Ti–C(<1) or titanium oxycarbides, Ti ions with reduced charge state (TiO) and TiO2, respectively[52, 57].The C 1spectrum of 1wt%Pt– TiO2–Ti3C2is fitted by five components located at 281.7, 282.2, 284.8, 286.2, and 288.6 eV, corres- ponding to C–Ti, C–Ti–O, C–C/C–H, C–O, and C–F bonds, respectively (Fig.S6c)[52, 57].

    Fig.3 shows the UV/Vis/NIR diffusive-reflectance spectra (DRS) of the as-synthesized photocatalysts.The results indicate that Ti3C2is excellent absorber over a very broad photo-irradiation range that covers ultraviolet, visible, and infrared region, consistent with the previously reported studies[27].When decorated by TiO2, the absorption in visible region decreases obviously; at the same time, the absorption in the region of 930~1200 nm increases compared to pure Ti3C2.Moreover, the Pt decoration further enhances the absorption intensity in the UV, visible and NIR region.The intense absorption implies that a high utilization efficiency of solar energy would be feasible.

    Fig.3. UV-Vis/NIR diffuse reflectance spectra of the samples

    The morphology of 1wt%Pt–TiO2–Ti3C2was characterized by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.The SEM image shows that the Pt–TiO2– Ti3C2exhibits the similar shape as TiO2–Ti3C2(Fig.S7a).The TEM image depicted in Fig.4a, b shows that the Pt nanoparticles have an average size of ~8 nm, which are distributed uniformly on the TiO2– Ti3C2surface.This assignment is also confirmed by SEM-elemental mapping analysis (Figs.S7b~S7d).The district lattice spacing of 1.0 and 0.36 nm can also be observed on the sample, which can be ascri- bed to the (002) facets of Ti3C2and (101) planes of TiO2, respectively (Fig.4b).

    3.2 Photocatalytic degradation of C2H4

    The performance of the samples is investigated by photocatalytic oxidation of ethylene under near infrared (NIR) light irradiation.The blank experi- ments without photocatalyst or light irradiation show no photoactivities, suggesting that this reaction is truly driven by the photocatalytic process.For com- parison purpose, a typical NIR photocatalyst Cu2(OH)PO4[53]is prepared (Fig.S8) and its perfor- mance for C2H4oxidation is investigated.It is found that Cu2(OH)PO4is completely inactive for C2H4oxidation under NIR light irradiation (Fig.5a).In distinct contrast, the Ti3C2exhibits moderate photo- catalytic activity for C2H4oxidation under NIR light irradiation (Fig.5a).With TiO2decoration, TiO2– Ti3C2shows obviously improved photoactivity for C2H4oxidation.Dramatic activity increase was observed after the TiO2–Ti3C2sample was decorated with Pt nanoparticles.In particular, the 1wt%Pt– TiO2–Ti3C2composite shows the best photoactivity among the Pt–TiO2–Ti3C2composites (Fig.5b).Within 15 min, 444 ppm of C2H4was completely removed under NIR light irradiation.More impor- tantly, 1wt%Pt–TiO2–Ti3C2composite shows better catalytic performance than that of 1wt%Pt–Ti3C2(Fig.5b).The controlled experiment indicates that 1wt%Pt–TiO2–Ti3C2composite shows no catalytic activity when the reaction system is saturated with N2.This result indicates that the molecular oxygen is the primary oxidant for ethylene oxidation.In addition, we also found that the 1wt%Pt–TiO2–Ti3C2composite shows better catalytic performance when the water vapor is removed from the reaction system (Fig.S9).The turn over number of 1wt%Pt–TiO2– Ti3C2for photocatalytic ethylene oxidation is calculated to be 2.24 > 1 (Fig.S10), indicating that this reaction is truly driven by a catalytic process.

    Fig.4. TEM image (a) and HRTEM image (b) of the 1wt%Pt–TiO2–Ti3C2

    Fig.5. (a) Photocatalytic activity of Cu2(OH)PO4, Ti3C2and TiO2–Ti3C2towards the ethylene oxidation under NIR light irradiation; (b) Photocatalytic degradation of ethylene over the photocatalyst in a fixed-bed mode under NIR light irradiation

    To examine the mineralization rate of ethylene oxidation, the flow mode test was further conducted as well.Before illumination, the reaction system was expelled by flowing N2.After that, the reaction gas consisting of 120 ppm ethylene, 78.9% N2and 21.1% O2was flowed through the 1wt%Pt–TiO2– Ti3C2samples and analyzed by gas chromatography (GC9720 Fuli).Fig.6 shows the time dependency of the C2H4oxidation over the 1wt%Pt–TiO2–Ti3C2catalyst under NIR light illumination in the flow mode experiment.Before turning on the light, the detected concentration of C2H4was 120 ppm and no CO2was detected.When the light was turned on, the concentration of C2H4decreased rapidly to ~4.2 ppm.Simultaneously, the concentration of CO2increased promptly to ~230.6 ppm.When the light was turned off, the amount of C2H4returned to the constant value, and in the meantime, the concen- tration of CO2rapidly decreased to zero.This result indicates that this reaction is truly driven by a photocatalytic process.The mineralization ratio of ethylene is determined to be ca.96.5% in this reaction.

    Fig.6. Photocatalytic C2H4degradation and CO2generation over the 1wt%Pt–TiO2–Ti3C2under NIR light irradiation in a flow mode

    The stability of the photocatalyst is also investiga- ted.As shown in Fig.7a, there is no obvious de- crease during ten successive recycling tests for the degradation of C2H4under NIR light irradiation.In addition, to learn if there is change in the crystal structure and surface composition after the photoca- talytic degradation of C2H4, we also characterized the fresh and used 1wt%Pt–TiO2–Ti3C2by XRD and XPS techniques.As shown in Fig.7b, the used 1wt%Pt–TiO2–Ti3C2has identical XRD patterns as compared to the fresh 1wt%Pt–TiO2–Ti3C2, implying no significant change occurred in the crystal structure of the sample after photocatalytic reaction.Further- more, we found that the Ti3C2is partially oxidized after NIR light irradiation at ambient temperature, which can be evidenced by XPS analysis (Fig.S11).This could be explained by the moderate activity of Ti3C2on Fig.5a.In contrast, the 1wt%Pt–TiO2–Ti3C2composite is highly stable under the reaction condition, which indicates the beneficial effect of TiO2and Pt decoration on improving the stability of photocatalyst.The contrast XPS results of typical Pt 4, C 1and Ti 2spectra, as shown in Figs.7c~7d and Fig.S12, further demonstrate that the used 1wt%Pt–TiO2–Ti3C2has a similar composition to that of the fresh 1wt%Pt–TiO2–Ti3C2.Therefore, it is concluded that the as-prepared Pt–TiO2–Ti3C2is a stable photocatalyst for the degradation of ethylene under NIR light irradiation.

    To investigate the possible influence of tempera- ture on this reaction, we then conducted the C2H4oxidation over the TiO2–Ti3C2and 1wt%Pt–TiO2– Ti3C2composites under thermal condition.For TiO2–Ti3C2, the thermocatalytic reference experi- ment was carried out in the dark at 120 ℃.As shown in Fig.8a~8b, the TiO2–Ti3C2is completely inactive under this condition.This result confirms that the NIR photocatalytic property of TiO2–Ti3C2is attributed to the photocatalysis reaction rather than temperature effects.However, the 1wt%Pt–TiO2– Ti3C2shows obvious activity under thermal condition (Fig.8c~8d).The reaction rate increases with the increase of temperature.Note also 1wt%Pt–TiO2–Ti3C2exhibits weak UV light activity and strong visible light activity (Fig.S13).These results suggest that the ethylene oxidation over 1wt%Pt–TiO2–Ti3C2is driven by a photothermal catalytic process, in which photo and heat both contribute to the oxidation of C2H4.

    Fig.7. (a) Recycled testing of photocatalytic activity of the 1wt%Pt–TiO2–Ti3C2toward the ethylene oxidation under NIR light irradiation; (b) XRD patterns of the fresh and used 1wt%Pt–TiO2–Ti3C2sample; X-ray photoelectron spectra of Pt 4(c) and C 1(d) of 1wt%Pt–TiO2–Ti3C2before and after photocatalytic reaction

    Fig.8.(a) Temperature of the reaction system during the photoxidation of C2H4over TiO2–Ti3C2under NIR light irradiation; (b) Thermocatalytic degradation of ethylene over the TiO2–Ti3C2nanocomposite in the dark at 120 ℃; (c) Temperature of the reaction system during the photoxidation of C2H4over the 1wt%Pt–TiO2–Ti3C2under NIR light irradiation; (d) Thermocatalytic degradation of ethylene over the 1wt%Pt–TiO2–Ti3C2nanocomposite at different temperature

    Fig.9. Photocurrent responses of Ti3C2under NIR light irradiation

    Photoelectrochemical analysis is used to determine whether the electrons of plasmonic Ti3C2can be excited as other plasmonic materials.As shown in Fig.9, a distinct photocurrent was observed for Ti3C2under the irradiation of NIR light.This result demonstrates that the electrons of Ti3C2can be excited and applied to photocatalysis.With TiO2decoration, the photocurrent of Ti3C2decreases obviously (Fig.S14).This phenomenon has also been observed on the previous report[58].The decrease of photocurrent can be explained as follows: with the TiO2decoration, the photogenerated electrons can be preferentially transferred from Ti3C2to TiO2and then captured by O2rather than to the electrode.Therefore, the electrons are consumed and result in the decrease of photocurrent.

    Based on the above results, the possible reaction mechanism has been proposed in Fig.10.As irradia- ted by the NIR light, the electrons of plasmonic Ti3C2are excited and then transferred to Pt NPs and the conduct band (CB) of TiO2owing to the matched energy band structure.Subsequently, the electrons (e-) on Pt NPs and the conduction band of TiO2would react with the adsorbed oxygen (O2) to produce superoxide radical anion (O2-).Then the O2-radicals react with C2H4to yield CO2and H2O.In addition, the NIR light irradiation also increases the reaction temperature.As a result, the ethylene oxidation can also be proceeded via a thermocatalytic process on Pt nanoparticles.That is, the efficient performance of Pt–TiO2–Ti3C2can be ascribed to the synergistic effect of light and heat.

    Fig.10. Proposed reaction mechanism of C2H4oxidation over Pt–TiO2–Ti3C2under NIR light irradiation

    4 CONCLUSION

    In conclusion, we report that the TiO2coupled with MXene Ti3C2nanosheets shows promising photodegradation activity of ethylene under NIR light irradiation.The Pt nanoparticle decoration can greatly enhance the photocatalytic performance of TiO2–Ti3C2nanocomposite.Within 15 min, 444 ppm of ethylene was completely oxidized over 1wt%Pt– TiO2–Ti3C2under NIR light irradiation and the catalyst is stable under long-term operation.This study is expected to provide useful information for the design and synthesis of NIR active photocatalyst and extend the application of MXene.

    (1) Fujishima, A.; Honda, K.Electrochemical photolysis of water at a semiconductor electrode1972, 238, 37-38.

    (2) Hoffmann, M.R.;Martin, S.T.;Choi, W.; Bahnemann, D.W.Environmental applications of semiconductor photocatalysis.1992, 95, 69-96.

    (3) Chen, X.B.; Mao, S.S.Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.2007, 107, 2891-2959.

    (4) Linsebigler, A.L.; Lu, G.Q.; Yates, J.T.Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results1995, 95, 735-758.

    (5) Nikitenko, S.I.; Chave, T.; Cau, C.; Brau, H.P.; Flaud, V.Photothermal hydrogen production using noble-metal-free Ti@TiO2core-shell nanoparticles under visible-NIR light irradiation.2015, 5, 4790-4795.

    (6) Pan, X.Y.; Yang, M.Q.; Fu, X.Z.; Zhang, N.; Xu, Y.J.Defective TiO2with oxygen vacancies: synthesis, properties and photocatalytic applications2013, 5, 3601-14.

    (7) Zhang, L.W.; Fu, H.B.; Zhu, Y.F.Efficient TiO2photocatalysts from surface hybridization of TiO2particles with graphite-like carbon2008, 18, 2180-2189.

    (8) Pan, X.Y.; Chen, X.X.; Yi, Z.G.Defective, porous TiO2nanosheets with Pt decoration as an efficient photocatalyst for ethylene oxidation synthesized by a C3N4templating method.2016, 8, 10104-10108.

    (9) Sakthivel, S.; shankarb, M.V.; Palanichamyb, M.; Arabindoob, B.; Bahnemanna, D.W.; Murugesanb, V.Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2catalyst2004, 38, 3001-8.

    (10) Choi, W.Y.; Termin, A.; Hoffmann, M.R.Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2particles1994, 33, 1091-1092.

    (11) Park, J.H.; Kim, S.; Bard, A.J.Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting.2006, 6, 24-28.

    (12) Shahed, U.; Mofareh, A.Efficient photochemical water splitting by a chemically modified n-TiO22002, 297, 2243-2245.

    (13) Burda, C.; Lou, Y.B.; Chen, X.B.; Stout, J.; Gole, J.L.Enhanced nitrogen doping in TiO2nanoparticles2003, 3, 1049-1051.

    (14) Chen, X.; Lou, Y.B.; Samia, A.; Burda, C.; Gole, J.L.Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder.2005, 15, 41-49.

    (15) Su, K.; Ai, Z.H.; Zhang, L.Z.Efficient visible light-driven photocatalytic degradation of pentachlorophenol with Bi2O3/TiO2-xB.2012, 116, 17118-17123.

    (16) Wu, L.; Yu, J.C.; Fu, X.Z.Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2nanocrystals under visible light irradiation.2006, 244, 25-32.

    (17) Li, G.S.; Zhang, D.Q.; Yu, J.C.A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2.2009, 43, 7079-7085.

    (18) Chang, J.; Ning, Y.H.; Wu, S.L.; Niu, W.B.; Zhang, S.F.Effectively utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2photoanode in dye-sensitized solar cells.2013, 23, 5910-5915.

    (19) Tang, Y.; Di, W.H.; Zhai, X.S.; Yang, R.Y.; Qin, W.P.NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2core-shell nanoparticles2013, 3, 405-412.

    (20) Wu, X.Y.; Yin, S.; Dong, Q.; Liu, B.; Wang, Y.H.; Lee, S.W.; Sato, T.UV, visible and near-infrared lights induced NOdestruction activity of (Yb, Er)-NaYF4/C-TiO2composite.2013, 3, 2918.

    (21) Tian, J.; Leng, Y.H.; Zhao, Z.H.; Xia, Y.; Sang, Y.H.; Hao, P.; Zhan, J.; Li, M.C.; Liu, H.Carbon quantum dots/hydrogenated TiO2nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation2015, 11, 419-427.

    (22) Tian, J.; Sang, Y.H.; Yu, G.W.; Jiang, H.D.; Mu, X.; Liu, H.A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation.2013, 25, 5075-80.

    (23) Linic, S.; Christopher, P.; Ingram, D.B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy2011, 10, 911-21.

    (24) Hutter, E.; Fendler, J.H.Exploitation of localized surface plasmon resonance2004, 16, 1685-1706.

    (25) Liu, L.Q.; Ouyang, S.X.; Ye, J.Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance..2013, 52, 6689-93.

    (26) Zheng, Z.; Tachikawa, T.; Majima, T.Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region.2014, 136, 6870-6873.

    (27) Chaudhuri, K.; Alhabeb, M.; Boltasseva, A.Plasmonic resonances in nanostructured MXene highly broadband absorber.2017.

    (28) Mauchamp, V.; Bugnet, M.; Bellido, E.P.; Botton, G.A.; Moreau, P.; Magne, D.; Naguib, M.; Barsoum, M.W.Enhanced and tunable surface plasmons in two-dimensional Ti3C2stacks: Electronic structure versus boundary effects.2014, 89.

    (29) Lin, H.; Wang, X.G.; Yu, L.D.; Chen, Y.; Shi, J.L.Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion2017,17, 384-391.

    (30) Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.; Gogotsi, Y.; Barsoum, M.W.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance2014, 516, 78-81.

    (31) Ran, J.R.; Gao, G.P.; Li, F.T.; Ma, T.Y.; Du, A.J.; Qiao, S.Z.Ti3C2MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production.2017, 8, 1-10.

    (32) Naguib, M.; Machalin, V.N.; Barsoum, M.W.; Gogotsi, Y.25th anniversary article: MXenes: a new family of two-dimensional materials2014, 26, 992-1005.

    (33) Lei, J.C.; Zhang, X.; Zhou, Z.Recent advances in MXene: preparation, properties, and applications.2015, 10, 276-286.

    (34) Naguib, M.; Gogotsi, Y.; Barsoum, M.W.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.2011, 23, 4248-53.

    (35) Mashtalir, O.; Naguibab, M.; Dyatkinab, B.; Gogotsiab, Y.; Barsouma, M.W.Kinetics of aluminum extraction from Ti3AlC2in hydrofluoric acid2013, 139, 147-152.

    (36) Tang, Q.; Zhou, Z.; Shen, P.Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2and Ti3C2X(X = F, OH) monolayer.2012, 134, 16909-16916.

    (37) Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Heon, M.; Barsoum, M.W.; Gogotsi, Y.Intercalation and delamination of layered carbides and carbonitrides2013, 4, 1-7.

    (38) Lukatskaya, M.R.; Mashtalir, O.; Ren, C.; Rozier, P.; Tabern, P.L.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.2013, 341, 1502-1505.

    (39) Wang, F.; Yang, C.H.; Duan, C.Y.; Xiao, D.; Tang, Y.; Zhu, J.F.An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor.2014, 162, 16-21.

    (40) Mashtalir, O.; Cook, K.M.; Crowe, M.; Barsoum, M.W.; Gogotsi, Y.Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media.2014, 2, 14334-14338.

    (41) Peng, Q.M.; Guo, J.X.; Zhang, Q.R.; Xiang, J.Y.; Liu, B.Z.; Zhou, A.G.; Liu, R.P.; Tian, Y.J.Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide2014, 136, 4113-4116.

    (42) Hu, J.K.; Sun, D.D.; Wu, Q.H.; Wang, H.Y.; Wang, L.; Liu, B.Z.; Zhou, A.G.; He, J.L.MXene: a new family of promising hydrogen storage medium2013, 117, 14253-60.

    (43) Hu, Q.K.; Wang, H.Y.; Wu, Q.H.; Ye, X.T.; Zhou, A.G.Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations2014, 39, 10606-10612.

    (44) Li, X.J.; Fan, G.Y.; Zeng, C.M.Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride.2014, 39, 14927-14934.

    (45) Xie, X.H.; Chen, S.G.; Ding, W.; Nie, Y.; Wei, Z.D.An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2Xx(X = OH, F) nanosheets for oxygen reduction reaction.2013, 49, 10112-10114.

    (46) Gao, Y.P.; Wang, L.B.; Li, Z.Y.; Zhou, A.G.; Hu, Q.K.; Gao, X.X.Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate.2014, 35, 62-65.

    (47) Yang, J.; Chen, B.B.; Song, H.J.; Tang, H.; Li, C.S.Synthesis, characterization, and tribological properties of two-dimensional Ti3C22014, 49, 926-932.

    (48) Zhang, X.H.; Xue, M.Q.; Yang, X.H.; Wang, Z.P.; Luo, G.S.; Huang, Z.D.; Sui, X.L.; Li, C.S.Preparation and tribological properties of Ti3C2(OH)2nanosheets as additives in base oil.2015, 5, 2762-2767.

    (49) Ma, Z.N.; Hu, Z.P.; Zhao, X.D.; Tang, Q.; Wu, D.H.; Zhou, Z.; Zhang, L.X.Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer.2014, 118, 5593-5599.

    (50) Chen, J.; Chen, K.; Tong, D.Y.; Huang, Y.J.; Zhang, J.W.; Xue, J.M.; Huang, Q.; Chen, T.CO2and temperature dual responsive "Smart" MXene phases.2015, 51, 314-317.

    (51) Lee, Y.; Hwang, Y.; Chung, Y.Achieving type I, II, and III heterojunctions using functionalized MXene.2015, 7, 7163-9.

    (52) Peng, C.; Yang, X.F.; Li, Y.H.; Yu, H.; Wang, H.J.; Peng, F.Hybrids of two-dimensional Ti3C2and TiO2exposing {001} facets toward enhanced photocatalytic activity2016, 8, 6051-60.

    (53) Wang, G.; Huang, B.B.; Ma, X.C.; Wang, Z.Y.; Qin, X.Y.; Zhang, X.Y.; Dai, Y.; Whangbo, M.Cu2(OH)PO4, a near-infrared-activated photocatalyst2013, 52, 4810-3.

    (54) Feng, A.H.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L.X.Two-dimensional MXene Ti3C2produced by exfoliation of Ti3AlC2.2017, 114, 161-166.

    (55) Chang, F.Y.; Li, C.S.; Yang, J.; Tang, H.; Xue, M.Q.Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2.2013, 109, 295-298.

    (56) Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Tabernac, P.; Simonc, P.; Barsouma, M.W.; Gogotsiab, Y.MXene: a promising transition metal carbide anode for lithium-ion batteries2012, 16, 61-64.

    (57) Peng, C.; Wang, H.J.; Yu, H.; Peng, F.(111) TiO2-x/Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+doping for enhance photocatalytic activity.2017, 89, 16-25.

    (58) Huang, S.Q.; Xu, Y.G.; Liu, Q.Q.; Zhou, T.; Zhao, Y.; Jing, L.Q.; Xu, H.; Li, H.M.Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts.2017, 218, 174-185.

    15 January 2018;

    29 March 2018

    ① Financially supported by the National Natural Science Foundation of China (No.21607153, 21373224 and 21577143), the Natural Science Foundation of Fujian Province (No.2015J05044 and 2017J05031), the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No.QYZDB-SSW-JSC027)

    Pan Xiao-Yang, E-mail: xypan@fjirsm.ac.cn; Wang Guang-Tao, E-mail: wangtao@henannu.edu.cn; Yi Zhi-Guo, E-mail: zhiguo@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1950

    亚洲av一区综合| 美女脱内裤让男人舔精品视频| 国产成人精品一,二区| 亚洲一区高清亚洲精品| 18禁裸乳无遮挡免费网站照片| 视频中文字幕在线观看| 日韩av免费高清视频| 少妇丰满av| 亚洲乱码一区二区免费版| 人体艺术视频欧美日本| 国产成人freesex在线| 精品一区二区三卡| 国产一区有黄有色的免费视频 | 国产探花在线观看一区二区| 国产乱人偷精品视频| 三级毛片av免费| 婷婷色综合www| 亚洲aⅴ乱码一区二区在线播放| 精品一区在线观看国产| 天堂√8在线中文| 国产精品av视频在线免费观看| 中文字幕av成人在线电影| av福利片在线观看| 十八禁网站网址无遮挡 | 国产日韩欧美在线精品| 欧美 日韩 精品 国产| 天堂俺去俺来也www色官网 | 乱码一卡2卡4卡精品| 国产乱人偷精品视频| 九九爱精品视频在线观看| 亚洲精品456在线播放app| 国产麻豆成人av免费视频| 亚洲国产精品成人久久小说| 久久午夜福利片| 一个人观看的视频www高清免费观看| 天堂√8在线中文| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久国产电影| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩卡通动漫| 欧美日韩视频高清一区二区三区二| 精品一区在线观看国产| 我要看日韩黄色一级片| 男女边吃奶边做爰视频| 2018国产大陆天天弄谢| 亚洲av免费在线观看| 久久久久久伊人网av| 亚洲国产精品专区欧美| 久久精品国产自在天天线| 精品人妻视频免费看| 国产三级在线视频| 亚洲熟女精品中文字幕| 亚洲熟女精品中文字幕| 婷婷色综合大香蕉| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 婷婷色综合大香蕉| 国产精品一及| 国产一区二区三区av在线| 日韩一本色道免费dvd| 熟女电影av网| 老司机影院毛片| 亚洲成色77777| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 欧美激情国产日韩精品一区| 国产亚洲精品av在线| 国产伦一二天堂av在线观看| 80岁老熟妇乱子伦牲交| 午夜免费男女啪啪视频观看| 国产激情偷乱视频一区二区| 国产午夜精品一二区理论片| 精品不卡国产一区二区三区| 国产亚洲精品av在线| 久久久久久久久久成人| 日本熟妇午夜| 白带黄色成豆腐渣| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久电影| 最近中文字幕2019免费版| 在线a可以看的网站| 精品酒店卫生间| av天堂中文字幕网| 国产精品一区二区性色av| 中文天堂在线官网| 国产精品1区2区在线观看.| 国产老妇女一区| 人体艺术视频欧美日本| av.在线天堂| 国产av码专区亚洲av| 精品酒店卫生间| 女人久久www免费人成看片| 亚洲在久久综合| 免费无遮挡裸体视频| 亚洲成人av在线免费| 老司机影院毛片| 国产av码专区亚洲av| 国产一级毛片七仙女欲春2| 欧美精品一区二区大全| 日韩一本色道免费dvd| 亚洲乱码一区二区免费版| 最新中文字幕久久久久| 日韩中字成人| 国内揄拍国产精品人妻在线| 久久久久久伊人网av| 亚洲熟妇中文字幕五十中出| 国产av不卡久久| 亚洲欧洲日产国产| 深爱激情五月婷婷| 69人妻影院| 美女内射精品一级片tv| 午夜爱爱视频在线播放| 久久99热6这里只有精品| 特大巨黑吊av在线直播| 精品久久久久久成人av| 中文在线观看免费www的网站| 大又大粗又爽又黄少妇毛片口| 亚洲人成网站在线观看播放| 国产又色又爽无遮挡免| 国产伦在线观看视频一区| 波野结衣二区三区在线| 午夜福利网站1000一区二区三区| 汤姆久久久久久久影院中文字幕 | 一级片'在线观看视频| 91久久精品国产一区二区三区| 青青草视频在线视频观看| 日本爱情动作片www.在线观看| 六月丁香七月| 成年人午夜在线观看视频 | 久久久a久久爽久久v久久| 久久这里有精品视频免费| 日韩成人伦理影院| 黄色一级大片看看| 免费观看在线日韩| 日韩av在线免费看完整版不卡| 自拍偷自拍亚洲精品老妇| av免费观看日本| 国产成人免费观看mmmm| 精品久久久久久久久av| 深爱激情五月婷婷| 亚洲国产最新在线播放| 乱系列少妇在线播放| 国产精品伦人一区二区| 老女人水多毛片| 日韩视频在线欧美| 不卡视频在线观看欧美| 色网站视频免费| 男人舔奶头视频| 国产不卡一卡二| 亚洲自偷自拍三级| 69人妻影院| 最近手机中文字幕大全| 亚洲欧美一区二区三区国产| 婷婷色av中文字幕| 国产乱人偷精品视频| 国产午夜精品一二区理论片| 久久久久国产网址| 国产精品久久久久久久电影| 免费av观看视频| 成年版毛片免费区| 国产成人精品久久久久久| 国产精品福利在线免费观看| 国产精品av视频在线免费观看| 亚洲国产欧美人成| 亚洲精品久久午夜乱码| 丰满少妇做爰视频| 国产精品一二三区在线看| 亚洲精品乱码久久久v下载方式| 成人综合一区亚洲| 熟妇人妻久久中文字幕3abv| 九九在线视频观看精品| 中文天堂在线官网| 九九久久精品国产亚洲av麻豆| 床上黄色一级片| 嫩草影院新地址| 久久国内精品自在自线图片| 99热6这里只有精品| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频 | 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 亚洲精品日韩av片在线观看| 久久久久久伊人网av| 乱人视频在线观看| 亚洲国产最新在线播放| 麻豆精品久久久久久蜜桃| 国产大屁股一区二区在线视频| 尾随美女入室| 日本免费在线观看一区| 久久国产乱子免费精品| 久久久久久久久久黄片| 一级毛片久久久久久久久女| 婷婷色综合www| 女人被狂操c到高潮| 日本一本二区三区精品| 日韩成人伦理影院| 日本-黄色视频高清免费观看| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av| 午夜亚洲福利在线播放| 禁无遮挡网站| 欧美 日韩 精品 国产| 一级毛片aaaaaa免费看小| 国产探花极品一区二区| 亚洲电影在线观看av| av播播在线观看一区| 高清av免费在线| 女人十人毛片免费观看3o分钟| 亚洲av免费高清在线观看| 欧美 日韩 精品 国产| 秋霞伦理黄片| 成年版毛片免费区| 日韩精品青青久久久久久| 亚洲综合色惰| 青青草视频在线视频观看| 日本欧美国产在线视频| 中文字幕制服av| 国产午夜精品一二区理论片| 在线a可以看的网站| av播播在线观看一区| 天堂√8在线中文| 亚洲国产最新在线播放| 国产单亲对白刺激| 日韩电影二区| 三级男女做爰猛烈吃奶摸视频| 国产三级在线视频| 国产成人精品婷婷| 69av精品久久久久久| 亚洲精品成人av观看孕妇| 亚洲三级黄色毛片| 国产成人精品福利久久| 午夜福利在线在线| xxx大片免费视频| 一区二区三区乱码不卡18| 欧美3d第一页| 久久久精品免费免费高清| 亚洲国产高清在线一区二区三| 日本午夜av视频| 国产精品精品国产色婷婷| 午夜福利视频1000在线观看| 18禁动态无遮挡网站| 亚洲丝袜综合中文字幕| 国产av码专区亚洲av| 亚洲av成人精品一二三区| 超碰av人人做人人爽久久| 中文乱码字字幕精品一区二区三区 | 亚洲三级黄色毛片| .国产精品久久| 少妇人妻一区二区三区视频| 国产一区二区亚洲精品在线观看| 丰满少妇做爰视频| 亚洲久久久久久中文字幕| 伊人久久精品亚洲午夜| 日韩一本色道免费dvd| 亚洲精品色激情综合| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品 | 五月伊人婷婷丁香| 激情五月婷婷亚洲| 亚洲四区av| av线在线观看网站| 日韩国内少妇激情av| 日产精品乱码卡一卡2卡三| 国产一区二区亚洲精品在线观看| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 尾随美女入室| 久久久午夜欧美精品| 国产成人精品婷婷| 午夜精品在线福利| 九九爱精品视频在线观看| 成人高潮视频无遮挡免费网站| 麻豆成人av视频| 在线观看av片永久免费下载| 日日撸夜夜添| 亚洲国产最新在线播放| 亚洲精品乱码久久久v下载方式| 国产午夜精品论理片| 日韩av在线免费看完整版不卡| 亚洲精品乱久久久久久| 欧美成人一区二区免费高清观看| 成人亚洲精品av一区二区| 麻豆成人av视频| 亚洲av中文av极速乱| 国国产精品蜜臀av免费| 男人和女人高潮做爰伦理| 色尼玛亚洲综合影院| 黄色一级大片看看| eeuss影院久久| 综合色丁香网| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 身体一侧抽搐| 日韩欧美三级三区| 久久国内精品自在自线图片| 直男gayav资源| 少妇高潮的动态图| 亚洲欧洲国产日韩| 性插视频无遮挡在线免费观看| 三级国产精品片| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 亚洲内射少妇av| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 1000部很黄的大片| 国产国拍精品亚洲av在线观看| 亚洲国产最新在线播放| 日日啪夜夜爽| 老司机影院毛片| 我的女老师完整版在线观看| av国产久精品久网站免费入址| 亚洲av电影不卡..在线观看| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 毛片一级片免费看久久久久| 高清毛片免费看| 欧美不卡视频在线免费观看| 日本午夜av视频| 日韩av在线大香蕉| 别揉我奶头 嗯啊视频| 国产探花极品一区二区| 婷婷色综合大香蕉| 欧美性感艳星| 国产乱来视频区| 18+在线观看网站| 日日啪夜夜撸| 噜噜噜噜噜久久久久久91| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 99热这里只有是精品在线观看| 高清视频免费观看一区二区 | 国内精品宾馆在线| 亚洲在线观看片| 亚洲精品aⅴ在线观看| 久久久国产一区二区| 久99久视频精品免费| 欧美潮喷喷水| 久久精品人妻少妇| 亚洲精品国产成人久久av| 久久久久性生活片| 亚洲在久久综合| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 国产av码专区亚洲av| 精品午夜福利在线看| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区| 日韩欧美精品v在线| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| 熟女电影av网| 一级片'在线观看视频| 国产麻豆成人av免费视频| 尾随美女入室| 欧美日韩精品成人综合77777| 一个人观看的视频www高清免费观看| 亚洲图色成人| 肉色欧美久久久久久久蜜桃 | 日韩大片免费观看网站| 精品一区二区三区视频在线| 赤兔流量卡办理| 日本色播在线视频| 18禁在线无遮挡免费观看视频| 中文在线观看免费www的网站| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 国产v大片淫在线免费观看| 国产精品一区二区在线观看99 | 在线 av 中文字幕| 99久久精品一区二区三区| av在线观看视频网站免费| 日本免费a在线| 高清毛片免费看| 亚洲电影在线观看av| 少妇的逼好多水| 日韩一区二区三区影片| 少妇熟女aⅴ在线视频| 草草在线视频免费看| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 国产久久久一区二区三区| 亚洲电影在线观看av| 97在线视频观看| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 国产男人的电影天堂91| 韩国av在线不卡| 成年版毛片免费区| 亚洲18禁久久av| 午夜激情欧美在线| 久久久久国产网址| 亚洲av.av天堂| 能在线免费观看的黄片| 免费看光身美女| 亚洲av免费在线观看| 99热这里只有是精品在线观看| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 深夜a级毛片| av国产久精品久网站免费入址| 久久久久久久久久人人人人人人| 日韩大片免费观看网站| 成人性生交大片免费视频hd| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 亚洲,欧美,日韩| 免费电影在线观看免费观看| 国产成人aa在线观看| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 国产人妻一区二区三区在| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 一级黄片播放器| 三级经典国产精品| 777米奇影视久久| 亚洲一区高清亚洲精品| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 亚洲人成网站在线播| 三级国产精品欧美在线观看| 舔av片在线| 亚洲av在线观看美女高潮| 久久精品人妻少妇| 毛片一级片免费看久久久久| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看| 搡女人真爽免费视频火全软件| 亚洲成人久久爱视频| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 国产一级毛片在线| av在线蜜桃| 久久6这里有精品| 免费观看精品视频网站| 亚洲精品成人久久久久久| 毛片女人毛片| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 蜜桃亚洲精品一区二区三区| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 日韩亚洲欧美综合| 少妇熟女aⅴ在线视频| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 成年女人看的毛片在线观看| 欧美日韩视频高清一区二区三区二| 精品久久久久久久久久久久久| 老司机影院毛片| 99九九线精品视频在线观看视频| 简卡轻食公司| 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 国产乱人偷精品视频| 中文欧美无线码| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| freevideosex欧美| 欧美成人一区二区免费高清观看| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 国产视频内射| 午夜福利在线观看免费完整高清在| 天美传媒精品一区二区| 精品久久久久久久人妻蜜臀av| 亚洲欧洲国产日韩| 色视频www国产| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 国产 亚洲一区二区三区 | 欧美xxxx性猛交bbbb| 99久久九九国产精品国产免费| 一级a做视频免费观看| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 三级毛片av免费| 国产精品久久久久久久电影| 日日干狠狠操夜夜爽| 欧美潮喷喷水| 最近最新中文字幕免费大全7| 免费看日本二区| 日韩av在线免费看完整版不卡| 婷婷色综合www| 人妻制服诱惑在线中文字幕| 成人特级av手机在线观看| av在线老鸭窝| 日韩精品有码人妻一区| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 丰满少妇做爰视频| 特级一级黄色大片| 久久久精品欧美日韩精品| 成人综合一区亚洲| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 国产亚洲av嫩草精品影院| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 亚洲伊人久久精品综合| 亚洲一区高清亚洲精品| ponron亚洲| 日本欧美国产在线视频| 99久久九九国产精品国产免费| 18禁在线播放成人免费| av专区在线播放| av又黄又爽大尺度在线免费看| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 两个人视频免费观看高清| 免费av观看视频| 国产精品一及| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 能在线免费观看的黄片| 两个人的视频大全免费| videossex国产| 成人亚洲精品一区在线观看 | 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 久久6这里有精品| 亚洲最大成人中文| 国产黄色小视频在线观看| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 免费观看精品视频网站| 亚洲18禁久久av| 久久久a久久爽久久v久久| 搡女人真爽免费视频火全软件| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 午夜精品在线福利| 午夜福利在线观看免费完整高清在| 一本久久精品| 国产老妇女一区| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 一级毛片我不卡| 夫妻性生交免费视频一级片| 国精品久久久久久国模美| 成人高潮视频无遮挡免费网站| 免费大片18禁| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 美女被艹到高潮喷水动态| 中文精品一卡2卡3卡4更新| 精品久久久噜噜| 天堂√8在线中文| 免费观看精品视频网站| 777米奇影视久久| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 国产高清三级在线| 国产成年人精品一区二区| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| 免费少妇av软件| 一级片'在线观看视频| 日韩电影二区| 欧美另类一区| 午夜免费男女啪啪视频观看| 噜噜噜噜噜久久久久久91| 久久久欧美国产精品| or卡值多少钱| 日韩在线高清观看一区二区三区| 嫩草影院精品99| 国产伦一二天堂av在线观看| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 搡老妇女老女人老熟妇| 岛国毛片在线播放| 嫩草影院入口| 在线天堂最新版资源| 国产精品嫩草影院av在线观看| 国产高潮美女av| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 少妇熟女欧美另类| 亚洲av日韩在线播放| 一个人观看的视频www高清免费观看| 亚洲无线观看免费| 美女xxoo啪啪120秒动态图| 国产日韩欧美在线精品| 国内揄拍国产精品人妻在线| 色尼玛亚洲综合影院|