• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Modification of Tellurite Phosphate: β-Te3O3(PO4)2①

    2018-10-12 03:44:58LILongZHUANGRongChunMIJinXioHUANGXi
    結(jié)構(gòu)化學(xué) 2018年9期

    LI Long ZHUANG Rong-Chun MI Jin-Xio HUANG Y-Xi

    ?

    A New Modification of Tellurite Phosphate:-Te3O3(PO4)2①

    LI LongaZHUANG Rong-ChuanbMI Jin-XiaoaHUANG Ya-Xia②

    a(()361005)b(364200)

    A new modification of tellurite phosphate,-Te3O3(PO4)2, has been synthesized under hydrothermal conditions and its crystal structure was determined by single-crystal X-ray diffraction.It crystallizes in the monoclinic space group21/(No.14), with= 11.115(5),= 4.7033(19),= 17.287(7) ?,= 106.086(5)°,= 868.3(6) ?3,= 4, P2Te3O11,M= 620.74,D= 4.748 g/cm3,(Mo) = 10.438 mm–1and F(000) = 1096.The final full-matrix least-squares refinement converged to= 0.0227,= 0.0534 for 1984 observed reflections with> 2(), and= 0.0240,= 0.0540 for all data (2070) and= 1.117.-Te3O3(PO4)2is polymorphic with the known-Te3O3(PO4)2(Weil H.M.et al.Z.Anorg.Allg.Chem.2003, 629, 1068-1072).The crystal structure of-Te3O3(PO4)2features a three-dimensional (3D) network composed of Te6O2220?hexanuclear clusters interconnected by PO4groups.Te6O22hexanuclear cluster is built from three Te2O8dimers (edge-sharing TeO5square pyramids) linked to each via sharing O-corners.The structure difference between- and-forms of Te3O3(PO4)2lies in the polymerization of tellurite oxides TenOm.1D infinite1∞{[Te3O11]10?} single chains are presented in-Te3O3(PO4)2, while 0D discrete Te6O22hexanuclear clusters are observed for-Te3O3(PO4)2.Moreover, thermal analyses, infrared spectra and UV-Vis-NIR diffuse reflectance are also presented.

    polymorphism, crystal structure, phosphate, tellurite;

    1 INTRODUCTION

    Tellurite phosphate materials have received considerable attention owning to their rich structural topologies and potential applications in nonlinear optics[1-6].The rich structural chemistry is attributed to the various coordination building blocks of tellurium atoms, that is, TeO(= 3, 4 or 5), e.g., trigonal pyramidal (TeO3)2?, seesaw (TeO4)4?, and square pyramidal (TeO5)6?groups[4, 7].Furthermore, the TeOpolyhedra can be polymerized into a variety of discrete polynuclear anionic clusters, chains, layers, or even three-dimensional frame- work structures via both corner-sharing and/or edge-sharing[8].In addition, Te4+cation often con- ducts an asymmetric coordination environment attributable to the expulsion of its stereoactive lone pair electron which is proven to easily crystallize in non-centrosymmetric (NCS) crystal structures[5].These NCS materials display a variety of useful physical properties such as second-harmonic generation (SHG), piezoelectricity, pyroelectricity, and ferroelectricity[8, 9].Consideration on the rich crystal structural properties of tellurium oxide, as well as the perfect binding group PO4tetrahedra, together with the possibilities to obtain non-centro- symmetric crystal structure with nonlinear optical (NLO) properties, we believe that tellurite phos- phates could be a very promising type of NLO materials.Up to date, although only dozens of tellurite phosphates[2-3, 10-19]have been observed, two of them, Te2O3(HPO4)[3, 10]and Te2O(PO4)2[2], have been reported crystallizing in non-centro- symmetric space groups and exhibiting NLO pro- perties.Moreover, tellurite phosphates have already exhibited rich structure chemistry with crystal struc- tures ranging from 1D chains[12], 2D layers[10-11, 13, 16, 20], or even 3D frameworks[2, 14-15, 17-18, 20].

    In this paper, we report on the synthesis, crystal structure, and characterizations of-Te3O3(PO4)2which is the polymorphism of tellurite phosphate-Te3O3(PO4)2.Structure comparisons between-Te3O3(PO4)2and-Te3O3(PO4)2have also been discussed in the text.This is the first time to find polymorphism in the tellurite phosphate system.

    2 EXPERIMENTAL

    2.1 Synthesis

    -Te3O3(PO4)2has been synthesized via hydro- thermal method.Reactants of NaCl (0.118 g, 2 mmol), TeO2(0.16 g, 1 mmol), H3PO4(85 wt%, 0.5 mL, 7.3 mmol), and HF (40 wt%, 0.05 mL, 1.12 mmol) were successively loaded into a PTFE-lined stainless-steel autoclave (15 mL in volume) along with 2 mL of deionized water without stirring.The autoclaves were sealed and heated at 240 °C for 4 days, and then naturally cooled down to room temperature.The resulting products were washed and filtered with deionized water, and dried in air.Colorless crystals of-Te3O3(PO4)2were obtained in about 80% yield on the basis of starting TeO2.The presence of Te and P has been confirmed by EDX results with a molar ratio of Te:P ≈ 3: 2.5.Although the P content is a little bit more than that derived from the single crystal results, which is quite common since it is often to observe more P contents in tellurite phosphates.

    Since Na and F elements are absent from the formula, we did a couple of comparison experi- ments to confirm whether these elements are necessary in the reaction condition or not.First, we excluded NaCl or HF from reactants while keeping other conditions unchanged.Secondly, NaCl and HF were replaced by NaF.Experimental results showed that without the addition of F?ions (either HF or NaF), it was impossible to synthesize the title compound under studied conditions.Instead, TeO2was obtained as solid product.On the other hand, NaCl can be removed from the reactant list without changing the final product.All these results indicate that F?ions play a key role in the formation of the title compound, which most likely act as mineralizer to facilitate the formation and crystallization of the title compound.

    2.2 Characterization methods

    Powder X-ray diffraction (PXRD) The PXRD measurements were carried out on a Bruker D8 Advance powder X-ray diffractometer with Curadiation (= 1.54056 ?, Ni filter, 40 kV/40 mA) at room temperature.

    Scanning electron microscopy/energy-dispersive analysis by X-ray (SEM/EDX) A field emission scanning electron microscope (FE-SEM, LEO-1530 and SU70) was utilized to perform SEM/EDX.

    Infrared spectroscopy The FTIR spectra were recorded on a Nicolet iS10 FT-IR spectrometer in the range from 4000 to 400 cm?1.The well-ground samples were mixed homogeneously with KBr and further pressed into pellets for the measurements.

    UV?Vis?NIR diffuse reflectance spectrum The diffuse reflectance spectra were collected at room temperature on a Cary 5000 spectrophoto- meter, using BaSO4as the standard in the spectral range of 200~2000 nm.

    Thermal analysis Thermal analyses were carried out on a SDTQ600 V20.9 Build 20 thermo- gravimetric/differential scanning calorimetry (TG/ DSC) instrument at a heating rate of 10oC·min?1in a nitrogen atmosphere (100 mL/min) from room temperature to 800oC.

    2.3 Crystal structure determination

    A suitable single crystal (0.34 × 0.08 × 0.04 mm3) of the title compound has been selected and checked first under polarized microscope prior to single- crystal X-ray diffraction.The single crystal diffrac- tion data were collected on a Bruker Apex charge- coupled device (CCD) diffractometer with graphite- monochromatic Moradiation (= 0.71073 ?, 45 kV/30 mA) at 203(2) K.In the range of 1.96≤≤28.82o, a total of 4987 reflections were collected and 2070 reflections were independent withint= 0.022, of which 1984 were observed with> 2().Absorption correction has been performed.The crystal structure was solved by direct methods and refined by full-matrix least-squares technique using the SHELX programs[21]included in the WinGX package[22], and further checked for missing symmetry elements by using PLATON[23].The structure has been solved in the monoclinic space group21/(No.14), with= 11.115(5),= 4.7033(19),= 17.287(7) ?,= 106.086(5)°,= 868.3(6) ?3,= 4.Te, P and some coordinated O atoms were determined from direct methods.The rest O atom sites were located from difference Fourier maps.The final full-matrix least-squares refinement converged to1= 0.0227,2= 0.0534 for 1984 observed reflections with> 2(), and1= 0.0240,2= 0.0540 for all data (2070),= 1.117,D= 4.748 g/cm3,(Mo) = 10.438 mm–1and(000) = 1096.The largest diffraction peak and hole are 1.050 and –1.031 e·?–3, respectively.The chemical formula were defined to be Te3O3(PO4)2, which possesses the same chemical formula as the known-Te3O3(PO4)2[15]in the database (21/,= 4,= 12.375(2),= 7.317(1),= 9.834(1) ?,= 98.04(1)o,= 881.7(2) ?3).However, the PXRD patterns shown in Fig.1 clearly indicated that two compounds are not of identical structures, sugges- ting that they should be two polymorphisms of Te3O3(PO4)2.Therefore, the title compound was defined as the-phase of Te3O3(PO4)2, named with-Te3O3(PO4)2.Selected bond distances and bond angles of-Te3O3(PO4)2are given in Table 1.

    Fig.1. Observed and calculated PXRD patterns of-Te3O3(PO4)2compared with the PXRD pattern known as-Te3O3(PO4)2

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry codes: (i),+1,; (ii) ?+1, ?+1, ?+1; (iii)+1/2, ?+1/2,+1/2; (iv) ?+1/2,?1/2, ?+3/2;

    (v) ?+1/2,+1/2, ?+3/2; (vi)?1/2, ?+1/2,?1/2; (vii),?1,

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure description

    -Te3O3(PO4)2is a new tellurite phosphate material crystallizing in the monoclinic space group21/(No.14).The structure contains asymmetric TeO5polyhedra and regular PO4tetrahedra.Both P(1) and P(2) are in a rather regular tetrahedral coordination environment with the P?O lengths ranging from 1.520(3) to 1.549(3) ?.Three crystal- lographic unique Te4+cations (Fig.2a) are observed in the title compound.Te(1), Te(2) and Te(3) are all in distorted square pyramidal environments, bonded to five oxygen atoms and one lone pair electrons located at the apex of octahedron when counting lone pair electrons.Te(1) has a comparable long Te?O bond (2.553 ?) according to the definition of TeIV?O bond.The Te?O bond lengths range from 1.886(3) to 2.553 (3) ? and the O?Te?O bond angles range from 68.38(11) to 176.20(12)o.These bond distances and bond angles of tellurium poly- hedra are consistent with those previously reported tellurite phosphates[7, 10].Bond valence calcula- tions[24]on-Te3O3(PO4)2resulted in the values of 3.98~4.21 for Te4+and 4.78~4.83 for P5+, respecti- vely, both of which are the expected values for Te and P.

    Te(1)O5square pyramid shares one edge with one Te(3)O5forming Te(1)–Te(3) dimer.Meanwhile, two Te(2)O5square pyramids also share edge to form the Te(2)–Te(2) dimer.Two Te(1)–Te(3) di- mers are interconnected by one Te(2)–Te(2) dimer via the common O corners of Te(1) and Te(2), thus forming a-hexanuclear cluster parallel to the-axis (Fig.2b).The resulting Te6O22hexamers are further interconnected by PO4tetrahedra via sharing common O-atom corners along the- and-axes, thus leading to a neutral 3D network structure (Fig.2c).Within the network, 3-, 6-, and 8-membered ring channels are observed running along the-axis.Note that it is the first time to observe the hexa- nuclear cluster of TenOmpartial structure in tellurite phosphates, or even in the tellurites.

    Fig.2. Coordination environments of three crystallographic unique Te atoms (a), Te6O2220?hexanuclear cluster (b), and the polyhedral presentation of the crystal structure of-Te3O3(PO4)2viewed along the-axis (c).TeO5square pyramids: light gray, PO4tetrahedra: dark gray, Te atoms: light gray spheres, O atoms: medium gray spheres.Note that the balloon shape in the coordination environment around Te presents the lone pair electrons

    Although-Te3O3(PO4)2and-Te3O3(PO4)2exhibit the same chemical formula composition, their crystal structures show dramatic difference which can be obviously identified from the PXRD patterns shown in Fig.1.Therefore,-Te3O3(PO4)2and-Te3O3(PO4)2are not identical but should be two modifications.Their structural difference (shown in Fig.3) lies in the TenOmpartial structure motifs.Te6O22hexanuclear clusters are observed in-Te3O3(PO4)2while 1D1∞{[Te3O11]10?}-single chains are presented in- Te3O3(PO4)2.As shown in Fig.3(a’), the1∞{[Te3O11]10?} single chain is built from a central Te(2)–Te(3) dimer chain open branched by the additional Te(1)O5square pyramids via3-O atoms.1D1∞{[Te3O11]10?} single chains interconnected by PO4groups result in a 3D network structure.Dif- ferent from-Te3O3(PO4)2containing 3-, 6-, and 8-membered ring channels within the framework, only 4- and 6-membered ring channels are present in the framework of-Te3O3(PO4)2.On considering the same formula with different crystal structures between-Te3O3(PO4)2and-Te3O3(PO4)2, we define that-Te3O3(PO4)2should be a new modi- fication of tellurite phosphate Te3O3(PO4)2.

    3.2 Infrared spectroscopy

    The infrared spectrum (Fig.4) of-Te3O3(PO4)2reveals that it consists of P?O, Te?O, and Te?O?P vibrations.The absorption bands at 959~1102 and 460~578 cm-1can be assigned to the P?O vibrations.The vibrations at 629~740 cm-1and 415 cm-1belong to the stretching mode of Te?O.A band occurring around 594 cm-1is attributed to the Te?O?P vibration.Similar absorption bands have b een observed in those previously reported related compounds[2, 12, 20, 25].Weak broad absorption bands at 3432 and 1627 cm-1are caused by the water absorption from air[26].

    Fig.3. Crystal structure comparisons between-Te3O3(PO4)2(a, b) and-Te3O3(PO4)2(a’, b’).(a) 0D Te6O2220?hexanuclear cluster in-Te3O3(PO4)2, (a’) 1D1∞{[Te3O11]10-} single chains in-Te3O3(PO4)2, (b) and (b’) Polyhedral representation of the crystal structures of-Te3O3(PO4)2and-Te3O3(PO4)2viewed along the-axis.TeO5square pyramids: light gray, PO4tetrahedra: dark gray, Te atoms: light gray spheres, O atoms: medium gray spheres

    Fig.4. Infrared spectrum of-Te3O3(PO4)2

    3.3 Thermal analysis

    Fig.5 shows the thermal behavior of- Te3O3(PO4)2.No obvious weight loss was observed in the TG curve while an endothermic peak is found at 633oC.These data may indicate that the title compound shows a melting process at 633oC.In order to identify whether it melted at 633oC, powder sample of-Te3O3(PO4)2was heated to 640oC for an hour.A glassy product, which stuck to the alumina crucible firmly, was observed after heat treating.This result may indicate that-Te3O3(PO4)2melts at 633oC.

    Fig.5. TG-DSC curves of-Te3O3(PO4)2

    3.4 UV-Vis-NIR diffuse reflectance spectrum

    To calculate the band gap and absorption edge of the materials, UV-Vis-NIR diffuse-reflectance spectrum was utilized.Absorption (/) data were calculated from the Kubelka-Munk function[27, 28]:

    Fig.6. Diffuse-reflectance spectrum of-Te3O3(PO4)2

    where,andrepresents the reflectance, absorption coefficient and the scattering factor, respectively.In the()--plot (Fig.6 inset), extrapolating the linear part of the rising curve to zero, the optical band gap ofTe3O3(PO4)2is observed at approximately 4.04 eV related to a relatively short absorption edge of ~248 nm (Fig.6).

    4 CONCLUSION

    In summary, we have synthesized a new modification of tellurite phosphate,-Te3O3(PO4)2under hydrothermal condition.The crystal structure of-Te3O3(PO4)2features a three-dimensional framework composed of 0D Te6O2220?hexanuclear clusters interconnected by PO4groups.The structure difference between- and-forms of Te3O3(PO4)2lies in the polymerization of Te oxide partial structure.Te6O2220?hexanuclear clusterspresent in-Te3O3(PO4)2, whereas 1D1∞{[Te3O11]10?} single chains appear in- Te3O3(PO4)2.This is the first time to find poly- morphism in the tellurite phosphate system.Note that Te6O2220?hexanuclear cluster is the first time to be found in tellurites.

    (1) Halasyamani, P.S.; Poeppelmeier, K.R., Noncentrosymmetric Oxides.1998, 10(10), 2753?2769.

    (2) Kim, M.K.; Kim, S.H.; Chang, H.Y.; Halasyamani, P.S.; Ok, K.M., New Noncentrosymmetric Tellurite Phosphate Material: Synthesis, Characterization, and Calculations of Te2O(PO4)2.2010, 49(15), 7028?7034.

    (3) Shen, Y.-G.; Zhao, S.-G.; Luo, J.-H., Study on Nonlinear Optical Properties of Te2HPO7Crystal.2016, 45(6), 1487?1491.

    (4) Christy, A.G.; Mills, S.J.; Kampf, A.R., A review of the structural architecture of tellurium oxycompounds.2016, 80(3), 415?545.

    (5) Halasyamani, P.S., Asymmetric Cation Coordination in Oxide Materials: Influence of lone-pair Cations on the Intra-octahedral Distortion in0Transition Metals.2004, 16(19), 3586?3592.

    (6) Chen, J.; Ali, K.M.; Xiao, C.-X.; Yan, Y.-X.; Dai, Y.; Chen, L., Recent Advances in Nonlinear Optical Phosphate Materials.2017, 36(11), 1837?1858.

    (7) Kim, J.H.; Halasyamani, P.S., A rare multi-coordinate tellurite, NH4Te4O9·2H2O (= Rb or Cs): The occurrence of TeO3, TeO4, and TeO5Polyhedra in the same material.2008, 181(8), 2108?2112.

    (8) Mao, J.-G.; Jiang, H.-L.; Kong, F., Structures and properties of functional metal selenites and tellurites.2008, 47(19), 8498-8510.

    (9) Ok, K.M., Toward the Rational Design of Novel Noncentrosymmetric Materials: Factors Influencing the Framework Structures.2016, 49(12), 2774?2785.

    (10) Alcock, N.W.; Harrision, W.D., Refinement of the Structure of Tellurium Phosphate Te2O3HPO4.1982, B38, 1809.

    (11) Ok, K.M.; Orzechowski, J.; Halasyamani, P.S., Synthesis, structure, and characterization of two new layered mixed-metal phosphates, BaTeMO4(PO4) (= Nb5+or Ta5+).2004, 43(3), 964?968.

    (12) Ok, K.M.; Halasyamani, P.S., Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, Ba2TeO(PO4)2.2006, 179(5), 1345?1350.

    (13) Xia, M.J.; Shen, S.P.; Lu, J.; Sun, Y.; Li, R.K., Ba2Cu2Te2P2O13: A new telluro-phosphate with S=1/2 Heisenberg chain.2015, 230, 75?79.

    (14) Zimmermann, I.; Kremer, R.K.; Johnsson, M., Synthesis, crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4.2011, 184(11), 3080?3084.

    (15) Mayer, H.; Weil, M., Synthesis and Crystal Structure of Te3O3(PO4)2, a Compound with 5-fold Coordinate Tellurium(IV).2003, 629, 1068?1072.

    (16) Mayer, H.; Wien, H., Die Kristallstruktur von Te2O3(HPO4).1975, 141, 354?362.

    (17) chmidt, P.; Dallmann, H.; Kadner, G.; Krug, J.; Philipp, F.; Teske, K., The Thermochemical Behaviour of Te8O10(PO4)4and its Use for Phosphide Telluride Synthesis.2009, 635(13-14), 2153?2161.

    (18) Guesdon, A.; Raveau, B., A Series of Mo(VI) Monophosphates Involving the Lone Pair Cation Te(IV):2TeMo2O6(PO4)2(= K, Rb, Tl, Cs).2000, 12(8), 2239?2243.

    (19) Zimmermann, I.; Johnsson, M., Stacking faults in a layered cobalt tellurium phosphate oxochloride.2015, 40, 67?70.

    (20) Xia, M.; Li, R.K., Structural variety in zinc telluro-phosphates: syntheses, crystal structures and characterizations of Sr2Zn3Te2P2O14, Pb2Zn3Te2P2O14and Ba2Zn2TeP2O11.2016, 45(17), 7492?7499.

    (21) Sheldrick, G.M., Crystal structure refinement with SHELXL.2015, 71, 3?8.

    (22) Farrugia, L.J., Wingx: suite for small-molecule single-crystal crystallography.1999, 32, 837?838.

    (23) Spek, A.L., PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors.2015, 71(Pt 1), 9?18.

    (24) Brese, N.E.; M., O.K., Bond-Valence Parameters for Solids.1991, 47, 192?197.

    (25) Wen, L.; Huang, Y.-X.; Sun, W.; Liu, B.; Huang, C.-Z.; Mi, J.-X.; Zhuang, R.-C.; Tang, M.-B.; Zhao, J.-T., One-dimensional Vanadyl Phosphate Containing the Tancoite-like {VⅣO(HPO4)2}2–Chain.2013, 12, 008.

    (26) Liu, L.-C.; Ren, W.-J.; Huang, Y.-X.; Pan, Y.; Mi, J.-X., Canted antiferromagnetism in KNi3PO3(F,OH)2PO2(OH)2F2with a stair-case Kagome lattice.2017, 254, 160?165.

    (27) Ayd?n, C.; Abd El-sadek, M.S.; Zheng, K.; Yahia, I.S.; Yakuphanoglu, F., Synthesis, Diffused Reflectance and Electrical Properties of Nanocrystalline Fe-doped ZnO via Sol–Gel Calcination Technique.2013, 48, 447?452.

    (28) Simmons, E.L., Diffuse Reflectance Spectroscopy: a Comparison of the Theories.1975, 14, 1380?1386.

    16 January 2018;

    27 February 2018 (ICSD 434333)

    the National Natural Science Foundation of China (No.21201144) and the Natural Science Foundation of Fujian Province (No.2018J07006)

    .E-mail: yaxihuang@xmu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1965

    狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说 | 看十八女毛片水多多多| www.av在线官网国产| 夫妻性生交免费视频一级片| 欧美日韩一区二区视频在线观看视频在线 | 国产伦精品一区二区三区四那| 成人高潮视频无遮挡免费网站| 女的被弄到高潮叫床怎么办| 久久国内精品自在自线图片| 亚洲欧美成人综合另类久久久 | 69人妻影院| 国产精品一区www在线观看| 免费看av在线观看网站| 国产在线精品亚洲第一网站| 秋霞在线观看毛片| 女的被弄到高潮叫床怎么办| 国产精品野战在线观看| 成人午夜精彩视频在线观看| 婷婷色av中文字幕| 免费在线观看成人毛片| 丰满的人妻完整版| a级毛片a级免费在线| 九色成人免费人妻av| 九色成人免费人妻av| 国产精品精品国产色婷婷| 99久久无色码亚洲精品果冻| 亚洲四区av| 免费在线观看成人毛片| 成人亚洲精品av一区二区| 国产精品永久免费网站| 啦啦啦韩国在线观看视频| 亚洲性久久影院| 夫妻性生交免费视频一级片| 国产乱人视频| 精品久久久久久久久亚洲| 免费av毛片视频| 有码 亚洲区| 国产高清有码在线观看视频| 日本欧美国产在线视频| 韩国av在线不卡| 亚洲最大成人手机在线| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 日韩一区二区视频免费看| 一区二区三区高清视频在线| 欧美性猛交黑人性爽| 国产精品美女特级片免费视频播放器| 亚洲成av人片在线播放无| 国产乱人视频| 欧美性感艳星| 婷婷色av中文字幕| 国产精品1区2区在线观看.| 一区福利在线观看| 亚洲欧洲日产国产| 99热只有精品国产| 午夜精品在线福利| 欧美在线一区亚洲| 爱豆传媒免费全集在线观看| 欧美不卡视频在线免费观看| 日韩大尺度精品在线看网址| 午夜久久久久精精品| 精品免费久久久久久久清纯| 亚洲精品日韩在线中文字幕 | 黄片无遮挡物在线观看| 亚洲成人久久性| 少妇人妻精品综合一区二区 | 91精品国产九色| 最近2019中文字幕mv第一页| 99久国产av精品国产电影| 精品人妻熟女av久视频| 校园春色视频在线观看| 男女那种视频在线观看| 国产精品人妻久久久久久| 一个人看的www免费观看视频| 亚洲一区二区三区色噜噜| 深夜a级毛片| АⅤ资源中文在线天堂| av卡一久久| 可以在线观看的亚洲视频| 内地一区二区视频在线| a级一级毛片免费在线观看| 99久久九九国产精品国产免费| 三级国产精品欧美在线观看| 此物有八面人人有两片| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 亚洲综合色惰| 免费观看的影片在线观看| 国产在线精品亚洲第一网站| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 免费看日本二区| 欧美不卡视频在线免费观看| 亚洲内射少妇av| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 日本一二三区视频观看| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区| 一夜夜www| 高清毛片免费看| 在线观看66精品国产| 亚洲欧美成人综合另类久久久 | 极品教师在线视频| 一级黄片播放器| 最近最新中文字幕大全电影3| 精品不卡国产一区二区三区| 久久精品国产清高在天天线| 嫩草影院新地址| 久久99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 在线播放国产精品三级| 国产成人精品一,二区 | 亚洲欧洲日产国产| 能在线免费看毛片的网站| 国产一级毛片在线| 麻豆一二三区av精品| 人体艺术视频欧美日本| 深夜a级毛片| 亚洲无线在线观看| 国产精品嫩草影院av在线观看| 国产91av在线免费观看| 日日摸夜夜添夜夜添av毛片| 99久久久亚洲精品蜜臀av| 日韩欧美三级三区| 亚洲五月天丁香| 插阴视频在线观看视频| 老司机影院成人| 一卡2卡三卡四卡精品乱码亚洲| 免费av观看视频| 欧美日韩国产亚洲二区| 少妇熟女aⅴ在线视频| 国产探花极品一区二区| 亚洲中文字幕一区二区三区有码在线看| 深夜a级毛片| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 欧美高清性xxxxhd video| 国产免费男女视频| 网址你懂的国产日韩在线| 晚上一个人看的免费电影| 91狼人影院| 夜夜看夜夜爽夜夜摸| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 美女 人体艺术 gogo| 91狼人影院| av黄色大香蕉| 欧美不卡视频在线免费观看| 欧美bdsm另类| 亚洲av第一区精品v没综合| 五月玫瑰六月丁香| 亚洲精品日韩在线中文字幕 | а√天堂www在线а√下载| 日韩一区二区三区影片| 国产色爽女视频免费观看| 久久久欧美国产精品| 日韩av不卡免费在线播放| 在线观看一区二区三区| 深夜精品福利| 97热精品久久久久久| 青春草国产在线视频 | 日本免费一区二区三区高清不卡| av又黄又爽大尺度在线免费看 | 亚洲国产欧洲综合997久久,| 美女内射精品一级片tv| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| ponron亚洲| 亚洲精品色激情综合| 亚洲婷婷狠狠爱综合网| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 国产精品久久久久久精品电影小说 | 一区二区三区四区激情视频 | 舔av片在线| av视频在线观看入口| 在现免费观看毛片| 国内久久婷婷六月综合欲色啪| 人妻制服诱惑在线中文字幕| 久久99蜜桃精品久久| 亚洲最大成人av| 久久精品国产亚洲网站| 又爽又黄a免费视频| 可以在线观看的亚洲视频| 高清毛片免费看| 夫妻性生交免费视频一级片| 久久99热这里只有精品18| 久久韩国三级中文字幕| 亚洲图色成人| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 欧美激情在线99| 亚洲av不卡在线观看| 看免费成人av毛片| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| av黄色大香蕉| 亚洲欧美精品自产自拍| 国产黄a三级三级三级人| 国产真实乱freesex| 国产在线男女| 国产亚洲5aaaaa淫片| 欧美一区二区亚洲| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 欧美bdsm另类| 性色avwww在线观看| 真实男女啪啪啪动态图| 久久热精品热| 国产精品女同一区二区软件| 中出人妻视频一区二区| 九草在线视频观看| 婷婷六月久久综合丁香| 亚洲高清免费不卡视频| 国产亚洲av片在线观看秒播厂 | 国产精品爽爽va在线观看网站| 久久人人爽人人片av| 久久久久免费精品人妻一区二区| 只有这里有精品99| 免费观看人在逋| 日本黄色片子视频| 国产精品人妻久久久久久| 久久99精品国语久久久| 久久综合国产亚洲精品| 人妻久久中文字幕网| 大香蕉久久网| 国产三级在线视频| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 赤兔流量卡办理| 看非洲黑人一级黄片| 一级毛片我不卡| 男女那种视频在线观看| 插逼视频在线观看| 久久人人爽人人爽人人片va| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| 亚洲精品成人久久久久久| 亚洲av熟女| 高清在线视频一区二区三区 | 国产伦一二天堂av在线观看| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜爱| 直男gayav资源| 国产亚洲精品久久久久久毛片| 99热只有精品国产| av女优亚洲男人天堂| 青春草视频在线免费观看| 国产极品天堂在线| 国产高清有码在线观看视频| 亚洲国产精品久久男人天堂| 小说图片视频综合网站| 亚洲美女视频黄频| videossex国产| 级片在线观看| 免费观看在线日韩| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 国产精品不卡视频一区二区| 成人三级黄色视频| 欧美最新免费一区二区三区| 天天躁夜夜躁狠狠久久av| 18禁在线播放成人免费| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区 | 97超视频在线观看视频| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 91久久精品电影网| 国产av不卡久久| 在线免费十八禁| 午夜免费男女啪啪视频观看| 欧美日韩在线观看h| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 国产精品国产高清国产av| 99热网站在线观看| 国产片特级美女逼逼视频| 国产精品电影一区二区三区| 亚洲精品亚洲一区二区| 成人特级av手机在线观看| 在线免费十八禁| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 一边摸一边抽搐一进一小说| 免费观看精品视频网站| 国产亚洲5aaaaa淫片| 99九九线精品视频在线观看视频| 性欧美人与动物交配| 伦理电影大哥的女人| 99久久中文字幕三级久久日本| 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 国产爱豆传媒在线观看| 18禁在线播放成人免费| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9| 国产片特级美女逼逼视频| 十八禁国产超污无遮挡网站| 看片在线看免费视频| 国产精品综合久久久久久久免费| 国产三级在线视频| 性插视频无遮挡在线免费观看| 国产成人a区在线观看| 91久久精品电影网| 亚洲国产欧美在线一区| 人妻少妇偷人精品九色| 色5月婷婷丁香| 热99在线观看视频| 国产淫片久久久久久久久| 99久久精品一区二区三区| 免费观看a级毛片全部| 在线观看午夜福利视频| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 最近2019中文字幕mv第一页| www.av在线官网国产| 日日撸夜夜添| 精品久久久久久久末码| 免费观看精品视频网站| 欧美日韩在线观看h| 精品一区二区三区视频在线| 中文资源天堂在线| 日韩制服骚丝袜av| 国产精品一区www在线观看| kizo精华| 久久久久久久久大av| 最近的中文字幕免费完整| 一个人看的www免费观看视频| 国产成人福利小说| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 丝袜美腿在线中文| 亚洲丝袜综合中文字幕| 亚洲欧美日韩无卡精品| 最近中文字幕高清免费大全6| 啦啦啦观看免费观看视频高清| 深夜a级毛片| 熟女人妻精品中文字幕| 日本成人三级电影网站| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 三级国产精品欧美在线观看| 亚洲av熟女| 99精品在免费线老司机午夜| avwww免费| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 狂野欧美激情性xxxx在线观看| 国产中年淑女户外野战色| 婷婷精品国产亚洲av| 亚洲18禁久久av| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 亚洲av成人av| 国产精品一区www在线观看| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| 国产一级毛片在线| 悠悠久久av| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 91狼人影院| 亚洲欧美成人综合另类久久久 | 国产麻豆成人av免费视频| 看十八女毛片水多多多| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 日本色播在线视频| 国产片特级美女逼逼视频| 欧美+日韩+精品| 国产精品一区二区三区四区久久| 极品教师在线视频| 99久久久亚洲精品蜜臀av| 精品久久久久久久末码| 亚洲在久久综合| 哪里可以看免费的av片| 成年免费大片在线观看| 在线天堂最新版资源| 一个人免费在线观看电影| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 国产精品一区www在线观看| 九草在线视频观看| 综合色av麻豆| 中文在线观看免费www的网站| 免费看a级黄色片| 免费人成视频x8x8入口观看| 在线国产一区二区在线| 久久久久久久久大av| 亚洲精品456在线播放app| 国产乱人视频| 国产成人影院久久av| 97超碰精品成人国产| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美激情在线99| 国内精品久久久久精免费| 哪个播放器可以免费观看大片| 亚洲国产色片| 不卡视频在线观看欧美| a级毛片a级免费在线| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 国产成人91sexporn| 国产视频内射| ponron亚洲| 男插女下体视频免费在线播放| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 亚洲第一电影网av| 国产 一区精品| 在线免费十八禁| 欧美区成人在线视频| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 日本黄色片子视频| 欧美精品一区二区大全| 国产成人影院久久av| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 久久久精品大字幕| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 国语自产精品视频在线第100页| 免费大片18禁| 99热精品在线国产| 中文精品一卡2卡3卡4更新| 老司机福利观看| 国产午夜精品久久久久久一区二区三区| 欧美xxxx性猛交bbbb| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 国产精品99久久久久久久久| 成人特级av手机在线观看| 亚洲三级黄色毛片| 美女国产视频在线观看| 少妇熟女欧美另类| 一边摸一边抽搐一进一小说| 午夜老司机福利剧场| 亚洲无线观看免费| 色哟哟·www| 久久精品久久久久久久性| 婷婷精品国产亚洲av| 成人午夜高清在线视频| 色5月婷婷丁香| 床上黄色一级片| 99热这里只有是精品50| 草草在线视频免费看| 欧美成人免费av一区二区三区| 日韩精品青青久久久久久| 亚洲欧美日韩高清专用| 亚洲电影在线观看av| 久久久久九九精品影院| 看十八女毛片水多多多| 99国产精品一区二区蜜桃av| 色5月婷婷丁香| 中文字幕熟女人妻在线| 日本一本二区三区精品| 搡女人真爽免费视频火全软件| 人妻系列 视频| 亚洲精品久久久久久婷婷小说 | 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 一边亲一边摸免费视频| 国产在线精品亚洲第一网站| 男女做爰动态图高潮gif福利片| 中文字幕免费在线视频6| 久久精品久久久久久噜噜老黄 | 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄 | 99在线视频只有这里精品首页| 国产黄片美女视频| 日本av手机在线免费观看| 搞女人的毛片| 欧美日韩乱码在线| 伦精品一区二区三区| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 日韩制服骚丝袜av| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 少妇熟女欧美另类| 日韩一本色道免费dvd| 非洲黑人性xxxx精品又粗又长| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 在线观看66精品国产| 夜夜爽天天搞| 国产毛片a区久久久久| 嫩草影院新地址| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲性久久影院| 免费大片18禁| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| 亚洲内射少妇av| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 美女被艹到高潮喷水动态| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 欧美一区二区国产精品久久精品| 可以在线观看毛片的网站| 一级毛片电影观看 | 又黄又爽又刺激的免费视频.| 亚州av有码| 欧美潮喷喷水| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频 | 看黄色毛片网站| АⅤ资源中文在线天堂| 午夜视频国产福利| 18禁在线播放成人免费| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 亚洲国产高清在线一区二区三| 国产老妇伦熟女老妇高清| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 日本色播在线视频| 级片在线观看| 国产成人福利小说| 尾随美女入室| 成人午夜高清在线视频| 在线观看66精品国产| 久久午夜亚洲精品久久| 日韩av不卡免费在线播放| 日本黄色片子视频| 久久精品久久久久久噜噜老黄 | 亚洲精华国产精华液的使用体验 | 久久久久久久久久成人| or卡值多少钱| 国产伦理片在线播放av一区 | 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 在线观看免费视频日本深夜| av女优亚洲男人天堂| av天堂在线播放| 老司机福利观看| 亚州av有码| 欧美高清成人免费视频www| 一区二区三区四区激情视频 | 国产精华一区二区三区| 大型黄色视频在线免费观看| 国产视频内射| 男人舔女人下体高潮全视频| 丝袜喷水一区| 波多野结衣高清作品| 在线国产一区二区在线| 色播亚洲综合网| 精品熟女少妇av免费看| 免费在线观看成人毛片| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 国产高清视频在线观看网站| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 在现免费观看毛片| 午夜福利在线在线| 中文字幕免费在线视频6| av又黄又爽大尺度在线免费看 | 99热这里只有是精品50| 日韩强制内射视频| 大香蕉久久网| 亚洲欧美日韩高清专用| 欧美日韩在线观看h| 老女人水多毛片| 91久久精品国产一区二区三区| 黄色配什么色好看| 久久久久九九精品影院| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 男女下面进入的视频免费午夜| 中文在线观看免费www的网站| 亚洲国产欧美人成|