• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Molecular Mechanism of Fenton Oxidation Degradation of m-Xylene①

    2018-10-12 03:41:28ZHAOJiaMinYUNAYingZHOURuJin
    結構化學 2018年9期

    ZHAO Jia-Min YUNA Ying ZHOU Ru-Jin

    ?

    A Molecular Mechanism of Fenton Oxidation Degradation of-Xylene①

    ZHAO Jia-Min YUNA Ying ZHOU Ru-Jin②

    (525000)

    Density functional theory (DFT) quantum chemical method was used to study the process of meta-xylene Fenton oxidation. TheHOMOenergies of meta-xylene molecules are higher, so they have better ability to provide electron and prone to the nucleophilic reaction. M-xylene mainly reacts with OH free radical in addition reactions. And the position of C(6) is most likely to react with the OH free radical, rather than the C(3), which is the most difficult to occur. According to all the above results, the most likely reaction mechanism of advanced oxidation degradation of meta-xylene is determined.

    molecular simulation, Fenton oxidation, meta-xylene, reaction mechanism;

    1 INTRODUCTION

    In recent years, with the development of industry and agriculture, people increasingly rely on organic compounds. As a consequence, a significant amount of wastewater containing organic pollutants that are difficult to biodegrade have also increased accor- dingly. For example, the wastewater discharged from chemical, pesticide, and other industries often inclu- des chlorinated benzenes and polycyclic aromatic hydrocarbons (PAHs)[1-3]. These pollutants have high toxicity and poor biodegradability; moreover, they are the major sources of pollution of the water environment and endanger human health. Conven- tional treatment techniques (physical, chemical and biological methods) do not lead to satisfactory results in the presence of these pollutants. Therefore, the processing technology of benzene pollutants in industrial and agricultural organic wastewater has gradually become a challenging and hot topic in the water treatment scientific community[4-6].

    Advanced oxidation technology (AOT) is an emer- ging water treatment strategy with the advantage of high-processing speed, through oxidation, and no secondary pollution[7-9]. AOTs mainly utilize highly active ·OH to oxidize and decompose organic pollutants in water and eventually mineralize into CO2, H2O, and inorganic salts[10, 11]. Among them, the Fenton oxidation technology, as a commonly used AOT, has the advantages of high efficiency, flocculation, simple equipment, and low technical requirements compared with other advanced oxida- tion technologies[12-14]. In recent years, a series of studies were carried out to investigate benzene com- pounds utilizing Fenton oxidation technology. Kwo[15]and Yao[16]studied the chlorophenol charac- teristics of the Fenton reagent; Sedlak[17]studied the degradation of chlorobenzene using the Fenton reagent; Zhao[18]explored nitrobenzene wastewater via the US-Fenton method. Beltran[19]used Fenton reagent to study three PAHs (fluorene, phenanthrene, and acenaphthene) in water. At the same time, Fenton advanced oxidation was also employed to study bentazon in wastewater[20], bisphenol in electronic wastewater[21], and wastewater derived from amino- phenol production[22], azobenzene, and anthraqui- none[23].

    Most studies show that the advanced oxidative degradation of aromatic hydrocarbons in wastewater is complicated. At present, the experimental research mostly focuses on the generation mechanism of ·OH. Due to the low concentration of free radical interme- diates, the secondary reactions take place, and the instability of PAHs during the oxidative degradation process, their detection and quantification is incredi- bly challenging. Indeed, the oxidation-degradation reaction mechanism is mostly unknown. Theoretical calculations can overcome some of the difficulties encountered during the experimental studies and become more and more prominent in the study of reaction mechanisms[24, 25]. Taking advantage of the computational method of density functional theory (DFT), we systematically studied the reactants of ·OH-induced-xylene Fenton reaction system, including its intermediate transitional ions and reaction products. Combined with the theoretical calculations and experimental results, a more detailed-xylene Fenton advanced oxidation mechanism was presented.

    2 COMPUTATIONAL METHODS

    Using the Material Studio, Version 8.0 software from the Accelrys company[26], we carried out quantum chemical calculations on the ·OH-induced-xylene reaction system. Structural models of reactants, intermediates, and products were construc- ted via the Builder module. Structural optimization was performed using molecular mechanics module Discover; additional structural optimization was carried out by using semi-empirical quantum che- mistry module VAMP. The final structural optimiza- tion was performed using quantum chemicalcalculation module Dmol3, which is based on the DFT method. PW91 functional and the DNP basis set were selected for all the DFT calculations. The processing method for a central electron is full-electrons. Frequency analysis on the resulting configurations confirmed the absence of any virtual frequency. The standard total force criterion for the convergence of atomic relaxation was less than 0.15 eV/?, whereas the corresponding maximum stress for an atom was lower than 0.05 eV/?. The Dmol3 module was used to search and optimize the transition states of the elementary reactions. The NEB method was used to determine the energy barriers of the reactions.

    3 RESULTS AND DISCUSSION

    The Fenton reagent comprises of Fe2+and H2O2. In an acidic solution, Fe2+catalyzes the decompo- sition of H2O2and produces the strong oxidizing agent ·OH, which further induces the generation of more other free radicals. The strong oxidation capability of ·OH decomposes the organic com- pounds in water, leading to a wastewater purification.

    3.1 Initial addition of ·OH

    The redox reaction of-xylene mainly occurs with ·OH. In 1997, Kramp[27]measured the rate constants of the reaction between-xylene and ·OH through experimental measurements in combination with the previously reported experimental results. Mehta[28]further discovered the reaction mechanism. Indeed, there are two possible reaction routes between-xylene and ·OH: (1) hydrogen extraction reaction, where the hydrogen of methyl group is captured, producing-methyl benzaldehyde and ester compounds[29, 30], (2) ·OH is added to the benzene ring, forming an-xylene-hydroxy adduct (mX-OH)[31].

    It is generally believed that Fenton catalyzed the elementary reaction of xylene in accordance with the radical reactions. Therefore, in the quantum chemical study and the construction of elementary reaction network for the reaction system, we assumed that the reaction had been carried out in accordance with the free radical reaction mechanism. The reactant of elementary reaction system is-xylene, whose molecular structure is shown in Fig. 1.

    Fig. 1. Molecular structure and atom number of-xylene

    In the Fenton oxidation, the reaction of-xylene and ·OH may generate eight transition states with different structures, whereas five ·OH addition reaction processes can be inferred, as shown in Table 1. According to the Dmol3 module search and the transition states of the so-optimized elementary reaction, we determined the energy barrier of the reaction process via the NEB method. The calcu- lation results are reported in Table 2.

    According to our computational results, the hy- drogen-extraction reaction between-xylene and ·OH has an energy barrier of about 61~83 kcal/mol, which is significantly higher than that in the formation of the-xylene-hydroxyl adduct (mx-OH) by adding ·OH to the benzene ring. Therefore, we can infer that the addition reaction of-xylene with ·OH mainly occurs under the Fenton reagent; the-xylene is unlikely to undergo the hydrogen extraction reaction in the presence of ·OH.

    Table 1. Initial Addition Reaction of ·OH

    Table 2. Initial Addition Reaction Energy of ·OH

    Through the comparison of energy barriers in the addition reaction between-xylene and ·OH, it can be found that the energy barrier of Rea002 reaction is the lowest one (3.066 kcal/mol), suggesting that the C(6) of-xylene is the most prone atom for the addition reaction; moreover, the energy barrier of Rea005 is the highest (9.306 kcal/mol), suggesting that the C(3) of-xylene is the most difficult atom to undergo addition reaction.

    To further investigate the reaction characteristics between-xylene and ·OH, the structure-activity relationship of-xylene was investigated via Dmol3. The nature of the reaction between-xylene and ·OH was further explored according to the Fukui index and frontier orbital theory of-xylene.

    According to the frontier orbital theory, any reaction occurs at the position and direction of the maximum effective overlap between the HOMO of one reactant and the LUMO of the other reactant. The highest occupied molecular orbital (HOMO) with the highest energy and the lowest unoccupied molecular orbital (LUMO) with the lowest energy electron space orbital play an essential role[32]. During the reaction, the electron is transferred from the HUMO of one reactant to the LOMO of the other reactant. Since the LUMO energy of ·OH (0.3735 Ha) is higher than the HOMO energy of-xylene (–0.20337Ha), ·OH can only react with the LUMO of-xylene. The composition of the LUMO in-xylene (see Table 3) shows that the electron density of the benzene ring has a significant contri- bution; therefore, ·OH should preferentially attack the benzene ring. Our calculations show that theHOMOof-xylene is –0.20337 Ha, whereas theLUMOis –0.02451 Ha. The Δof the two orbitals is 0.101731 Ha and meets the symmetry matching requirements. Although it is low, the Δis in the range of forming a stable chemical bond[33, 34], and thus this reaction can occur.

    The Fukui index is an effective method to study the characteristics of nucleophilic/electrophilic reac- tions and the molecular active sites of organic molecules[35]. In the Fukui index method,(-) and(+) indicate the ability of an atom to give and receive electrons, respectively. Because the outer electron layer of ·OH has unpaired electrons, it always tends to receive electrons. Therefore, the higher(-) is, the easier this atom is to react with ·OH, while the higher the(+) index is, the more unlikely this atom is to react with ·OH.

    Table 3 lists the Fukui index map and frontier orbitals of the molecular electrophilic ucleophilic reaction of-xylene. It can be seen that the C(3), C(5), and C(6) are the most active positions: as a consequence, they are the attack positions of electrophilic reaction. It is revealed from the Fukui index of nucleophilic reaction that the nucleophilic attack positions are mainly C(2), C(3), and C(5) atoms. Therefore, according to the Fukui index theory, it can be inferred that C(6) is the most prone atom to react with ·OH.

    Above all, after comparing the energy barriers of different pathways of the reaction between-xylene and ·OH, it can be concluded that the addition between-xylene and ·OH mainly occurs at the primary reaction stage. The C(6) of-xylene is the most prone atom for addition reaction, whereas the C(3) of-xylene is the most difficult atom for addition reaction. Therefore, we mainly investigate the subsequent reactions of R2.

    Table 3. Fukui Functions and Frontier Orbitals of m-Xylene

    3.2 Reaction between the R2 radical and ·OH

    In the presence of ·OH, R2 is either stabilized by collision or reacts with ·OH. Similar to the benzene and toluene reacting with ·OH, in the presence of ·OH, R2 can undergo either the addition of ·OH to its benzene ring to form a peroxyl group, or the direct extraction of H to produce 2,6-dimethylphenol. The addition of ·OH can occur at the positions of C1/C3 and C5, forming peroxyl group R2-OO (= 1/3/5). R2-OO can be further linked to produce a double loop radical R2-OO, whereandrepresent the carbon number of O–O bond. The resulting possible reaction path between R2 radical and ·OH is shown in Fig. 2.

    Fig. 2. R2 free radicals possible reaction pathway with ·OH

    To determine the most probable reaction process between R2 and ·OH, the relative energy and energy barrier of transition states with different structures were calculated by Dmol3 (Table 4). It is clear that the reaction pathways with high-energy barriers can be removed from the mechanism. For example, the reaction barriers of Rea007 and Rea008 are signifi- cantly higher than that of Rea006; therefore, the formation reaction of R2-1OO is mainly considered in the reaction pathway of R2 and ·OH. Similarly, the pathway of R2-1OO by closed loop reaction to generate R2-15OO can also be neglected because its energy barrier is 11.51 kcal/mol higher than that of the reaction generating R2-13OO.

    The transition states of the elementary reactions were searched and optimized via the Dmol3 module, whereas the energy barrier of the reaction process was determined via the NEB method. It can be seen in Fig. 3 that, according to the value of the relative energy barrier, the addition reaction of ·OH occurs at the position of C1/C3, whereas the process of generating peroxyl radical R2-1OO is the most kinetically favorable, with the lowest energy barrier of reaction (9.64 kcal/mol). In the next reaction, the formation of R2–13OO by cyclization of R2-1OO is considered to be thermodynamically irreversible because of the higher level of released energy (–11.00 kcal/mol). For R2-13OO, the energy barriers of the O–O bond breaking isomerization to generate R2-1O-34O and R2-13OO-4OO are 19.93 and 11.67 kcal/mol, respectively. Then, the reaction products are ultimately oxidized to CO2, H2O, and inorganic compounds. From these findings, we can deduce the lowest energy reaction path of the reaction between R2 radical and ·OH, as shown in Fig. 4.

    Table 4. Reaction Process between R2 and ·OH

    Fig. 3. Energy bar of the reaction between R2 and ·OH

    Fig. 4. Reaction path of the lowest energy between R2 and ·OH

    4 CONCLUSION

    In this paper, based on the DFT and transition state theory, we have performed detailed theoretical researches on the Fenton advanced oxidation reaction between-xylene and ·OH. The conclusions are as follows:

    (1) The addition of ·OH mainly occurs on C(6), producing mX-OH adduct R2, which is in good agreement with the structure-activity relationship of meta-xylene.

    (2) The addition reaction continues to occur between R2 and ·OH, followed by isomerization to form a double-ring free radical intermediate. In the Fenton reagent, the double-ring radical intermediate reacts with ·OH, forming a bicyclic peroxyl radical.

    (3) The pathway of the reaction between-xylene and ·OH with the lowest energy barrier has been determined via the NEB method, so we have descri- bed the advanced oxidation degradation process of-xylene.

    (1) Sekaran, G.; Karthikeyan, S.; Evvie, C. Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater.2013, 15, 245-253.

    (2) Wang, F.; Smith, D. W.; El-Din, M. G. Application of advanced oxidation methods for landfill leachate treatment-a review.. 2003, 2, 413-427.

    (3) Khan, M. Z.; Nizami, A. S.; Rehan, M.; Ouda, O. K. M.; Sultana, S.; Ismail, I. M.; Shahzad, K. Microbial electrolysis cells for hydrogen production and urban wastewater treatment: a case study of Saudi Arabia.2017, 185, 410-420.

    (4) Ramteke, L. P.; Gogate, P. R. Removal of benzene, toluene and xylene (BTX) from wastewater using immobilized modified prepared activated sludge (MPAS).2016, 91, 456-466.

    (5) Ramteke, L. P.; Gogate, P. R. Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes.2015, 28, 247-260.

    (6) Qi, Z.; Zhou, M.; Li, L.; Qiu, T.; Ye, C. Selective adsorption of-xylene from pure terephthalic acid wastewater on modified and formed zeolites.2017, 62, 1047-1057.

    (7) Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2in advanced oxidation processes.2014, 275, 121-135.

    (8) Mousset, E.; Frunzo, L.; Esposito, G. A complete phenol oxidation pathway obtained during electro-fenton treatment and validated by a kinetic model study.2016, 180, 189-198.

    (9) Munoz, M.; Pedro, Z. M.; Casas, J. A. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review.2015, 176, 249-265.

    (10) Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery.1999, 53, 51-59.

    (11) Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment.1993, 93, 671-698.

    (12) Molina, R.; Pariente, I.; Rodríguez, I.; Martínez, F.; Melero, J. A. Treatment of an agrochemical wastewater by combined coagulation and Fenton oxidation.2014, 89, 1189-1196.

    (13) Asghar, A.; Raman, A. A. A.; Daud, W. M. A. W. Advanced oxidation processes forproduction of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review.2015, 87, 826-838.

    (14) Ahmad, A.; Mohd-Setapar, S. H.; Chuong, C. S.; Khatoon, A.; Wani, W. A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater.2015, 5, 30801-30818.

    (15) Kwon, B. G.; Lee, D. S.; Kang, N.; Yoon, J. Characteristics of-chlorophenol oxidation by Fenton's reagent.1999, 33, 2110-2118.

    (16) Yao, S.; Dou, D.; Fu, H. Innovation technique of radiation for the treatment of 4-chlorphenol as a model of POPs in waste water.2005, 236, 266-271.

    (17) Sedlak, D. L.; Andren, A. W. Oxidation of chlorobenzene with Fenton's reagent.1991, 25, 777-782.

    (18) Zhao, C.; Zhao, D. Degradation of nitrobenzene in wastewater by ultrasound/Fenton's reagent.2001, 41, 485-491.

    (19) Beltrán, F. J.; González, M.; Ribas, F. J.; Alvarez, P. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water.1998, 105, 685-700.

    (20) Nidheesh, P. V.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: an overview.2012, 299, 1-15.

    (21) Torres, R. A.; Abdelmalek, F.; Combet, E.; Pétrier, C.; Pulgarin, C. A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol a degradation in deionised and natural waters.. 2007, 146, 546-551.

    (22) Yang, P.; Zhang, W. J.; Liu, Y. Y.; Wang, D. S.; Cui, F. G. Treatment of wastewater with high salinity from-aminophenol production by combined adsorption and two-staged Fenton oxidation.2015, 2232-2236.

    (23) Joseph, J. M.; Destaillats, H.; Hung, H. M.; Hoffmann, M. R. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions.2000, 104, 301-307.

    (24) Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics.2014, 140, 141-157.

    (25) Adamo, C.; Jacquemin, D. The calculations of excited-state properties with time-dependent density functional theory.2013, 42, 845-856.

    (26) Delley, B. From molecules to solids with the DMol 3 approach.. 2000, 113, 7756-7764.

    (27) Kramp, F.; Paulson, S. E. On the uncertainties in the rate coefficients for OH reactions with hydrocarbons, and the rate coefficients of the 1,3,5-trimethylbenzene and-xylene reactions with OH radicals in the gas phase.1998, 102, 2685-2690.

    (28) Mehta, D.; Nguyen, A.; Montenegro, A.; Li, Z. A kinetic study of the reaction of OH with xylenes using the relative rate/discharge flow/mass spectrometry technique.2009, 113, 12942-12951.

    (29) Atkinson, R.; Aschmann, S. M.; Arey, J. Formation of ring-retaining products from the oh radical-initiated reactions of-,-, and-xylene.1991, 23, 801-827.

    (30) Hollman, D. S.; Simmonett, A. C.; Schaefer, H. F. The benzene+ OH potential energy surface: intermediates and transition states.2011, 13, 2214-2221.

    (31) Fan, J.; Zhang, R. Atmospheric oxidation mechanism of-xylene: a density functional theory study.2006, 110, 28-37.

    (32) Dey, T.; Ghosh, S.; Ghosh, S.; Mukherjee, A. K. 5-Arylidene derivatives of Meldrum’s acid: synthesis, structural characterization using single crystal and powder crystal X-ray diffraction, and electronic properties.. 2015, 1092, 51-62.

    (33) Li, Z. Z.; Wang, X. J.; Sun, G. D.; Wang, Y. F. Density functional theory study on interaction between Cr9cluster and nucheobases.2014, 5, 740-745.

    (34) Li, X.; Guo, W.; Wu, Y.; Li, W.; Gong, L.; Zhang, X. Investigation of the interactions between 1-butyl-3-methylimidazolium-based ionic liquids and isobutylene using density functional theory.2018, 24, 83-12.

    (35) Cruz, J.; Martínez-Aguilera, L. M. R.; Salcedo, R.; Castro, M. Reactivity properties of derivatives of 2-imidazoline: anDFT study.2001, 85, 546-556.

    2 May 2018;

    6 July 2018

    the research and practice project of scientific and technological innovation of school enterprise cooperation in Guangdong University of Petrochemical Technology (660648)

    . Professor, Ph.D. E-mail: 1075081491@qq.com

    10.14102/j.cnki.0254-5861.2011-1705

    国产成人aa在线观看| 亚洲精品国产av成人精品| 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品综合一区二区三区 | 日韩在线高清观看一区二区三区| 国产av码专区亚洲av| 欧美精品人与动牲交sv欧美| 成人国语在线视频| 免费观看无遮挡的男女| 韩国av在线不卡| 日韩视频在线欧美| 天堂中文最新版在线下载| 香蕉国产在线看| 精品一区在线观看国产| 狂野欧美激情性bbbbbb| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 777米奇影视久久| av电影中文网址| 久久久久久人人人人人| 十八禁网站网址无遮挡| 日产精品乱码卡一卡2卡三| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 高清视频免费观看一区二区| 日本av免费视频播放| 亚洲欧洲精品一区二区精品久久久 | 边亲边吃奶的免费视频| 18禁裸乳无遮挡动漫免费视频| 美女福利国产在线| 韩国精品一区二区三区| 亚洲欧美成人精品一区二区| 成人手机av| 男女边吃奶边做爰视频| 亚洲欧美精品综合一区二区三区 | 精品国产一区二区久久| 国产精品久久久久久av不卡| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| av免费观看日本| 精品第一国产精品| 欧美亚洲日本最大视频资源| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 欧美日韩视频高清一区二区三区二| 欧美日韩av久久| 日本91视频免费播放| 伦理电影大哥的女人| 超色免费av| 午夜久久久在线观看| 亚洲欧美清纯卡通| 巨乳人妻的诱惑在线观看| 亚洲成人av在线免费| 26uuu在线亚洲综合色| 午夜免费鲁丝| 午夜福利视频在线观看免费| 你懂的网址亚洲精品在线观看| 日韩中字成人| 久久久久久久精品精品| 蜜桃国产av成人99| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 亚洲精品在线美女| 久久久久国产网址| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 老熟女久久久| 欧美xxⅹ黑人| av天堂久久9| 少妇 在线观看| 一区二区日韩欧美中文字幕| 两性夫妻黄色片| 久久ye,这里只有精品| 色婷婷久久久亚洲欧美| 国产成人精品一,二区| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| av电影中文网址| 精品亚洲成a人片在线观看| 波野结衣二区三区在线| 亚洲国产欧美在线一区| 不卡av一区二区三区| av在线老鸭窝| 欧美精品人与动牲交sv欧美| 在线观看美女被高潮喷水网站| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 欧美日韩成人在线一区二区| 久久97久久精品| 蜜桃国产av成人99| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频| 一本久久精品| 久久精品国产鲁丝片午夜精品| 性高湖久久久久久久久免费观看| 亚洲精品,欧美精品| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 成年av动漫网址| 国产成人精品福利久久| 亚洲av成人精品一二三区| videossex国产| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 亚洲第一区二区三区不卡| 国产熟女午夜一区二区三区| av电影中文网址| 成人18禁高潮啪啪吃奶动态图| 激情五月婷婷亚洲| 天堂8中文在线网| 一级毛片我不卡| 一区二区三区激情视频| 成人二区视频| 日韩视频在线欧美| 91精品三级在线观看| 国产一区二区激情短视频 | 纵有疾风起免费观看全集完整版| 午夜日本视频在线| 国产成人91sexporn| 熟女少妇亚洲综合色aaa.| 国产一区二区 视频在线| 超碰成人久久| 人妻系列 视频| 99久久人妻综合| 欧美老熟妇乱子伦牲交| 大话2 男鬼变身卡| 如日韩欧美国产精品一区二区三区| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| 国产精品99久久99久久久不卡 | 中文字幕制服av| 亚洲欧美色中文字幕在线| 欧美激情 高清一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 在线观看人妻少妇| videos熟女内射| 伦精品一区二区三区| 欧美激情高清一区二区三区 | 久久精品久久久久久噜噜老黄| 国产亚洲午夜精品一区二区久久| 中文字幕av电影在线播放| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 国产日韩欧美在线精品| 丝袜人妻中文字幕| 在线观看免费高清a一片| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 最近最新中文字幕免费大全7| 美女国产高潮福利片在线看| 黄色配什么色好看| 欧美精品一区二区免费开放| 99久久中文字幕三级久久日本| 自拍欧美九色日韩亚洲蝌蚪91| 日本猛色少妇xxxxx猛交久久| 99久久综合免费| a级毛片黄视频| 三级国产精品片| 免费少妇av软件| 亚洲第一青青草原| 永久网站在线| 久久精品国产自在天天线| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕制服av| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃| 精品第一国产精品| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 人人澡人人妻人| 999久久久国产精品视频| 国产av码专区亚洲av| 午夜久久久在线观看| 久久久久精品性色| 另类精品久久| 久久久国产一区二区| 国产一区二区 视频在线| 热99国产精品久久久久久7| 欧美成人午夜免费资源| 欧美老熟妇乱子伦牲交| 熟女电影av网| 亚洲人成电影观看| 午夜福利视频精品| 日韩欧美一区视频在线观看| 欧美日韩精品成人综合77777| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 亚洲美女黄色视频免费看| 久久午夜福利片| 午夜福利一区二区在线看| 久久精品亚洲av国产电影网| 超碰成人久久| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看| av一本久久久久| 黄网站色视频无遮挡免费观看| 伦理电影大哥的女人| 大码成人一级视频| 性色av一级| 大陆偷拍与自拍| 有码 亚洲区| 丰满饥渴人妻一区二区三| 亚洲中文av在线| 日韩av免费高清视频| 性色av一级| 国产精品av久久久久免费| 搡老乐熟女国产| 自线自在国产av| 欧美xxⅹ黑人| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 少妇熟女欧美另类| 黄频高清免费视频| 国产1区2区3区精品| 精品亚洲成a人片在线观看| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 中国国产av一级| 美女主播在线视频| 久久久国产一区二区| 啦啦啦中文免费视频观看日本| 最近手机中文字幕大全| 久久久久久人妻| 久久久久久久久久人人人人人人| 香蕉国产在线看| av网站在线播放免费| 免费观看无遮挡的男女| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美精品济南到 | 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 午夜福利影视在线免费观看| 国产乱人偷精品视频| 亚洲成人av在线免费| 精品久久久久久电影网| 99久久综合免费| 伊人久久国产一区二区| 香蕉丝袜av| 国产视频首页在线观看| 欧美在线黄色| 精品一区二区免费观看| 精品国产超薄肉色丝袜足j| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 免费大片黄手机在线观看| 亚洲精品国产一区二区精华液| 飞空精品影院首页| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 日本免费在线观看一区| 91精品国产国语对白视频| 久热这里只有精品99| 欧美bdsm另类| 欧美日韩av久久| 久久久久久久久久人人人人人人| 91在线精品国自产拍蜜月| 巨乳人妻的诱惑在线观看| 日韩精品有码人妻一区| 久久精品久久久久久久性| 欧美xxⅹ黑人| 婷婷色综合www| 高清视频免费观看一区二区| 欧美另类一区| 日韩精品免费视频一区二区三区| 搡女人真爽免费视频火全软件| 最近的中文字幕免费完整| 叶爱在线成人免费视频播放| 啦啦啦中文免费视频观看日本| 久久精品aⅴ一区二区三区四区 | 99久久人妻综合| 久久99精品国语久久久| 九色亚洲精品在线播放| 人体艺术视频欧美日本| 一二三四中文在线观看免费高清| kizo精华| 亚洲国产av影院在线观看| 一区二区三区乱码不卡18| 国精品久久久久久国模美| 搡老乐熟女国产| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 两性夫妻黄色片| 啦啦啦在线免费观看视频4| 婷婷成人精品国产| 亚洲久久久国产精品| av免费观看日本| 夫妻午夜视频| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 亚洲av国产av综合av卡| 欧美日韩视频高清一区二区三区二| 自线自在国产av| 交换朋友夫妻互换小说| 欧美精品av麻豆av| 亚洲伊人色综图| 亚洲视频免费观看视频| 制服诱惑二区| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 欧美国产精品va在线观看不卡| kizo精华| 免费播放大片免费观看视频在线观看| 黑人猛操日本美女一级片| 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 最近的中文字幕免费完整| 一区福利在线观看| 欧美精品一区二区免费开放| 看免费av毛片| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 亚洲欧美成人综合另类久久久| 性色avwww在线观看| 国产一区有黄有色的免费视频| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久 | 欧美最新免费一区二区三区| 各种免费的搞黄视频| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 成人国产av品久久久| 亚洲第一av免费看| 又大又黄又爽视频免费| 国产一级毛片在线| 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 视频在线观看一区二区三区| 久久久久精品性色| 亚洲精品aⅴ在线观看| 超碰成人久久| 你懂的网址亚洲精品在线观看| 午夜福利视频精品| 久久久国产精品麻豆| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 色哟哟·www| 日本欧美视频一区| 国产成人精品婷婷| 久久狼人影院| 午夜久久久在线观看| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 久久久久久伊人网av| www.自偷自拍.com| 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三区在线| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 中文天堂在线官网| 国产免费视频播放在线视频| 亚洲成av片中文字幕在线观看 | av在线app专区| 五月伊人婷婷丁香| 亚洲一区中文字幕在线| 精品酒店卫生间| 日本爱情动作片www.在线观看| 欧美av亚洲av综合av国产av | 男女高潮啪啪啪动态图| 秋霞伦理黄片| 激情五月婷婷亚洲| 午夜福利,免费看| 成人影院久久| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| av天堂久久9| 另类亚洲欧美激情| 久久久精品94久久精品| 国产伦理片在线播放av一区| 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 中国国产av一级| 18+在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 国产一区亚洲一区在线观看| 国产日韩欧美在线精品| av网站在线播放免费| 免费少妇av软件| 啦啦啦在线观看免费高清www| 丁香六月天网| 久久久久视频综合| 一区福利在线观看| 91久久精品国产一区二区三区| 午夜福利一区二区在线看| 亚洲欧洲日产国产| 午夜福利乱码中文字幕| 在线观看国产h片| 少妇被粗大的猛进出69影院| 在线观看国产h片| 国产成人一区二区在线| 最近中文字幕高清免费大全6| 亚洲精品美女久久久久99蜜臀 | 黑人猛操日本美女一级片| 久久精品aⅴ一区二区三区四区 | 免费少妇av软件| 大码成人一级视频| 日韩一区二区视频免费看| 91久久精品国产一区二区三区| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| av有码第一页| 咕卡用的链子| 永久免费av网站大全| 中文乱码字字幕精品一区二区三区| 天天操日日干夜夜撸| a级毛片黄视频| av网站免费在线观看视频| 97精品久久久久久久久久精品| 男女边摸边吃奶| 九色亚洲精品在线播放| 国产精品无大码| 久热久热在线精品观看| 最新中文字幕久久久久| 一个人免费看片子| 国产精品欧美亚洲77777| kizo精华| 中文字幕av电影在线播放| 欧美激情极品国产一区二区三区| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 18禁观看日本| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 中国国产av一级| 久久97久久精品| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 国精品久久久久久国模美| 美女高潮到喷水免费观看| 热re99久久国产66热| 你懂的网址亚洲精品在线观看| 五月天丁香电影| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 人人妻人人澡人人看| 男女午夜视频在线观看| 色哟哟·www| 亚洲第一青青草原| 啦啦啦视频在线资源免费观看| 国产av精品麻豆| 在现免费观看毛片| freevideosex欧美| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 欧美变态另类bdsm刘玥| 观看美女的网站| 成人免费观看视频高清| 国产精品嫩草影院av在线观看| 母亲3免费完整高清在线观看 | 国产午夜精品一二区理论片| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 好男人视频免费观看在线| 亚洲一码二码三码区别大吗| 国产精品国产三级国产专区5o| 日本av免费视频播放| 久久精品国产鲁丝片午夜精品| 精品久久蜜臀av无| kizo精华| 午夜日韩欧美国产| 寂寞人妻少妇视频99o| 一二三四在线观看免费中文在| 青草久久国产| 自线自在国产av| 777米奇影视久久| 亚洲视频免费观看视频| 免费观看无遮挡的男女| 满18在线观看网站| 国产亚洲一区二区精品| 美女国产视频在线观看| 日韩电影二区| 人人妻人人添人人爽欧美一区卜| 久久国产精品大桥未久av| 亚洲av免费高清在线观看| 婷婷色麻豆天堂久久| 女人被躁到高潮嗷嗷叫费观| 色婷婷av一区二区三区视频| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂| 老司机影院毛片| a 毛片基地| 成人手机av| 新久久久久国产一级毛片| 有码 亚洲区| 中文字幕人妻丝袜一区二区 | 新久久久久国产一级毛片| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品久久二区二区91 | 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| 免费在线观看视频国产中文字幕亚洲 | 制服丝袜香蕉在线| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 美女国产高潮福利片在线看| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 电影成人av| 99久久精品国产国产毛片| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 久久久久久久久久人人人人人人| 天堂8中文在线网| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆 | 精品一区二区三卡| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| xxx大片免费视频| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 99久久人妻综合| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 亚洲美女视频黄频| 久久精品国产a三级三级三级| 成人国产麻豆网| 涩涩av久久男人的天堂| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 日韩中文字幕视频在线看片| 在线观看一区二区三区激情| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩欧美视频二区| 亚洲伊人久久精品综合| 国产午夜精品一二区理论片| 嫩草影院入口| 亚洲人成电影观看| 涩涩av久久男人的天堂| 青春草亚洲视频在线观看| 久久国产精品大桥未久av| 免费黄色在线免费观看| 亚洲伊人久久精品综合| 亚洲国产精品999| 日韩欧美精品免费久久| 最新的欧美精品一区二区| 久久精品国产鲁丝片午夜精品| 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 韩国av在线不卡| 亚洲av男天堂| 亚洲欧美成人精品一区二区| 婷婷色综合www| 大香蕉久久成人网| 免费少妇av软件| 91在线精品国自产拍蜜月| 最近最新中文字幕大全免费视频 | 国产黄色视频一区二区在线观看| 成人国产麻豆网| 少妇的逼水好多| 精品久久久精品久久久| 久久精品亚洲av国产电影网| 新久久久久国产一级毛片| 久久久久久久久免费视频了| 黄频高清免费视频| 久热久热在线精品观看| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 久久人人爽人人片av| 18禁裸乳无遮挡动漫免费视频| 亚洲第一青青草原| 五月天丁香电影| 26uuu在线亚洲综合色| 男女无遮挡免费网站观看| 丝袜美足系列| 麻豆av在线久日| av在线app专区| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 999精品在线视频| 亚洲欧洲日产国产| 免费高清在线观看日韩| 天堂俺去俺来也www色官网| 亚洲综合色网址| 成年人免费黄色播放视频| 丝袜脚勾引网站| 美女国产视频在线观看| 国产伦理片在线播放av一区| 色婷婷久久久亚洲欧美| 久久久久精品久久久久真实原创| 久久精品aⅴ一区二区三区四区 | 成年人免费黄色播放视频| 国产成人aa在线观看|