楊增玲,梅佳琪,曹 聰,紀(jì)冠亞,韓魯佳
?
基于紅外光譜的不同農(nóng)作物秸稈磨木木質(zhì)素差異表征
楊增玲,梅佳琪,曹 聰,紀(jì)冠亞,韓魯佳※
(中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
木質(zhì)素是植物細(xì)胞壁中主要組分之一,其苯丙烷結(jié)構(gòu)單元的單體結(jié)構(gòu)和連接方式的復(fù)雜性直接影響木質(zhì)素脫除和利用效果,了解不同農(nóng)作物秸稈中木質(zhì)素的差異,對提高秸稈的綜合利用效率是非常必要的。該文選取代表性棉稈、玉米秸和小麥稈,分別提取磨木木質(zhì)素,利用傅里葉變換中紅外技術(shù)對棉稈、玉米秸和小麥稈三類秸稈磨木木質(zhì)素進(jìn)行紅外表征,分析比較三類秸稈磨木木質(zhì)素的差異,結(jié)果表明:1)三類秸稈磨木木質(zhì)素G/S相對比值差別不大,并無明顯規(guī)律;2)三類秸稈磨木木質(zhì)素中,對羥基結(jié)構(gòu)單元:玉米秸>小麥稈>>棉稈;愈創(chuàng)木基結(jié)構(gòu)單元:棉稈>玉米秸>小麥稈;紫丁香基結(jié)構(gòu)單元:玉米秸>小麥稈>棉稈;3)玉米秸和小麥稈磨木木質(zhì)素相似度較高,而棉稈磨木木質(zhì)素則更加接近于木本植物。
秸稈;作物;光譜分析;磨木木質(zhì)素;紅外光譜
木質(zhì)素作為植物細(xì)胞壁中主要組分之一,是植物細(xì)胞壁中最為復(fù)雜的天然高分子化合物之一,由苯丙烷結(jié)構(gòu)單元通過醚鍵和碳碳鍵連接而成[1],含有多種活性基團(tuán)。因結(jié)構(gòu)單元的不同,木質(zhì)素可分為3種類型:對羥基苯基丙烷單元形成的對羥基苯基木質(zhì)素(hydroxy phenyl lignin,H型木質(zhì)素);紫丁香基丙烷單元形成的紫丁香基木質(zhì)素(syringyl lignin,S型木質(zhì)素);愈創(chuàng)木基丙烷單元形成的愈創(chuàng)木基木質(zhì)素(guaiacyl lignin,G型木質(zhì)素)[2-3]。不同植物的木質(zhì)素包含有不同的基本結(jié)構(gòu)單元,如針葉木類主要是G型木質(zhì)素,闊葉木類主要是S型和G型木質(zhì)素,草類植物則是S型、G型和H型木質(zhì)素都存在[4]。
研究表明,植物體中G型木質(zhì)素單體含量越高,木質(zhì)素越難脫除[5]。劉忠等[6]在乙醇法制漿過程中發(fā)現(xiàn)愈創(chuàng)木基結(jié)構(gòu)單元相對紫丁香基和對羥基結(jié)構(gòu)單元難于脫除。鄺仕均[7]在桉木硫酸鹽法制漿過程中同樣也發(fā)現(xiàn)G/S相對比值越低的木質(zhì)素越容易蒸煮和有較高的制漿得率。木質(zhì)素不同單體的結(jié)構(gòu)和連接還存在以下差異:愈創(chuàng)木基抗氧化活性要比紫丁香基強(qiáng)[8],且更容易進(jìn)行親電取代反應(yīng)[9]和磺化[10];在臭氧處理過程中愈創(chuàng)木基較易降解溶出[11];木質(zhì)素單體越復(fù)雜,在醇解中降解度越大,過程中產(chǎn)生的小分子物質(zhì)會更多[12];在木質(zhì)素硝化改性中,愈創(chuàng)木基最容易引入硝基到苯環(huán)中,最易于硝化[13];由于愈創(chuàng)木基結(jié)構(gòu)單元易于發(fā)生縮合和偶聯(lián)反應(yīng),導(dǎo)致在木質(zhì)素的熱解后殘余質(zhì)量會較其他高[14];在生物質(zhì)固沙中,固沙材料的關(guān)聯(lián)主要在木質(zhì)素中的愈創(chuàng)木基和對羥基結(jié)構(gòu)上,且對羥基結(jié)構(gòu)和愈創(chuàng)木基結(jié)構(gòu)發(fā)生交聯(lián)反應(yīng)的概率基本相同[15]。
從植物學(xué)角度而言,棉花、玉米和小麥3種植物同屬一年生草本類被子植物;棉花屬于雙子葉植物,玉米和小麥屬于單子葉植物[16]。三者的秸稈形態(tài)完全不同,尤以棉稈差異最大,形態(tài)很接近于木本植物。鑒于棉稈、玉米秸和小麥稈的差別所在,其利用不能一概而論。而其中差異性非常大的木質(zhì)素對秸稈性質(zhì)的影響不言而喻[5-7,9],了解其中木質(zhì)素的差異,對于提高3類秸稈的綜合利用效率是非常必要的。
木質(zhì)素的分離方法通常可以分為2大類[17]:一類是將纖維素和半纖維素等成分溶解除去,將木質(zhì)素作為不溶性成分沉淀下來,如鹽酸木質(zhì)素和硫酸木質(zhì)素,該方法分離的木質(zhì)素結(jié)構(gòu)已發(fā)生變化;另一類是將木質(zhì)素作為可溶性成分,先使用中性有機(jī)溶劑將植物中的木質(zhì)素溶解,然后使其沉淀,從而將木質(zhì)素分離提取出來。后者分離后的木質(zhì)素得率較低,但較好地保持了木質(zhì)素的化學(xué)結(jié)構(gòu),基本可以代表植物體內(nèi)木質(zhì)素。為了獲取代表性木質(zhì)素樣本,分析3類秸稈木質(zhì)素特性差異[18-19],本研究采用后一類方法,提取磨木木質(zhì)素(milled wood lignin,MWL)用于紅外光譜分析。
棉稈、玉米秸和小麥稈分別采集3個樣品,取樣情況如表1。
表1 棉稈、玉米秸、小麥稈采樣信息表
秸稈樣品粗粉過40目篩(RT-34,中國泓荃),再經(jīng)苯醇溶液(體積比2 : 1)抽提12 h,抽去脂質(zhì)和蠟質(zhì),在烘箱中40 ℃左右過夜烘去苯醇?xì)堄?。將樣品置于高能納米球磨粉碎機(jī)(中國秦皇島市太極環(huán)納米制品有限公司)中,干法粉碎4 h,在粉碎過程中開啟循環(huán)冷卻水系統(tǒng),使罐內(nèi)溫度保持在30 ℃以下。粉碎機(jī)使用強(qiáng)化不銹鋼磨罐,內(nèi)壁為陶瓷,磨介為氧化鋯球(直徑6~10 mm),球料比2 : 1。將獲得的樣品在45 ℃烘干3 h,封于自封樣品袋中用于之后提取磨木木質(zhì)素。
1.2.1 磨木木質(zhì)素(MWL)提取
本研究參考文獻(xiàn)[20-21]提取秸稈樣品的磨木木質(zhì)素,具體過程如下:
1)取適量粉碎后的樣品置于500 mL二氧六環(huán):水(8 : 2)的混合溶劑中,常溫下不斷攪拌并重復(fù)提取3次,盡量將樣品中的可溶性物質(zhì)和MWL提出。
2)將提取后的混合溶液過夜沉淀,取上清液用玻璃纖維過濾,濾液用旋轉(zhuǎn)蒸發(fā)儀(DV10 digital,德國IKA)在真空條件下以40 ℃溫度將溶劑蒸干,便得到粗制磨木木質(zhì)素。
3)將粗制磨木木質(zhì)素溶解在吡啶:冰醋酸:水(9 : 1 : 4)的混合溶劑中,攪拌使其完全溶解,加入混合溶液容積10~15倍的三氯甲烷置于分液漏斗中萃取3次,留下層溶液待用。
4)將分離出的溶液用旋轉(zhuǎn)蒸發(fā)儀在40 ℃真空條件下蒸發(fā)溶劑至原溶液體積的1/10左右。
5)在剩下的溶劑中加入15倍體積的乙醚,產(chǎn)生大量棕黃色沉淀。離心(離心機(jī),GL-20G-C,中國上海安亭)將沉淀物與溶劑分開,將沉淀物用乙醚反復(fù)洗滌并沉淀3次。
6)將沉淀物冷凍干燥,最終得到的棕黃色粉狀物即為提純后的磨木木質(zhì)素。
1.2.2 中紅外光譜采集
將提取凍干后的磨木木質(zhì)素取1~2 mg于瑪瑙研缽中,加入約100 mg干燥的溴化鉀粉末,研磨至完全混和均勻,整個過程在紅外燈下進(jìn)行以防止溴化鉀吸水。將研磨后的粉末使用壓片機(jī)在20 MPa壓力下壓制1 min左右,制成一定厚度和直徑的透明壓片。將溴化鉀壓片放入Spectrum 400傅里葉變換紅外光譜儀(美國,PerkinElmer)中采集中紅外光譜,采集參數(shù)為:光譜范圍4 000~450 cm-1,掃描次數(shù)32次,光譜分辨率4 cm-1。
1.2.3 中紅外光譜預(yù)處理
1 506 cm-1附近的吸收峰為苯環(huán)骨架振動吸收峰,在磨木木質(zhì)素中紅外吸收峰中穩(wěn)定且吸收較強(qiáng),通常將此峰作為參比峰。將光譜在此峰處進(jìn)行歸一化(A1506 = 1)后進(jìn)一步分析比較秸稈樣品的木質(zhì)素各單體結(jié)構(gòu)的含量差異[22]。
圖1為歸一化后棉稈、玉米秸和小麥稈共9個樣品的磨木木質(zhì)素中紅外光譜圖;3種秸稈磨木木質(zhì)素的主要峰歸屬[22-26]見表2。
圖1 棉稈、玉米秸、小麥稈磨木木質(zhì)素中紅外光譜
表2 棉稈、玉米秸、小麥稈木質(zhì)素中紅外光譜主要峰歸屬
由圖1可以看出,不同種類秸稈樣品的磨木木質(zhì)素中紅外光譜間存在較大的區(qū)別,同種類不同品種樣品磨木木質(zhì)素中紅外光譜之間雖然相似度較高,但是同樣也存在一定的差別。為闡述區(qū)別所在,下面從3種秸稈磨木木質(zhì)素的G/S相對比值、植物學(xué)分類以及與桉木磨木木質(zhì)素的比較3個方面做進(jìn)一步分析。
1 329 cm-1附近吸收峰為木質(zhì)素中紫丁香基的特征吸收,1 265 cm-1附近吸收峰為木質(zhì)素中愈創(chuàng)木基的特征吸收,通過吸光度比值(A1265/A1329)來反映樣品磨木木質(zhì)素中愈創(chuàng)木基和紫丁香基含量的相對比值[24,27-28]。以上9個樣品的G/S結(jié)果如表3,單因素方差分析結(jié)果如表4。
表3 棉稈、玉米秸、小麥稈G/S相對比值
表4 棉稈、玉米秸、小麥稈G/S相對比值方差分析
由表3可知,3種秸稈磨木木質(zhì)素G/S相對比值均大于1,愈創(chuàng)木基的相對含量要比紫丁香基多。但不同的樣品間比值不同,說明不同樣品間G/S相對比值大小存在一定差異;而在不同種秸稈間,未出現(xiàn)明顯的規(guī)律。棉稈、玉米秸和小麥稈的G/S相對比值表現(xiàn)為棉稈>玉米秸>小麥稈,但是差異較小。
由方差分析表可知,=0.656 7,即3種秸稈G/S相對比值差異不顯著。
不同植物磨木木質(zhì)素的中紅外譜圖與其化學(xué)性質(zhì)及植物分類學(xué)之間有著密切的聯(lián)系。Faix[22]根據(jù)木質(zhì)素中紅外光譜一些特征峰的不同將木質(zhì)素分為3大類:G、GS和HGS,其中GS又可細(xì)分為4小類,GS1、GS2、GS3和GS4,判別流程如圖2。
圖2 木質(zhì)素中紅外光譜的植物分類學(xué)判別流程圖
根據(jù)中紅外光譜圖和判別流程圖,可對9個樣品進(jìn)行分類,具體結(jié)果如表5。由表5可知,玉米秸和小麥稈磨木木質(zhì)素屬于HGS類,而棉稈磨木木質(zhì)素屬于GS1。
圖3為棉稈、玉米秸、小麥稈磨木木質(zhì)素平均中紅外光譜圖,表6為棉稈、玉米秸、小麥稈峰強(qiáng)度相對值。以下結(jié)合3種秸稈磨木木質(zhì)素譜圖和木質(zhì)素中紅外主要峰歸屬表對3種秸稈中木質(zhì)素各單體摩爾百分含量作進(jìn)一步比較分析。
表5 棉稈、玉米秸、小麥稈磨木木質(zhì)素植物分類學(xué)判別結(jié)果
圖3 棉稈、玉米秸、小麥稈磨木木質(zhì)素平均紅外光譜
1 166 cm-1附近為對羥基肉桂酸特征峰,即對羥基結(jié)構(gòu)單元特征峰(H型木質(zhì)素結(jié)構(gòu)單體),在玉米秸和小麥稈磨木木質(zhì)素譜圖中都存在1 166 cm-1吸收峰,且該峰在玉米秸磨木木質(zhì)素光譜中表現(xiàn)較為強(qiáng)烈;在棉稈磨木木質(zhì)素譜圖中該峰位表現(xiàn)為肩峰,幾乎難以辨識。這說明在玉米秸磨木木質(zhì)素中對羥基結(jié)構(gòu)單元要多于小麥稈磨木木質(zhì)素;棉稈磨木木質(zhì)素中基本沒有對羥基結(jié)構(gòu)單元。即對羥基結(jié)構(gòu)單元(H):玉米秸>小麥稈>>棉稈。
1 265 cm-1附近是愈創(chuàng)木基特征峰,即愈創(chuàng)木基結(jié)構(gòu)單元特征峰(G型木質(zhì)素結(jié)構(gòu)單體)。玉米秸和小麥稈磨木木質(zhì)素均屬于HGS型木質(zhì)素,譜圖中都存在1 265 cm-1吸收峰,且由于C=O振動使得該吸收峰強(qiáng)于標(biāo)準(zhǔn)GS型木質(zhì)素譜圖[22-25],該峰在玉米秸磨木木質(zhì)素光譜中表現(xiàn)略為強(qiáng)烈;而棉稈磨木木質(zhì)素屬于GS1型木質(zhì)素,1265 cm-1處有著清晰可辯的吸收峰,結(jié)合表3可知棉稈磨木木質(zhì)素的G/S相對比值高于玉米秸和小麥稈磨木木質(zhì)素。則愈創(chuàng)木基結(jié)構(gòu)單元(G):棉稈>玉米秸>小麥稈。
1 329 cm-1附近為紫丁香基特征峰,即紫丁香基結(jié)構(gòu)單元特征峰(S型木質(zhì)素結(jié)構(gòu)單體)。在3種秸稈中都明顯存在該峰位,峰強(qiáng)度相對比值:玉米秸>小麥稈>棉稈,即紫丁香基結(jié)構(gòu)單元(S):玉米秸>小麥稈>棉稈。
結(jié)合Faix的預(yù)測模型[22](表7)也可大致推算3種秸稈磨木木質(zhì)素中各單體的摩爾百分含量大小,對羥基結(jié)構(gòu)單元(H):玉米秸≈小麥稈>棉稈;愈創(chuàng)木基結(jié)構(gòu)單元(G):棉稈>玉米秸≈小麥稈;紫丁香基結(jié)構(gòu)單元(S):棉稈≤小麥稈≈玉米秸。
前述基于峰強(qiáng)度相對值(A1 166,A1 329,A1 265)的相關(guān)結(jié)論,同基于Faix預(yù)測模型的結(jié)論吻合,且進(jìn)一步細(xì)化了玉米秸和小麥稈磨木木質(zhì)素的比較結(jié)果。
表6 棉稈、玉米秸、小麥稈峰強(qiáng)度相對值
表7 基于中紅外光譜分析的各類型木質(zhì)素中各單體摩爾百分含量(數(shù)據(jù)引自[22])
注:H為對羥基結(jié)構(gòu)單元,S為紫丁香基結(jié)構(gòu)單元,G為愈創(chuàng)木基結(jié)構(gòu)單元。
Note: H ishydroxy phenyl lignin; S is syringyl lignin; G is guaiacyl lignin.
從圖3中還可以看出3種秸稈磨木木質(zhì)素中含有較多的酚羥基和游離羥基官能團(tuán),表現(xiàn)在1 265、1 030 cm-1附近的伸縮振動以及3 400 cm-1附近寬峰的伸縮振動。在3 400 cm-1的O?H由3 600 cm-1附近發(fā)生紅移,同時峰形變強(qiáng)變寬,證明在木質(zhì)素中存在較多的羥基,形成氫鍵締合作用。對比3類秸稈磨木木質(zhì)素平均光譜,在峰形上小麥稈和玉米秸磨木木質(zhì)素譜圖比較相似,而棉稈木質(zhì)素則不同,尤其表現(xiàn)在1 265、1 226 cm-1為2個明顯區(qū)分的峰位。圖4為桉木磨木木質(zhì)素紅外光譜[19],在1 265、1 226 cm-1也表現(xiàn)為2個明顯區(qū)分的峰位。由此可見,在峰形上棉稈磨木木質(zhì)素譜圖與桉木磨木木質(zhì)素更相似,可推知棉稈的木質(zhì)素結(jié)構(gòu)與木本植物木質(zhì)素更相似。
圖4 桉木磨木木質(zhì)素紅外光譜(圖片引自[4])
(quote from Ref.4)
本文利用傅里葉中紅外技術(shù)對棉稈、玉米秸和小麥稈3類秸稈磨木木質(zhì)素進(jìn)行紅外表征,分析了3類秸稈磨木木質(zhì)素的差異。
1)3類秸稈磨木木質(zhì)素G/S相對比值差別不大,并無明顯規(guī)律。
2)結(jié)合Faix預(yù)測模型和3類秸稈磨木木質(zhì)素中紅外譜圖,3類單體含量大致如下,對羥基結(jié)構(gòu)單元(H):玉米稈>小麥稈>>棉稈;愈創(chuàng)木基結(jié)構(gòu)單元(G):棉稈>玉米秸>小麥稈;紫丁香基結(jié)構(gòu)單元(S):玉米秸>小麥稈>棉稈。
3)對比棉稈、玉米秸、小麥稈磨木木質(zhì)素與桉木磨木木質(zhì)素中紅外譜圖發(fā)現(xiàn),玉米秸和小麥稈磨木木質(zhì)素存在一定的相似性,而棉稈磨木木質(zhì)素更接近于木本植物。
[1] Li Changzhi, Zhao Xiaochen, Wang Aiqin, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev, 2015, 115(21): 11559-11624. Doi: 10.1021/acs.chemrev.5b00155
[2] Gosselink R J A, Snijder M H B, Kranenbarg A, et al. Characterization and application of Nova fiber lignin[J]. Industrial Crops and Products, 2004, 20(2): 191-203. Doi: 10.1016/j.indcrop.2004.04.021
[3] 陶用珍,管映亭. 木質(zhì)素的化學(xué)結(jié)構(gòu)及其應(yīng)用[J]. 纖維素科學(xué)與技術(shù),2003,11(1):42-55.Tao Yongzhen, Guan Yingting. Study of chemical composition of lignin and its application[J]. Journal of Cellulose Science and Technology, 2003, 11(1): 42-45. (in Chinese with English abstract)
[4] 蔣挺大. 木質(zhì)素[M]. 第2版. 北京:化學(xué)工業(yè)出版社,2009.
[5] Rencoret J, Marques G, Gutiérrez A, et al. Isolation and structural characterization of the milled-wood lignin fromwood[J]. Journal of Agricultural and Food Chemistry, 2009, 30(1): 137-143. Doi: 10.1016/j.indcrop. 2009.03.004
[6] 劉忠,齊宏升. 麥草酸催化乙醇法制漿過程中木質(zhì)素結(jié)構(gòu)的變化[J]. 天津科技大學(xué)學(xué)報,2008,23(2):10-13. Liu Zhong, Qi Hongsheng. Configuration transformation of lignin in wheat straw acid-catalytic ethanol pulping process [J]. Journal of Tianjin University of Science & Technology, 2008, 23(2): 10-13. (in Chinese with English abstract)
[7] 鄺仕均. 桉樹木材性質(zhì)對其硫酸鹽法制漿性能的影響[J].中國造紙,2011,30(12):51-54. Kuang Shijun. Effect of eucalyptus wood properties on its kraft pulping performance[J]. China Pulp & Paper, 2011, 30(12): 51-54. (in Chinese with English abstract)
[8] 鄭秋闿,范晶晶,許凱,等. 木質(zhì)素結(jié)構(gòu)在聚丙烯中抗氧化作用的影響[J]. 實驗室研究與探索,2013,32(6):8-11. Zheng Qiukai, Fan Jingjing, Xu Kai, et al. Effect of lignin structure on antioxidation in polypropylene[J]. Research and Exploration In Laboratory, 2013, 32(6): 8-11. (in Chinese with English abstract)
[9] 梁文學(xué),邱學(xué)青,楊東杰,等. 麥草堿木質(zhì)素的氧化和磺甲基化改性[J]. 華南理工大學(xué)學(xué)報:自然科學(xué)版,2007,35(5):117-121. Liang Wenxue, Qiu Xueqing, Yang Dongjie, et al. Modificaion of wheat straw alkali lignin by oxidation and sulfomethylation[J]. Journal of South China University of Technology: Natural Science Edition, 2007, 35(5): 117-121. (in Chinese with English abstract)
[10] 陳方,肖習(xí)蓉,陳嘉翔. 桉木化機(jī)漿制漿過程中木素結(jié)構(gòu)的變化[J]. 纖維素科學(xué)與技術(shù),1996,4(3):30-35. Chen Fang, Xiao Xirong, Chen Jiaxiang. Characterization of protolignin in Eucalyptus CMP[J]. Journal of Cellulose Science and Technology, 1996, 4(3): 30-35. (in Chinese with English abstract)
[11] 周學(xué)飛. 麥草木素在臭氧處理中的作用行為[J]. 纖維素科學(xué)與技術(shù),2004,12(4):35-37,56. Zhou Xuefei. Behavior of wheat straw lignin during ozone treatment[J]. Journal of Cellulose Science and Technology, 2004, 12(4): 35-37, 56. (in Chinese with English abstract)
[12] 王勇,鄒獻(xiàn)武,秦特夫. 生物質(zhì)醇解重質(zhì)油燃燒動力學(xué)研究[J]. 林產(chǎn)化學(xué)與工業(yè),2012,32(1):35-38. Wang Yong, Zou Xianwu, Qin Tefu. Combustion kinetics analysis of fuel oil derived from biomass liquefaction with 1- octanol[J]. Chemistry and Industry of Forest Products, 2012, 32(1): 35-38. (in Chinese with English abstract)
[13] 宋湛謙,Han J S,Rowell R M. 花旗松纖維和槿麻纖維的硝酸化學(xué)改性[J]. 林產(chǎn)化學(xué)與工業(yè),1999,19(1):1-5. Song Zhanqian, Han J S, Rowell R M. Chemical modification of douglas fir and kenaf fibers by nitric acid[J]. Chemistry and Industry of Forest Products, 1999, 19(1): 1-5. (in Chinese with English abstract)
[14] 婁瑞,武書彬,呂高金,等. 草本類木素的化學(xué)結(jié)構(gòu)與熱化學(xué)性質(zhì)[J]. 華南理工大學(xué)學(xué)報:自然科學(xué)版,2010,38(8):1-6. Lou Rui, Wu Shubin, Lǜ Gaojin, et al. Chemical structure and thermochemical properties of lignin from herbaceous plant[J]. Journal of South China University of Technology:Natural Science Edition, 2010, 38(8): 1-6. (in Chinese with English abstract)
[15] 金永燦,劉軍,楊益琴,等. 草漿廢液制備生物質(zhì)固沙材料及其在植被恢復(fù)上的應(yīng)用(系列報道之二)生物質(zhì)固沙材料的結(jié)構(gòu)特性[J]. 中華紙業(yè),2006,27(10):75-78. Jin Yongcan, Liu Jun, Yang Yiqin, et al. Preparation of biomass sand stabilization material from straw pulp effluent and its application on vegetation restoration (II): Structural characteristics of biomass sand stabilization material[J]. China Pulp & Paper Industry, 2006, 27(10): 75-78. (in Chinese with English abstract)
[16] 徐漢卿等主編. 植物學(xué)[M]. 北京:北京農(nóng)業(yè)大學(xué)出版社, 1994.
[17] 李忠正. 可再生生物質(zhì)資源——木質(zhì)素的研究[J]. 南京林業(yè)大學(xué)學(xué)報:自然科學(xué)版,2012,36(1):1-7. Li Zhongzheng. Research on renewable biomass resource: Lignin[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2012, 36(1): 1-7. (in Chinese with English abstract)
[18] John Ralph, G?staBrunow, Philip J Harris, et al. Lignification: Are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication?[J]. Recent Advances in Polyphenol Research, 2008, 1: 36-66. Doi: 10.1002/9781444302400.ch2
[19] Priscila Maziero, Mario de Oliveira Neto, Douglas Machado, et al. Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse[J]. Industrial Crops and Products, 2012, 35(1): 61-69. Doi: 10.1016/j. indcrop.2011.06.008
[20] Brownell H H. Isolation of milled lignin and lignin carbohydrate complex[J]. TAPPI, 1965, 48: 513-518.
[21] Anderson Guerra, Ilari Filpponen, Lucian A Lucia, et al. Comparative evaluation of three lignin isolation protocols for various wood species[J]. Journal of Agricultural and Food Chemistry, 2006, 54(26): 9696-9705. Doi: 10.1021/jf062433c
[22] Faix O. Classification of lignins from different botanical origins by FT-IR spectroscopy[J]. Holzforschung, 1991, 45(Supp.1): 21-28. Doi: 10.1515/hfsg.1991.45.s1.21
[23] Rumana Rana, Rosemarie Langenfeld-Heyser, Reiner Finkeldey, et al. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae[J]. Wood Science and Technology, 2009, 44(2): 225-242. Doi: 10.1007/s00226-009-0281-2
[24] 陳方,陳嘉翔. 桉木木素的付立葉變換紅外光譜研究[J].纖維素科學(xué)與技術(shù),1994,2(2):14-20. Chen Fang, Chen Jiaxiang. FTIR study of lignin from Eucalyptus[J]. Journal of Cellulose Science and Technology, 1994, 2(2): 14-20. (in Chinese with English abstract)
[25] 邸明偉. 生物質(zhì)材料現(xiàn)代分析技術(shù)[M]. 北京:化學(xué)工業(yè)出版社,2010.
[26] Sun R, Sun X F, Wang S Q, et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products, 2002, 15(3): 179-188. Doi: 10.1016/S0926-6690(01)00112-1
[27] Li L, Zhou Y, Cheng X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation [J]. Proceedings of the National Academy of Science of the United States of America, 2003, 100(8): 4939-4944. Doi: 10.1073/pnas.0831166100
[28] Antonovic A, Jambrekovic V, Franjic J, et al. Influence of sampling location on content and chemical composition of the beech native lignin ()[J]. Periodicum Biologorum, 2010, 112(3), 327-332.
Traits of milled wood lignin isolated from different crop straw based on FT-IR
Yang Zengling, Mei Jiaqi, Cao Cong, Ji Guanya, Han Lujia※
(,100083,)
As vast agricultural byproduct and an important source of lignocellulosic biomass in China, straws of maize, cotton and wheat are now being developed as renewable energy resources to address a serious energy shortage and environmental issues related to other energy sources. It is necessary to improve the comprehensive utilization efficiency of the three types of straw. Although maize (monocotyledon), cotton (dicotyledon) and wheat (monocotyledon) belong to therophyte herbage from the perspective of phytology, but their straw forms are totally different. For the sake of the difference among them, the utilization cannot be generalized without regard to the effect of chemical composition, in particular the characteristics of lignin. It is composed of phenyl propane monomers connected by the ether and carbon-carbon bonds, containing a variety of active groups. There are three types of phenylpropane, p-hydroxy phenyl, guaiacyl and syringyl, which correspond to hydroxy phenyl lignin (H-lignin), syringyl lignin (S-lignin) and guaiacyl lignin (G-lignin), respectively. Lignin within plants has different shares of the three constitutional units. The heterogeneity of linkage types among the phenyl propane monomers has different effects on the pretreatment for the utilization and removal of lignin. Previous researches have shown that the relative ratio of G-lignin/S-lignin (G/S value) is relevant to the ease or complexity of delignification. Therefore, the higher the ratio, the harder the delignification is. In this paper, three samples of each kind of straw were collected, coarse grinded, degreased, dewaxed, and fine grinded, in sequence. Then the milled wood lignin (MWL) was isolated from the straws of cotton, corn and wheat. After the all procedures above, MWL was studied with FT-IR, by potassium bromide pellet technique. Normalization was conducted with 9 spectra obtained, at the wavelength of 1 506 cm-1(to make A1 506=1) as spectral pretreatment. Then the spectra were compared in 3 aspects: the relative G/S ratio represented by A1 265/A1 329, the identification of lignin types based on plant taxonomy, and the differences and similarities comparing with the MWL from eucalyptus. The results indicate that there is more guaiacyl and less syringyl in the MWL isolated from the samples, the relative ratio of G/S among the three kinds of straws was not significant difference, and no evident regularity is found. Secondly, the identification results based on plant taxonomy show that the MWL from cotton straw is the type of GS1, while that from corn and wheat straw belong to the type of HGS; the content of basic units of lignin in mole percent in these straws have following laws: for H-lignin, corn straw>wheat straw>>cotton straw; for G-lignin, cotton straw>corn straw>wheat straw; for S-lignin, corn straw>wheat straw>cotton straw. Thirdly, the MWL isolated from straw of corn and wheat share the generality of gramineous plants, while the MWL from cotton straw is closer to ligneous plants, which have distinguish peak at 1 265 and 1 226 cm-1.
straw;crops; spectrum analysis; milled wood lignin; FT-IR
10.11975/j.issn.1002-6819.2018.19.028
S216
A
1002-6819(2018)-19-0219-06
2018-04-04
2018-08-08
國家自然科學(xué)基金(31471407);教育部創(chuàng)新團(tuán)隊計劃(IRT_17R105)
楊增玲,教授,博士,博士生導(dǎo)師,主要從事光譜技術(shù)、顯微光譜技術(shù)和光譜圖像技術(shù)在農(nóng)業(yè)中的應(yīng)用研究。Email:yangzengling@cau.edu.cn
韓魯佳,教授,博士,博士生導(dǎo)師,長江學(xué)者特聘教授,主要從事農(nóng)業(yè)生物質(zhì)工程研究。Email:hanlj@cau.edu.cn
楊增玲,梅佳琪,曹 聰,紀(jì)冠亞,韓魯佳. 基于紅外光譜的不同農(nóng)作物秸稈磨木木質(zhì)素差異表征[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):219-224. doi:10.11975/j.issn.1002-6819.2018.19.028 http://www.tcsae.org
Yang Zengling, Mei Jiaqi, Cao Cong, Ji Guanya, Han Lujia. Traits of milled wood lignin isolated from different crop straw based on FT-IR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 219-224. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.028 http://www.tcsae.org