孫宇新,沈啟康,葉海涵,朱熀秋
?
基于改進(jìn)UKF的無軸承異步電機無速度傳感器控制
孫宇新,沈啟康,葉海涵,朱熀秋
(江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013)
基于傳統(tǒng)卡爾曼濾波器的轉(zhuǎn)速估計方法依賴于系統(tǒng)的精確數(shù)學(xué)模型,但目前通用的無軸承異步電機的數(shù)學(xué)模型是一個近似模型,針對該問題該文提出一種以實際轉(zhuǎn)速為基準(zhǔn)的改進(jìn)的無軸承異步電機轉(zhuǎn)速估算方案:首先,用殘差歸一化處理自動更新漸消因子并將其引入增益矩陣,以減小系統(tǒng)模型偏差對估算精度的影響,增強濾波器的穩(wěn)定性;其次,用遺傳算法自動更新噪聲矩陣,使其具備補償作用,再次優(yōu)化轉(zhuǎn)速估算精度,最終將估算精度控制在5 r/min左右,干擾誤差控制在10 r/min左右,可有效應(yīng)對建模誤差和參數(shù)擾動對轉(zhuǎn)速估算的影響,具備較高的魯棒性和估算精度。最后,用dSPACE試驗平臺證明了所提方案的正確性和可行性,該研究為無軸承異步電機無速度傳感器控制提供參考。
電機;控制;自適應(yīng)漸消無跡卡爾曼濾波算法;改進(jìn)AFUKF;無軸承異步電機;無速度傳感器控制算法
在普通異步電動機的定子槽中附加產(chǎn)生徑向懸浮力的線圈,用兩套線圈共同生成的轉(zhuǎn)矩和徑向力可實現(xiàn)無軸承異步電機(bearingless induction motor,BIM)的轉(zhuǎn)子旋轉(zhuǎn)和穩(wěn)定懸浮[1-5]。但在電機的運行過程中,需要實時檢測轉(zhuǎn)子轉(zhuǎn)速作為相位信號以完成電機的閉環(huán)控制。由于BIM在運行時轉(zhuǎn)子處于自懸浮狀態(tài),在軸上安裝傳感器不僅增加了硬件成本,還會嚴(yán)重影響電機的運行性能。因此,無速度傳感器控制成為了BIM研究中的一個重要課題[6-8],無速度傳感器控制即通過實時檢測電機的電壓和電流來估算電機的實際轉(zhuǎn)速,再將估算的轉(zhuǎn)速反饋到系統(tǒng)中完成閉環(huán)控制,從而避免使用轉(zhuǎn)速傳感器,改善電機的機械性能。
近年來,大量文獻(xiàn)提出了滑模觀測器法[9-10]、神經(jīng)網(wǎng)絡(luò)法[11]、磁鏈觀測法[12-13]、模型參考自適應(yīng)法[14-16]、高頻信號注入法[17-18]、卡爾曼濾波法[19-20]等無速度傳感控制方法。其中卡爾曼法不受電壓直流偏移量的影響,可有效抑制噪聲,估計精度高,估算范圍廣,在電機無速度傳感器控制中得到了廣泛應(yīng)用。卡爾曼濾波法中最常用的是擴展卡爾曼濾波法(extended kalman filter)[21],該方法通過泰勒級數(shù)展開方法將非線性的電機模型近似線性化,再用卡爾曼算法迭代計算電機轉(zhuǎn)速。針對擴展卡爾曼線性化誤差較大、濾波精度不高的問題,學(xué)者相繼提出了無跡卡爾曼濾波(unscented kalman filter)[22]和粒子濾波(particle filter)[23],通過無跡變換和計算概率密度來代替擴展卡爾曼濾波中的近似線性化,從而獲得更高的精度。針對卡爾曼濾波中的復(fù)雜矩陣運算,學(xué)者提出了幾種降階的卡爾曼濾波法[24-25],通過降低協(xié)方差矩陣的階數(shù)從而簡化迭代過程??柭鼮V波還可以用于電機的參數(shù)估計[26],通過將容易變化的電機參數(shù)增廣到系統(tǒng)模型中,增強了系統(tǒng)魯棒性。
但這些已經(jīng)在普通異步電機上得到良好應(yīng)用的方法推廣至BIM時卻出現(xiàn)了不匹配的情況。BIM通過電磁轉(zhuǎn)矩和懸浮力的解耦運算分別構(gòu)造出懸浮力數(shù)學(xué)模型和旋轉(zhuǎn)部分?jǐn)?shù)學(xué)模型,其中旋轉(zhuǎn)力部分通常采和普通異步電機相同的數(shù)學(xué)模型。但這樣的數(shù)學(xué)模型的前提假設(shè)為三相定子繞組和轉(zhuǎn)子繞組在空間對稱分布,且電機的轉(zhuǎn)矩繞組和懸浮控制繞組相繞組軸線方向重合。因此,通用BIM的旋轉(zhuǎn)部分?jǐn)?shù)學(xué)模型是一個近似模型。由于卡爾曼濾波法對系統(tǒng)模型和電機參數(shù)非常敏感,且上述的各種改進(jìn)方法并沒有針對模型的不確定性進(jìn)行改進(jìn),所以系統(tǒng)建模誤差對轉(zhuǎn)速估計的精度會產(chǎn)生很大影響。
為了提高系統(tǒng)的魯棒性和精確性,本文提出一種基于改進(jìn)的自適應(yīng)漸消無跡卡爾曼濾波算的轉(zhuǎn)速辨識法。通過利用殘差序列的協(xié)方差,自適應(yīng)地改變漸消因子以調(diào)整測量值,有助于減小陳舊測量值和系統(tǒng)模型不確定性對估計精度的影響。同時,通過對殘差歸一化處理,達(dá)到平衡各殘差間信息的效果,提高了信息提取的速度。此外將剩余的系統(tǒng)模型誤差部分視為噪聲,用遺傳算法對噪聲矩陣進(jìn)行自適應(yīng)調(diào)整,并利用卡爾曼濾波的噪聲矩陣對模型進(jìn)行補償,再次優(yōu)化系統(tǒng)的估算誤差。試驗結(jié)果驗證了以上方法的正確性和有效性。
BIM繞組結(jié)構(gòu)如圖1所示,轉(zhuǎn)矩繞組和懸浮控制繞組疊繞在同一個定子槽內(nèi)。轉(zhuǎn)矩繞組為四極繞組,用來產(chǎn)生電機轉(zhuǎn)矩,懸浮控制繞組為二極繞組用來控制轉(zhuǎn)子的徑向位置。轉(zhuǎn)矩繞組和懸浮控制繞組每相串聯(lián)的有效匝數(shù)分別為1和2。在懸浮控制繞組和轉(zhuǎn)矩繞組中分別通入電流1和2,則分別產(chǎn)生四極磁鏈2和4。和代表互相垂直的轉(zhuǎn)子位置控制坐標(biāo)軸。在空載情況下,如轉(zhuǎn)子需要沿正方向的徑向力則向徑向力控制繞組中通入如圖1所示的電流1,氣隙上側(cè)4和2同向,氣隙磁密增加,氣隙下側(cè)4和2反向,氣隙磁密減少,從而產(chǎn)生沿正方向的徑向力。在懸浮控制繞組中通入反相電流,可產(chǎn)生沿反方向的徑向力。同理,沿軸方向的徑向力可以通過在懸浮控制繞組中通入與1垂直的電流獲得。
注:I1、I2分別為懸浮控制繞組和轉(zhuǎn)矩繞組電流,A;Y2、Y4分別為兩極磁鏈和四極磁鏈,Wb;Fy為y方向上的徑向懸浮力,N。
BIM旋轉(zhuǎn)部分采用轉(zhuǎn)子磁場定向控制[27]。-坐標(biāo)系下旋轉(zhuǎn)部分的狀態(tài)方程為:
式中LLL分別為定子電感、轉(zhuǎn)子電感和互感,R和R分別為定子電阻和轉(zhuǎn)子電阻;為轉(zhuǎn)動慣量;T為機械負(fù)載;n為電機極對數(shù);為電機轉(zhuǎn)子轉(zhuǎn)速;為轉(zhuǎn)子磁鏈;i為定子電流;u為定子電壓,和為表示各參量在和軸上的分量;1-L2/LL為漏感系數(shù);轉(zhuǎn)矩T=L/R。
已知維離散時間非線性系統(tǒng):
其中和分別表示在時刻的狀態(tài)變量和測量向量;為時刻的輸入量;是非線性狀態(tài)方程函數(shù);是非線性觀測方程函數(shù);和分別為過程噪聲和測量噪聲,它們是均值為零的高斯白噪聲,設(shè)w具有協(xié)方差Q;v具有協(xié)方差R,則AFUKF算法的基本步驟如下:
1)濾波初始化
式中0+為誤差協(xié)方差的初始矩陣,為單位矩陣。
2)時間更新方程
計算2+1個sigma點
計算這些采樣點的相應(yīng)權(quán)值:
計算2+1個sigma點集的一步預(yù)測值:
計算時刻的先驗狀態(tài)估計:
計算先驗估計誤差的協(xié)方差平方根陣-:
式中qr與cholupdate分別表示QR分解和Cholesky更新因子。
3)測量更新方程
根據(jù)一步預(yù)測值,再次使用無跡變換,得到新的sigma點集:
將點集帶入觀測方程:
計算測量預(yù)測的協(xié)方差平方根和協(xié)方差陣:
計算卡爾曼增益矩陣
計算系統(tǒng)的狀態(tài)更新和協(xié)方差更新
將式(1)中電機數(shù)學(xué)模型的狀態(tài)方程離散化可得:
根據(jù)2.1中AFUKF算法基本原理異,選擇A為非線性狀態(tài)方程函數(shù)
式中為采樣時間,T=σL/R,R=R+(L/L)2。
根據(jù)該狀態(tài)方程選取輸出測量方程為:
由2.1節(jié)可見,自適應(yīng)漸消無跡卡爾曼濾波在增益矩陣K中加入了漸消因子λ以區(qū)別于標(biāo)準(zhǔn)無跡卡爾曼濾波。當(dāng)系統(tǒng)模型不準(zhǔn)確時,實測量數(shù)對估計值的修正作用下降,而陳舊測量值的修正作用相對上升,這是引起系統(tǒng)發(fā)散的一個重要因素。為了減小模型誤差對卡爾曼濾波的影響,在進(jìn)行濾波時引入漸消因子使增益矩陣膨脹λ倍,加強現(xiàn)實測量數(shù)據(jù)在狀態(tài)估計的作用,減小陳舊數(shù)據(jù)對系統(tǒng)的影響。其中,漸消因子的選擇是AFUKF算法的關(guān)鍵。
在卡爾曼濾波中,時刻觀測向量y的殘差序列Z為:
其協(xié)方差陣為:
根據(jù)卡爾曼濾波的最優(yōu)理論[27],當(dāng)增益陣為最優(yōu)增益陣時新殘差列應(yīng)該處處保持正交[28],即:
當(dāng)系統(tǒng)模型不準(zhǔn)確時,實際的殘差協(xié)方差矩陣與計算出的理論值存在誤差,殘差的自相關(guān)函數(shù)不一定等于零。因此,本方案通過實時的調(diào)整增益陣K強迫殘差序列保持相互正交,并通過該方法不斷修正漸消因子。
對上式求跡,得:
引入弱化因子可削弱λ的調(diào)節(jié)作用,避免過調(diào)節(jié),使?fàn)顟B(tài)估計更平滑。
式中為遺忘因子,一般取值為0.95。
上式中漸消因子的分子tr[]=tr[]-tr[βR],且tr[βR]不受的影響。當(dāng)≥1時:
針對AFUKF算法的不足,本文對殘差計算進(jìn)行改進(jìn)。通過殘差歸一化處理,將算法中的和替換成¢和¢,優(yōu)化漸消因子。引入對角矩陣=diag(1,2,…,η),其中1,2,…,η≈1,2,…,y。為根據(jù)系統(tǒng)輸出值大小的先驗知識確定的比例關(guān)系,令:
則式(24)和(25)改寫為
濾波殘差的理論方差與實時辨識出方差應(yīng)近似相互匹配,可得如下約束等式:
雖然Z無法預(yù)知,但能通過先驗信息獲得一組輸出值01,02,…,0m來代替1,2,…,Z??傻梅匠蹋?/p>
歸一化后各分量基本是相等,等式可化簡為
由上式可得:
上述算法通過殘差歸一化處理將原本算法中的和替換成¢和¢,有助于消除由殘差本身數(shù)值差異造成的信息不對稱,增加殘差信息利用率和提取速度,有助于提高算法響應(yīng)速度和暫態(tài)性能。
系統(tǒng)噪聲通常來自系統(tǒng)模型誤差和電壓誤差,而測量噪聲包括檢測電壓、電流傳感器干擾和A/D轉(zhuǎn)換器量化誤差等,并通過反復(fù)試湊尋找最合適的Q、R矩陣以實現(xiàn)最優(yōu)濾波。當(dāng)將其應(yīng)用至BIM時,噪聲還應(yīng)包含模型誤差,傳統(tǒng)湊適法工作量加劇且精度不足,需要對系統(tǒng)進(jìn)行精度補償。因此,本文采用遺傳算法優(yōu)化噪聲矩陣,補償算法估算精度。
遺傳算法[29](genetic algorithm)是計算數(shù)學(xué)中用于處理最優(yōu)化問題的搜索算法,它只需目標(biāo)函數(shù)的值即可隨機對代表參數(shù)的數(shù)字串全局尋優(yōu)。因此,通過遺傳算法可以將噪聲矩陣的參數(shù)選擇轉(zhuǎn)化為多變量約束的最優(yōu)化問題。根據(jù)BIM數(shù)學(xué)模型,構(gòu)造系統(tǒng)噪聲和測量噪聲的協(xié)方差矩陣:
將待辨識矩陣中的7個正實元素組合成一個矢量:
將各元素進(jìn)行二進(jìn)制編碼得到子串,把個子串連成一個完整的染色體,記為一個個體。最初隨機產(chǎn)生一定數(shù)目的個體組成種群作為初始群體,即隨機產(chǎn)生個二進(jìn)制串組成一個矢量
式中上標(biāo)(0)代表第0代(初始代),上標(biāo)^代表辨識值以區(qū)別于實測值。
每一個個體中元素的辨識值的限幅值約束為:
將測量方程輸出的實際采樣數(shù)據(jù)和濾波輸出值的誤差作為噪聲矩陣的優(yōu)化輸入,以誤差最小為優(yōu)化目標(biāo)。適應(yīng)度目標(biāo)函數(shù)如下:
式中為估計長度,通常取值范圍為500~1500。
按適應(yīng)度函數(shù)計算每個個體的適應(yīng)度,用比例選擇方式,將父代個體按適應(yīng)度順序排列,選取最前面ex個個體傳遞到子代中。將計誤差超過預(yù)計值的個體丟棄,剩下的個體放入匹配池進(jìn)行交叉變異,操作完成再把這些個體送回子代,形成+1子代群體后繼續(xù)測試該群體的適應(yīng)度。經(jīng)過反復(fù)循環(huán)選擇、交叉和變異的過程,可篩選出滿足整個種群收斂條件的最優(yōu)染色體,即可得到滿足最優(yōu)濾波條件的Q和R噪聲矩陣。算法運行過程如圖2流程圖所示。
圖2 噪聲矩陣優(yōu)化流程圖
將系統(tǒng)轉(zhuǎn)態(tài)方程(15)和輸出方程(17)帶入式(2)?(14)中就構(gòu)成改進(jìn)的AFUKF算法控制策略。圖3為無軸承異步電機的控制框圖,分為徑向懸浮力控制部分和轉(zhuǎn)矩控制部分,徑向懸浮力控制是由位移傳感器檢測出的徑向位移算出參考懸浮力,再生成懸浮控制繞組的電流信號來實現(xiàn)控制,通過對轉(zhuǎn)子徑向位移變化量進(jìn)行檢測,再通過位移調(diào)節(jié)器控制懸浮繞組中的電流來實現(xiàn)對徑向位移精確控制。轉(zhuǎn)矩控制部分采用氣隙磁場定向控制,反饋轉(zhuǎn)速通過改進(jìn)的AFUKF算法模塊計算。
本文的研究對象是一個復(fù)雜的時變系統(tǒng),為了提高了試驗的可靠性,本文選用由德國dSPACE公司開發(fā)的dSPACE1005作為核心控制器,依照圖3的控制方案,設(shè)計了試驗平臺。圖4所示為試驗硬件平臺,圖5為組成框圖。dSPACE1005的運算控制單元、CPLD最小系統(tǒng)模塊、計算機、電流傳感器、電壓霍爾傳感器、整流濾波模塊、光電編碼器和IPM(intelligent power module)及驅(qū)動模組成。其中定子電壓、定子電流和轉(zhuǎn)速分別由電流、電壓霍爾和光電編碼器測得,這些信號經(jīng)信號調(diào)理板輸入dSPACE1005,再由dSPACE1005完成改進(jìn)的自適應(yīng)漸消無跡卡爾曼濾波算法和噪聲矩陣的遺傳算法部分,最終將估算的實際轉(zhuǎn)速反饋到系統(tǒng)中實現(xiàn)閉環(huán)控制,并將2種算法估算的轉(zhuǎn)速通過示波器輸出并對比,對于閉環(huán)控制系統(tǒng),系統(tǒng)的故障監(jiān)測和消除非常重要,因此需要設(shè)計對電壓、電流的采樣調(diào)理和保護(hù)電路,對于采樣調(diào)理后的信號采用Lattice公司的CPLD(M4A5-96/48-10VC)進(jìn)行邏輯處理和故障信號輸出,dSPACE輸出的PWM信號經(jīng)過CPLD輸出至芯片74F245中,以增強驅(qū)動能力,再輸出至IPM中,最后通過IPM驅(qū)動電機。
注:x*、y*、x、 y分別為轉(zhuǎn)子在x、 y方向上的給定位置和反饋位移,mm;Fx*、Fy*分別為徑向懸浮力在x、y方向上的給定值,N;i*2sa、i*2sb為徑向懸浮力繞組電流在a、b軸上的分量,A;i*2sd、i*2sq為徑向懸浮力繞組電流在d、q軸上的分量,A;i*1sa、i*1sb為轉(zhuǎn)矩繞組電流在a、b軸上的分量,A;i*1sd、i*1sq為轉(zhuǎn)矩繞組電流在d、q軸上的分量,A;wr*為給定轉(zhuǎn)速,r·s–1;wr為轉(zhuǎn)子轉(zhuǎn)速,r·s–1;ws為轉(zhuǎn)子轉(zhuǎn)差;Y1*為給定氣隙磁鏈,Wb;Te*為給定轉(zhuǎn)矩,N·m;q1*為電機旋轉(zhuǎn)變換角,(°);ρ0*為給定的補償角,(°);q2*為補償后的電機旋轉(zhuǎn)變換角,(°);i*2A、i*2B、i*2C、i*1A、i*1B、i*1C分別為徑向懸浮力繞組電流和轉(zhuǎn)矩繞組電流的三相給定值,A;i2A、i2B、i2C、i1A、i1B、i1C分別為徑向懸浮力繞組電流和轉(zhuǎn)矩繞組電流的三相值, A;i1a、i1q為轉(zhuǎn)矩繞組電流的估算值在d、q軸上的分量,A;u1a、u1q為轉(zhuǎn)矩繞組電壓的估算值在d、q軸上的分量, A。
試驗中樣機的參數(shù)為:轉(zhuǎn)子漏感為L= 8.32 mH;定子漏感L= 5.75 mH;互感L= 64.5 mH;轉(zhuǎn)子電阻R= 2.21 Ω;定子電阻R=1.36 Ω;轉(zhuǎn)動慣量=0.0102 kg·m2。在遺傳算法中取迭代次數(shù)為800;初始種群為70;選擇操作比例因子為0.1;交叉概率=0.75;變異概率為=0.03。試驗中以額定負(fù)載啟動,給定轉(zhuǎn)速為350 r/min。
圖4 dSPACE試驗平臺
圖6為電機的實測轉(zhuǎn)速和改進(jìn)的AFUKF算法估計的轉(zhuǎn)速與普通的UKF算法估計的轉(zhuǎn)速對比圖,圖7為改進(jìn)的AFUKF算法估計誤差與普通的UKF算法估計誤差對比。從圖中可以看出,普通的UKF算法受到電機模型精度的影響估計誤差較大,為7.5 r/min左右,當(dāng)將引入了漸消因子并用遺傳算法優(yōu)化噪聲矩陣后估算精度得到改善,誤差減小至5 r/min左右。
圖5 試驗平臺控制框圖
圖6 改進(jìn)AFUKF與UKF估計轉(zhuǎn)速對比
圖7 改進(jìn)AFUKF與UKF估計轉(zhuǎn)速誤差對比
為了驗證算法的魯棒特性,在1.2 s時刻對i施加一個幅值為1.5 A的脈沖干擾信號,改進(jìn)的AFUKF算法和普通UKF算法的抗干擾誤差對比如圖8所示??梢钥闯鲈陔娏鲾_動時,AFUKF與UKF算法都存在波動,但普通UKF算法的估計誤差最大值為20 r/min左右,改進(jìn)的AFUKF算法的最大誤差減小至10 r/min左右。
圖8 改進(jìn)AFUKF與UKF抗干擾誤差對比
本文針對傳統(tǒng)無軸承異步電機(bearingless induction motor,BIM)無速度傳感器控制算法受制于電機模型精度的不足,提出了一種基于改進(jìn)自適應(yīng)漸消無跡卡爾曼濾波的BIM轉(zhuǎn)速辨識方法,通過在系統(tǒng)中引入漸消因子增強了測量值在計算中的權(quán)重,減小了系統(tǒng)模型精度對估算精度的影響,并改進(jìn)了漸消因子的計算方法,增強了殘差的提取的速度使算法響應(yīng)速度更快。同時采用遺傳算法優(yōu)化噪聲矩陣。為了驗證該方法的有效性,本文以dSPACE1005為核心對電機進(jìn)行了實時控制,試驗結(jié)果表明該方法能有效適應(yīng)BIM模型不確定性,減小運行過程中轉(zhuǎn)速估計的誤差,將估算誤差減小至5 r/min左右,并在外部干擾時有更強的魯棒性,干擾誤差減小至10 r/min左右。但該方法計算量較大,因此如何通過降階的電機數(shù)學(xué)模型上實現(xiàn)該方法減小計算量將是下一步研究的問題。
[1] Li H, Zhu H. Design of bearingless flux-switching permanent-magnet motor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5.
[2] Jia H Y, Wang J A, Cheng M. Comparison study of electromagnetic performance of bearingless flux-switching permanent-magnet motors[J]. IEEE Transactions on Applied superconductivity, 2016, 26(4) : 1-5.
[3] Wu H, Wu H, Fang F, et al. Research on control strategy for a double-winding bearingless flux-switching machine with alternating excited orthogonal suspension windings[C]// Power Electronics and Motion Control Conference. IEEE, 2016: 821-826.
[4] 孫宇新,吳昊洋,施凱,等. 新型雙繞組無軸承磁通切換永磁電機的設(shè)計與分析[J]. 排灌機械工程學(xué)報,2017,35(12):1096-1104. Sun Yuxin, Wu Haoyang, Shi Kai, et al. Design and analysis of novel double-winding bearingless flux-switching permanent magnet machine[J]. Journal of Drainage and Irrigation Machinery Engineering (JD1ME), 2017, 35(12): 1096-1104. (in Chinese with English abstract)
[5] 卜文紹,萬山明,黃聲華,等. 無軸承電機的通用可控磁懸浮力解析模型[J]. 中國電機工程學(xué)報,2009,29(30):84-89.Bu Wenshao, Wan Shanming, Huang Shenghua, et al. General analytical model about controllable magnetic suspension force of bearingless motor[J]. Proceedings of the CSEE, 2009, 29(30): 84-89. (in Chinese with English abstract)
[6] 戈素貞. 新型無軸承無刷直流電動機結(jié)構(gòu)與模型研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(2):131-135. Ge Suzhen. Configuration and model of innovative direct current motor without bearing and brush[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 131-135. (in Chinese with English abstract)
[7] 陳波,吳政球. 基于約束因子限幅控制的雙饋感應(yīng)發(fā)電機有功功率平滑控制[J]. 中國電機工程學(xué)報,2011,31(27):131-137. Chen Bo, Wu Zhengqiu. Power smoothing control strategy of doubly-fed induction generator based on constraint factor extent-limit control[J]. Proceedings of the CSEE, 2011, 31(27): 131-137. (in Chinese with English abstract)
[8] 王曉琳,鄧智泉. 無軸承異步電機磁場定向控制策略分析[J].中國電機工程學(xué)報,2007,27(27):77-82.Wang Xiaolin, Deng Zhiquan. Analysis of flux-oriented strategies of bearingless asynchronous motor [J]. Proceedings of the CSEE, 2007, 27(27): 77-82. (in Chinese with English abstract)
[9] 程帥,姜海博,黃進(jìn),等. 基于滑模觀測器的單繞組多相無軸承電機無位置傳感器控制[J]. 電工技術(shù)學(xué)報,2012,31(23):71-77. Cheng Shuai, Jiang Haibo, Huang Jin, et al. Position sensorless control based on sliding model observer for multiphase bearingless motor with singel set of windings[J]. Transactions of China Electrotechnical Society, 2012, 31(23): 71-77. (in Chinese with English abstract)
[10] 林茂,李穎暉,吳辰,等. 基于滑模模型參考自適應(yīng)系統(tǒng)觀測器的永磁同步電機預(yù)測控制[J].電工技術(shù)學(xué)報,2017,32(6):156-163.Lin Mao, Li Yinghui, Wu Chen, et al. A model reference adaptive system based sliding mode observer for model predictive controlled permanent magnet synchronous motor drive[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 156-163. (in Chinese with English abstract)
[11] 楊澤斌,汪明濤,孫曉東. 基于自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)的無軸承異步電機控制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(2):78-86.Yang Zebin, Wang Mingtao, Sun Xiaodong. Control system of bearingless induction motors based on adaptiveneuro- fuzzy inference system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 78-86. (in Chinese with English abstract)
[12] 陳振鋒,鐘彥儒,李潔,等. 基于改進(jìn)磁鏈觀測器的感應(yīng)電機轉(zhuǎn)速辨識[J]. 電工技術(shù)學(xué)報,2012,27(4):42-47. Chen Zhenfeng, Zhong Yanru, Li Jie, et al. Speed identification for induction motor based on improved flux observer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 42-47. (in Chinese with English abstract)
[13] 韋文祥,劉國榮. 基于擴展?fàn)顟B(tài)觀測器模型與定子電阻自適應(yīng)的磁鏈觀測器及其無速度傳感器應(yīng)用[J]. 中國電機工程學(xué)報,2015,35(23):6194-6202. Wei Wenxiang, Liu Guorong. Sensorless control with flux observer based on parallel stator resistance adaptation and extended state observer model[J]. Proceedings of the CSEE 2015, 35(23): 6194-6202. (in Chinese with English abstract)
[14] 王慶龍,張興,張崇巍. 永磁同步電機矢量控制雙滑模模型參考自適應(yīng)系統(tǒng)轉(zhuǎn)速辨識[J]. 中國電機工程學(xué)報,2014,34(6):897-902.Wang Qinglong, Zhang Xing, Zhang Chongwei. Double sliding-mode sodel reference adaptive system speed identification for vector control of permanent magnet synchronous motors [J]. Proceedings of the CSEE, 2014, 34(6): 897-902. (in Chinese with English abstract)
[15] 尹忠剛,劉靜,鐘彥,等. 基于雙參數(shù)模型參考自適應(yīng)的感應(yīng)電機無速度傳感器矢量控制低速性能[J]. 電工技術(shù)學(xué)報,2012,27(7):124-130. Yin Zhonggang Liu Jing, Zhong Yan, et al. Low-speed performance for induction motor sensorless vector control based on two-parameter model reference adaptation[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 124-130. (in Chinese with English abstract)
[16] Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 394-402.
[17] Chen Z, Gao J, Wang F, et al. Sensorless control for spmsm with concentrated windings using multisignal injection method[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6624-6634.
[18] 鄭澤東,李永東,Maurice Fadel. 采用Kalma濾波器進(jìn)行信號處理的高頻信號注入法在電動機控制中的應(yīng)用[J]. 電工技術(shù)學(xué)報,2010,25(2):54-59,66.Zheng Zedong, Li Yongdong, Maurice fadel.application of high frequency signal injection method in motor control using kalman filter for signal processing[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 54-59, 66. (in Chinese with English abstract)
[19] Alonge F, D'Ippolito F. Robustness analysis of an Extended Kalman Filter for sensorless control of induction motors [C]//IEEE International Symposium on Industrial Electronics. IEEE Xplore, 2010: 3257-3263.
[20] Yin Z G, Zhao C, Zhong Y R, et al. Research on robust performance of speed-sensorless vector control for the induction motor using an interfacing multiple-model extended kalman filter[J]. IEEE Transactions on Power Electronics, 2014, 29(6): 3011-3019.
[21] 張猛,肖曦,李永東. 基于擴展卡爾曼濾波器的永磁同步電機轉(zhuǎn)速和磁鏈觀測器[J]. 中國電機工程學(xué)報,2007,27(36):36-40. Zhang Meng, Xiao Xi, Li Yongdong. Speed and flux linkage observer for permanent magnet synchronous motor based on EKF[J]. proceesings of the CSEE, 2007, 27(36): 36-40. (in Chinese with English abstract)
[22] Xu B, Zhu H, Ji W. State estimation of bearingless permanent magnet synchronous motor using improved UKF[J].Control Conference. IEEE, 2012: 4430-4433.
[23] Alrowaie F, Kwok K E, Gopaluni R B. An algorithm for fault detection in stochastic non-linear state-space models using particle filters[C]//International Symposium on Advanced Control of Industrial Processes. IEEE, 2011: 60-65.
[24] Quang N K, Hieu N T, Ha Q P. FPGA-based sensorless pmsm speed control using reduced-order extended kalman filters[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6574-6582.
[25] Smidl V, Peroutka Z. Advantages of square-root extended kalman filter for sensorless control of ac drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4189-4196.
[26] Barut M, Demir R, Zerdali E, et al. Real-time implementation of bi input-extended kalman filter-based estimator for speed-sensorless control of induction motors[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4197-4206.
[27] 孫宇新,楊玉偉. 無軸承異步電機非線性濾波器自適應(yīng)逆解耦控制[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):76-83.Sun Yuxin, Yang Yuwei. Adaptive inverse decoupling control for bearingless induction motors based on nonlinear filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 76-83. (in Chinese with English abstract)
[28] Dan S. Optimal state estimation: kalman, h∞, and nonlinear approaches[M].Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 2006.
[29] 張勇軍,王京,李華德. 基于遺傳算法優(yōu)化的定子磁鏈擴展卡爾曼估計方法[J]. 電工技術(shù)學(xué)報,2009,24(9):64-70. Zhang Yongjun, Wang Jing, Li Huade. A method of the stator flux ekf estimation for induction motorsbasedon genetic algorithm optimizing[J].Transactions of China Electrotechnical Society, 2009, 24(9): 64-70. (in Chinese with English abstract)
Speed-sensorless control system of bearingless induction motor based on modified adaptive fading unscented kalman filter
Sun Yuxin, Shen Qikang, Ye Haihan, Zhu Huangqiu
(212013,)
Speed sensorless control estimates the speed of the motor by detecting the voltage and current in the motor, thereby avoiding the use of speed sensors in the system.This method can avoid the influence of the sensor on the rotation of the motor and effectively improve the speed regulation performance of the motor.The Kalman filter is widely used in speed estimation algorithm and this method is well applied to ordinary asynchronous motors, but when it is extended to bearingless induction motor(BIM), there is a mismatch, for the strong dependence of the Kalman filter on the system model, but the current mathematical model of the bearingless induction motor is an approximate model.Aiming at this problem, this study proposes a speed identification method based on improved adaptive fade-out unscented Kalman filter. By using the covariance of the residual sequence, to adaptively change the fading factor to adjust the weight of the new interest, so that the filtering algorithm is more convinced of the measured value in the estimation process, which helps to reduce the impact of stale measurement and system model uncertainty on estimation accuracy. At the same time, by normalizing the residuals, the effect of balancing the information between the residuals is achieved, and the speed of information extraction is improved. In addition, the residual part of the system model is regarded as noise. In order to further reduce the model error, the genetic algorithm is used to adaptively adjust the noise matrix. After repeated cycles of selection, crossover and mutation, the conditions for satisfying the whole population convergence can be selected. With the optimal chromosome, the noise matrixandof the Manchester filter satisfying the optimal filtering condition can be obtained, and the model is compensated by the matrix, and the estimation error of the system is optimized again. In order to verify the effectiveness of the algorithm, this study selects dSPACE1005 developed by German dSPACE company as the core controller and designs the experimental platform. The platform consists of the dSPACE1005’s arithmetic control unit, computer, current sensor, voltage Hall sensor, photoelectric encoder and IPM module. The platform consists of the dSPACE1005 arithmetic control unit, computer, current sensor, voltage Hall sensor, photoelectric encoder and IPM module. The stator voltage, stator current and rotational speed are measured by current, voltage Hall and photoelectric encoder respectively. These signals are input into dSPACE1005 through signal conditioning board, and then the improved adaptive fade-out unscented Kalman filter algorithm and noise matrix are completed by dSPACE1005. The effectiveness of the proposed method is verified by comparing the estimation results of Kalman filter and the improved adaptive AFUKF. The robustness of the proposed method is verified by comparing the anti-jamming capabilities of the two algorithms. Experimental results show that this control method has high robustness and precision, and can effectively deal with the influence of modeling error and parameter disturbance on the accuracy of speed estimation. Finally, the correctness and feasibility of the proposed scheme are proved by dSPACE experimental platform.
motors; control; adaptive fading unscented kalman filter; modified AFUKF; bearingless induction motor; speed sensorless control algorithm
10.11975/j.issn.1002-6819.2018.19.010
TP273
A
1002-6819(2018)-19-0074-08
2018-01-22
2018-06-14
國家自然科學(xué)基金項目(51675244);江蘇省重點研發(fā)計劃項目(BE2016150)
孫宇新,教授,主要從事農(nóng)業(yè)電氣裝備自動化、磁懸浮傳動技術(shù)及電機非線性智能控制。Email:1000000656@ujs.edu.cn
孫宇新,沈啟康,葉海涵,朱熀秋. 基于改進(jìn)UKF的無軸承異步電機無速度傳感器控制[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):74-81. doi:10.11975/j.issn.1002-6819.2018.19.010 http://www.tcsae.org
Sun Yuxin, Shen Qikang, Ye Haihan, Zhu Huangqiu. Speed-sensorless control system of bearingless induction motor based on modified adaptive fading unscented kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 74-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.010 http://www.tcsae.org