• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of Thomson effect and inclined loads in an electro-magneto-thermoelastic solid with voids under green–Naghdi theories

    2018-09-25 03:46:54ElsayedAbdElazizMohamedHilal

    Elsayed M. Abd-Elaziz , Mohamed I.M. Hilal

    Department of Mathematics, Zagazig University, Faculty of Science, P.O. Box 44519, Zagazig, Egypt

    Abstract The present investigation deals with the 2-dimensional deformation in a homogeneous thermoelastic solid with voids subjected to inclined loads. The heat conduction equation is affected with the Thomson coefficient. The basic governing equations are modified by using Green–Naghdi theory of type-III. The normal mode analysis technique is used to obtain the components of stress, strain, temperature, induced magnetic field and change in volume fraction field. The variations of these quantities have been depicted graphically in the Green–Naghdi theories of type-II and III for an insulated boundary. From numerical calculations, the effect of Thomson parameter and angle of inclination on a homogeneous, isotropic, electro-magneto-thermoelastic material with voids is revealed and discussed.

    Keywords: Electro-magneto-thermoelasticity; Normal mode method; Inclined loads; Voids; Thomson effect; Green-Naghdi theory.

    1.Introduction

    The generalized thermoelasticity theories have been developed with the aim of removing the paradox of infinite speed of heat propagation inherent in the classical coupled dynamical thermoelasticity theory investigated by Biot [1] .In the generalized theories, the governing equations involve thermal relaxation times and they are of hyperbolic type.The extended thermoelasticity theory by Lord and Shulman[2] which introduces one relaxation time in the thermoelastic process and the temperature-rate-dependent theory of thermoelasticity by Green and Lindsay [3] , which takes into account two relaxation times, are two well established generalized theories of thermoelasticity. Green and Naghdi[4–6] developed a generalized theory of thermoelasticity which involves thermal displacement gradient as one of the constitutive variables in contrast to the classical coupled thermoelasticity which includes temperature gradient as one of the constitutive variables. An important feature of this theory is that it does not accommodate dissipation of thermal energy.On this theory the characterization of material response to a thermal phenomenon is based on three types of constitutive response functions. The nature of those three types of constitutive response functions is such that when the respective theories are linearized, type I is same as classical heat conduction equation (based on Fourier’s law), whereas type II,the internal rate of production of entropy is taken to be identically zero, implying no dissipation of thermal energy. This model is known as the theory of thermoelasticity without energy dissipation. Type III involves the previous two models as special cases, and admits dissipation of energy in general, in this model, introducing the temperature gradient and thermal displacement gradient as the constitutive variables. Sharma and Chauhan [7] investigated a problem concerning thermoelastic interactions without energy dissipation due to body forces and heat sources. Marin et al. [8] discussed a modeling of microstretch thermoelastic body with two temperatures. On temporal behavior of solutions in thermoelasticity of porous micropolar bodies has been adopted by Marin and Florea [9] .

    Theory of linear elastic materials with voids is an important development of the classical theory of elasticity, this theory deals with the materials which having the distribution of small (porous) or voids, where the volume of void is included among the kinematics variables and investigate various types of geological and biological materials since the classical theory of elasticity is not sufficient. The theory reduces to the classical theory when the volume of the void tending to zero. Non-linear theory of elastic materials with voids was established by Nunziato and Cowin [10] . Cowin and Nunziato[11] developed a theory of linear elastic materials with voids to study in a mathematical model the mechanical behavior of porous solids. Puri and Cowin [12] studied the behavior of plane waves in the linear elastic material with voids. Iesan[13] developed the linear theory of thermoelastic materials with voids. Cicco and Diaco [14] discussed a theory of thermoelastic materials with voids and without energy dissipation.

    The study of dynamic response of an isotropic generalized thermoelastic solid with additional parameters is helpful in solving many practical problems. Initial stresses are developed in the medium due to many reasons, resulting from difference of temperature, process of quenching, gravity variations, etc.The earth is supposed to be under high initial stresses. It is therefore of great interest to study the effect of these stresses on the mechanical and thermal state of the medium. Montanaro [15] investigated isotropic linear thermoelasticity with hydrostatic initial stress. Othman and Abd-Elaziz [16] studied the effect of thermal loading due to laser pulse on generalized thermoelastic medium with voids under dual phase lag model.Othman et al. [17] investigated the effect of initial stress on a thermoelastic medium with voids and microtemperatures.

    The study of electro-magneto-thermoelastic interactions which deals with the interactions among strain, temperature,and electromagnetic fields in a thermoelastic material, is of great practical importance due to its extensive uses in diverse fields, such as geophysics (for understanding the effect of the Earth’s magnetic field on seismic waves), damping of acoustic waves in a magnetic field, designing machine elements like heat exchangers, boiler tubes where temperature-induced elastic deformation occurs, biomedical engineering (problems involving thermal stress), emissions of electromagnetic radiations from nuclear devices, development of a highly sensitive superconducting magnetometer, electrical power engineering,plasma physics, etc. [18 , 19] . Kaliski and Nowacki [20] investigated the magneto-thermoelastic disturbances generated by a thermal shock in an elastic half-space having a finite conductivity. Ezzat and El-Karamany [21] solved a two-dimensional problem in magneto-thermoelasticity with two relaxation times in a conducting medium with variable electrical and thermal conductivity by Laplace and Fourier transforms.Othman et al. [22 , 23] have studied much interest applications dealing of magnetic field with thermoelasticity. Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with Dual-phase-lag model has been investigated by Othman and Abd-Elaziz [24] . Bhatti et al. [25] investigated the electromagnetohydrodynamic (EMHD) flow with heat transfer on third-grade fluid containing small particles. Bhatti et al. [26] studied the heat and mass transfer with the transverse magnetic field on peristaltic motion of two-phase flow (particle-fluid suspension) through a planar channel.Ellahi et al. [27] investigated the effects of nano-ferroliquid under the influence of low oscillating over stretchable rotating disk. Hussain et al. [28] studied the multiphase fluid flow under the influence of electro-magnetohydrodynamics(EHD). Bhatti et al. [29] investigated the combined effects of heat and mass transfer on the peristaltic propulsion of two-phase fluid flow through a Darcy-Brinkman-Forchheimer porous medium with compliant walls.

    Fig. 1. The inclined normal and tangential loadings over a thermoelastic half-space with voids.

    The present investigation is aimed at the study of the general plane strain problem of generalized electro-magnetothermoelastic half-space solid with voids subjected to inclined loads and Thomson effect. The model is illustrated in the context of the Green–Naghdi theory of thermoelasticity. The Thomson coefficient assumed to be a constant but the charge density of the induced electric current considered as a function of time. Normal mode technique is used for finding the expressions for the variables considered. The distributions of considered variables are represented graphically.

    2.Formulation of the problem and governing equations

    We consider a homogeneous, isotropic, thermoelastic material with voids in the un-deformed temperature,T0with a half space (y≥0). The rectangular Cartesian coordinates system (x,y,z) have originated on the surface (z= 0).Suppose that an inclined line loadF0per unit length is acting on thez? axis and its inclination toy? axis is θ( Fig. 1 ). For two dimensional problem we assume the dynamic displacement vector as u = (u,v, 0) . All quantities considered will be a function of the time variablet, and of the coordinatesxandy. A magnetic field with constant intensity,namely H = (0, 0,H3) , acts parallel to the bounding plane(taken as the direction of thez- axis. The magnetic field H = (0, 0,H0+h(x,y,t)) produces an induced magnetic field h and an induced electric field E = (E1,E2, 0) , which satisfy the linearized equations of electro-magnetism.

    The variation of electric and magnetic fields inside the medium are given by Maxwell’s equations [30] as follows:

    The above system of coupled equations are supplemented by the modified Ohm’s law for a medium with finite conductivity [31] , namely

    The constitutive relations in a homogeneous, isotropic thermoelastic solid with voids [10] can be written as:

    where theviis the components of the velocity of the charges.

    Now, we consider the charge density is function only in time, thus Eq. (14) will take the form

    If we consider that, the velocity of the chargesviis proportional to the velocity of the particlesu˙i, we can set that

    From Eqs. (9) and ( 22 ) into Eq. (23) , we get, the heat conduction equation in the context of Green–Naghdi(G-N)theory, in the form

    Sincep0is small non-dimensional constant, we can approximate the above equation to the following form

    In the above equations a dot denotes differentiation with respect to time.

    Hence, from Eqs. (6) and ( 10 ), we obtain the stress components in the form:

    The equations of motion, taking into account the Lorentz force

    The Lorentz force is given by

    The current density vector J is parallel to electric intensity vector E , thus J = (J1,J2, 0) .

    The Ohm’s law (5) after linearization gives

    3.The solution of the problem

    We define the dimensionless quantities

    In terms of the non-dimensional quantities defined in Eq. (44) , the above governing equations reduce to (dropping the dashed for convenience)

    Differentiating Eq. (45) with respect tox, and Eq. (46)with respect toy, and then sum, we obtain

    Differentiating Eq. (49) with respect toy, and Eq. (50) with respect tox, and then sum, we obtain

    The solution of the considered physical variables can be decomposed in terms of normal mode analysis in the following form

    The system of Eqs. (55) –( 58 ) has a nontrivial solution if the determinant of coefficient of ( φ?,e?,T?,h?) vanishes.After solving these equations we obtain a biquadratic equation of the form

    4.Boundary conditions

    In order to determine the constantsR1,R2,R3andR4,we need to consider the following boundary conditions at the surfacesy= 0,

    4.1. The normal stress condition (mechanically stressed by constant force), so that

    4.2. The tangential stress condition (mechanically stressed by constant force), so that

    whereF1andF2are the magnitudes of force and for an inclined loadF0, per unit length, we haveF1=F0cos (θ) ,F2=F0sin (θ) .

    4.3. The thermal boundary condition

    We will consider the bounding plane of the medium is thermally shocked by the function

    whereI0is constant.

    4.4. The electromagnetic boundary condition

    The transverse components of the magnetic field intensity are continuous across the surface of the half space,h(x, 0,t) =h?, whereh?is the magnetic intensity in free space. We will consider the free space bounding the medium has no any magnetic or electrical field, which mean that

    Using the required expressions of the variables into the above boundary conditions along with non-dimensional quantitiesand applying normal mode analysis, we obtain the following system of equations (after suppressing the primes)

    They may be written in the matrix form

    which gives values of the four constantsRn(n= 1 , 2, 3 , 4) .Therefore, the physical quantities of the medium will be fully determined.

    Fig. 2. The induced magnetic field h distribution at H 0 = 10 5 and θ= 0.

    Fig. 3. The strain e distribution at H 0 = 10 5 and θ= 0.

    5.Numerical results and discussion

    For numerical computations, following Dhaliwal and Singh[32] magnesium material was chosen for purposes of numerical evaluations. All the units of parameters used in the calculation are given in SI units. The constants were taken as

    Fig. 5. The stress σ distribution at H 0 = 10 5 and θ= 0.

    Fig. 6. The tangential stress σ xy distribution at H 0 = 10 5 and θ= 0.

    The voids parameters are

    Since, we have exp (ωt) = [ cos ( χ1t) +isin ( χ1t)] exp ( χ0t)and for small values of time we can take ω = χ0(real).

    The comparisons have established for two cases in the context of two theories namely: G-N theory of type II and G-N theory of type III.

    Case 1: Different values of Thomson parameterM0[M0=0, 0. 2and0. 5at: θ= 0].

    Case 2: Different values of inclination θ [ θ= 0,45and90at:M0= 0].

    Case 1: In the Figs. 2 –7 , the computations were carried out forM0= 0. 0, 0. 2and 0.5 at θ= 0,x= 0. 2,H0= 105andt= 0. 1 . The induced magnetic fieldh, the straine, the temperatureT, the stresses σ , σxyand the change in the volume fraction field φdistributions are represented graphically in two dimensional graphs at diffrents position ofywhere the solid lines represent results for the G-N theory of type II atM0= 0, the small dashes line represent results for the G-N theory of type III atM0= 0, the small dashes line with star represent results for the G-N theory of type II atM0= 0. 2,the small dashes line with plus represent results for the G-N theory of type III atM0= 0. 2, the large dashes line represent results for the G-N theory of type II atM0= 0. 5 , while the large dashes line with dot represent results for the G-N theory of type III atM0= 0. 5 .

    Fig. 7. The change in the volume fraction field φ distribution at H 0 = 10 5 and θ= 0.

    Fig. 8. The induced magnetic field h distribution at H 0 = 10 5 and M 0 = 0.

    Fig. 9. The strain e distribution at H 0 = 10 5 and M 0 = 0.

    Fig. 2 depicts that the distribution of the induced magnetic fieldhdecreases with the increase in value of Thomson parameter in the range 0 ≤y≤ 0.8, then converges to 0.

    Fig. 3 expresses that the distribution of the straineincreases with the increase in value of Thomson parameter in the range 0 ≤y≤ 1.5, then converges to 0. Fig. 4 shows that the Thomson parameter has a decreasing effect, where, the value of the temperatureTis decreases when the Thomson parameterM0increases. In Fig. 5 , the effect of parameterM0exists, since, the value of the stress σincreases when the parameterM0increases. Fig. 6 explains that the distribution of the tangential stress component σxydecreases with the increase in value of Thomson parameter in the range 0 ≤y≤ 0.8, then converges to 0. In Fig. 7 , the value of the change in the volume fraction field φincreases when the parameterM0increases. It is explained that all the curves converge to 0, and the Thomson parameterM0has a significant role for the distributions of all physical quantities.

    Fig. 10. The temperature T distribution at H 0 = 10 5 and M 0 = 0.

    Fig. 11. The stress σ distribution at H 0 = 10 5 and θ= 0.

    Fig. 12. The tangential stress σxy distribution at H 0 = 10 5 and θ= 0.

    Fig. 13. The change in the volume fraction field φ distribution at H 0 = 10 5 and θ= 0.

    Fig. 14. 3D Curve distribution of the induced magnetic field h versus the distances at: M 0 = 0and θ= 0.

    Fig. 15. 3D Curve distribution of the tangential stress σxy versus the distances at: M 0 = 0and θ= 0.

    Case 2: Figs. 8 –13 give a comparison of the results obtained for the induced magnetic fieldh, the straine, the temperatureT, the stresses σ , σxyand the change in the volume fraction field φagainst theydirection for different values of the angle of inclination θ(θ= 0°, 45°, 90°) atM0= 0. We can note that the angle of inclination θhas significant effects on all the studied fields. Fig. 8 shows that the distribution of the induced magnetic fieldhdecreases with the increase in value of θin the range 0 ≤y≤ 0.7, then converges to 0.Fig. 9 explains that the distribution of the strainedecreases with the increase in value of θin the range 0 ≤y≤ 1, then converges to0. Fig. 10 shows that the angle of inclination θ has large effects on the value of the temperatureTwhich means thatTdecreases with θFig. 11 depicts that the distribution of the normal stress σdecreases when the value of θ in the range 0 ≤y≤ 1.2, then converges to 0. Fig. 12 explains that the distribution of the tangential stress component σxyincreases with the increase in value of θin the range 0 ≤y≤ 1,then converges to 0. In Fig. 13 , the value of the change in the volume fraction field φ decreases when the value of θ increases.

    Figs. 14 and 15 are giving 3D surface curves for the physical quantities i.e., the induced magnetic fieldhand the tangential stress field σxyfor generalized electro-magnetothermoelasticity with voids under Thomson effect and inclined loud effect. These figures are very important to study the dependence of these physical quantities on the vertical component of distance.

    6.Conclusions

    Analysis of induced magnetic field, the strain, temperature distribution, normal stress, tangential shear stress and change in the volume fraction field due to mechanical load and Thomson effect in a semi-infinite generalized electromagneto-thermoelastic medium with voids is an interesting problem of mechanics. The generalized theory of thermoelasticity in the context Green–Naghdi of type II and III is used to solve this problem. A normal mode technique has been used which is applicable to a wide range of problems of thermoelasticity. This method gives exact solutions without any assumed restrictions on the actual physical quantities that appear in the governing equations of the problem considered.The effects of the Thomson parameter and angle of inclination on the field variables are investigated. The results concluded from the above analysis can be summarized as follows:

    ?The field equations of the theory of homogeneous and isotropic generalized electro-magneto-thermoelasticity with voids under Thomson effect and angle of inclination effect are derived.

    ?Analytical solutions based upon normal mode analysis for thermoelastic problem in solids have been developed and utilized.

    ?The effect of Thomson parameter on all the studied fields is very much significant.

    ?Significant difference in values of the studied fields is noticed for different values of the angle of inclination.

    ?The deformation of a body depends on the nature of the applied forces and Thomson effect as well as the type of boundary conditions.

    ?The value of all physical quantities converges to zero with increase in distanceyand all functions are continuous.

    99精品欧美一区二区三区四区| 草草在线视频免费看| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 日韩欧美国产在线观看| 亚洲 国产 在线| 午夜精品在线福利| 午夜两性在线视频| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 日韩国内少妇激情av| а√天堂www在线а√下载| 一本综合久久免费| 精品免费久久久久久久清纯| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 国产精品av久久久久免费| netflix在线观看网站| 久久久久久国产a免费观看| 一级毛片高清免费大全| 亚洲av电影在线进入| 中文资源天堂在线| 亚洲精品中文字幕一二三四区| or卡值多少钱| 一级毛片高清免费大全| 黑人操中国人逼视频| 90打野战视频偷拍视频| 久久精品国产综合久久久| 亚洲性夜色夜夜综合| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| www国产在线视频色| 两个人免费观看高清视频| 中文在线观看免费www的网站 | 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 99精品在免费线老司机午夜| 成人亚洲精品一区在线观看| 欧美乱色亚洲激情| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 国产成人一区二区三区免费视频网站| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 深夜精品福利| 在线国产一区二区在线| 日日干狠狠操夜夜爽| 久久香蕉精品热| 欧美日韩福利视频一区二区| 精品久久久久久,| 久久久久精品国产欧美久久久| 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 人成视频在线观看免费观看| 国产一区二区三区视频了| 免费在线观看成人毛片| 久热这里只有精品99| 国内精品久久久久精免费| 成人亚洲精品一区在线观看| 色老头精品视频在线观看| 大型av网站在线播放| 欧美日韩黄片免| 三级毛片av免费| 一本一本综合久久| 少妇裸体淫交视频免费看高清 | 欧美乱码精品一区二区三区| 91大片在线观看| 免费高清在线观看日韩| 曰老女人黄片| 日韩有码中文字幕| 日韩精品免费视频一区二区三区| 欧美性猛交黑人性爽| 中文字幕高清在线视频| a级毛片在线看网站| 久久中文字幕人妻熟女| 国产av一区二区精品久久| 亚洲全国av大片| 日韩中文字幕欧美一区二区| av电影中文网址| 免费在线观看日本一区| 在线av久久热| 女生性感内裤真人,穿戴方法视频| 午夜激情av网站| 99久久精品国产亚洲精品| 免费av毛片视频| 无限看片的www在线观看| 欧美人与性动交α欧美精品济南到| 国产一区在线观看成人免费| 黄色毛片三级朝国网站| av视频在线观看入口| 叶爱在线成人免费视频播放| 国产精品亚洲一级av第二区| 久久久久久亚洲精品国产蜜桃av| 亚洲第一青青草原| 欧美精品啪啪一区二区三区| 最近在线观看免费完整版| 午夜a级毛片| 麻豆一二三区av精品| 大香蕉久久成人网| 99re在线观看精品视频| 一区二区三区国产精品乱码| 久久久久国内视频| 在线视频色国产色| 啦啦啦韩国在线观看视频| 久久久久国内视频| 美女午夜性视频免费| 麻豆一二三区av精品| 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 成人精品一区二区免费| 十八禁人妻一区二区| 国产不卡一卡二| 女人爽到高潮嗷嗷叫在线视频| 欧美色视频一区免费| 日韩欧美一区视频在线观看| 99久久99久久久精品蜜桃| 午夜精品在线福利| 国产欧美日韩一区二区三| 岛国在线观看网站| 欧美色欧美亚洲另类二区| 亚洲精品国产精品久久久不卡| 亚洲专区国产一区二区| 婷婷丁香在线五月| 国产一区二区激情短视频| 成人国产综合亚洲| 99热这里只有精品一区 | 岛国视频午夜一区免费看| 国产精品1区2区在线观看.| 最新在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一青青草原| 一二三四在线观看免费中文在| 国产视频内射| 中文字幕精品亚洲无线码一区 | 久久久久久国产a免费观看| 中文资源天堂在线| 法律面前人人平等表现在哪些方面| 熟女少妇亚洲综合色aaa.| 欧美大码av| 怎么达到女性高潮| av超薄肉色丝袜交足视频| 久久国产精品男人的天堂亚洲| 精品卡一卡二卡四卡免费| 免费在线观看黄色视频的| 国产欧美日韩精品亚洲av| 久久精品91蜜桃| 亚洲欧洲精品一区二区精品久久久| 欧美zozozo另类| 午夜福利欧美成人| 熟妇人妻久久中文字幕3abv| 亚洲免费av在线视频| 琪琪午夜伦伦电影理论片6080| 99久久久亚洲精品蜜臀av| 日韩大尺度精品在线看网址| 久久午夜亚洲精品久久| 国产精品二区激情视频| 亚洲 欧美 日韩 在线 免费| 午夜免费激情av| 欧美日韩亚洲综合一区二区三区_| 亚洲av日韩精品久久久久久密| 美女高潮到喷水免费观看| 国产男靠女视频免费网站| 国产亚洲精品一区二区www| 免费看十八禁软件| 国产精品影院久久| 国产成人欧美在线观看| 99国产精品一区二区蜜桃av| 在线观看一区二区三区| 免费无遮挡裸体视频| 国产片内射在线| 久久性视频一级片| 亚洲精品粉嫩美女一区| 亚洲av电影在线进入| 制服丝袜大香蕉在线| 制服丝袜大香蕉在线| 国产黄色小视频在线观看| av视频在线观看入口| 女生性感内裤真人,穿戴方法视频| 精品电影一区二区在线| 一区二区三区国产精品乱码| 日本撒尿小便嘘嘘汇集6| 午夜亚洲福利在线播放| 午夜福利一区二区在线看| 动漫黄色视频在线观看| 黄色毛片三级朝国网站| 亚洲av中文字字幕乱码综合 | 亚洲精品av麻豆狂野| 欧美日韩福利视频一区二区| 叶爱在线成人免费视频播放| www日本黄色视频网| 久久香蕉精品热| 成人精品一区二区免费| 狂野欧美激情性xxxx| 亚洲国产欧美一区二区综合| 亚洲男人天堂网一区| 91字幕亚洲| 99国产精品一区二区三区| 国内久久婷婷六月综合欲色啪| 两性夫妻黄色片| 黑丝袜美女国产一区| 美女免费视频网站| 亚洲成人免费电影在线观看| 久久国产亚洲av麻豆专区| 国产成人欧美在线观看| 亚洲精品久久国产高清桃花| 国产黄a三级三级三级人| 久久国产乱子伦精品免费另类| 手机成人av网站| 亚洲在线自拍视频| 国产区一区二久久| 一级片免费观看大全| 国产黄a三级三级三级人| 精品久久久久久,| 久久国产精品影院| 99国产精品99久久久久| 99热这里只有精品一区 | 国产成人影院久久av| 琪琪午夜伦伦电影理论片6080| 精品国产一区二区三区四区第35| 国产视频一区二区在线看| 亚洲中文日韩欧美视频| 一卡2卡三卡四卡精品乱码亚洲| 高清毛片免费观看视频网站| 一个人免费在线观看的高清视频| 一区福利在线观看| 成人av一区二区三区在线看| 免费在线观看视频国产中文字幕亚洲| 国产又黄又爽又无遮挡在线| 国产视频内射| 一本久久中文字幕| 国产精品自产拍在线观看55亚洲| 国产精品香港三级国产av潘金莲| 每晚都被弄得嗷嗷叫到高潮| 在线国产一区二区在线| 麻豆国产av国片精品| 日韩欧美免费精品| 91麻豆精品激情在线观看国产| 99国产极品粉嫩在线观看| 亚洲欧美精品综合一区二区三区| 看片在线看免费视频| 法律面前人人平等表现在哪些方面| 精品欧美国产一区二区三| 性色av乱码一区二区三区2| 欧美黄色片欧美黄色片| 国产在线观看jvid| 免费在线观看影片大全网站| 欧美不卡视频在线免费观看 | 国产视频内射| 国产av又大| 国产精品久久久久久人妻精品电影| 国产欧美日韩精品亚洲av| 国产不卡一卡二| 神马国产精品三级电影在线观看 | 免费观看精品视频网站| 亚洲av电影不卡..在线观看| 日本一区二区免费在线视频| 久久精品成人免费网站| 99国产综合亚洲精品| 亚洲国产欧洲综合997久久, | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人免费电影在线观看| 天天一区二区日本电影三级| 少妇粗大呻吟视频| 国产精品,欧美在线| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲av高清一级| 亚洲色图 男人天堂 中文字幕| 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 国产又黄又爽又无遮挡在线| 色尼玛亚洲综合影院| 99久久精品国产亚洲精品| 免费在线观看黄色视频的| 久久午夜亚洲精品久久| 欧美成人一区二区免费高清观看 | 欧美色欧美亚洲另类二区| 国产熟女午夜一区二区三区| 中国美女看黄片| 啪啪无遮挡十八禁网站| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 99国产精品99久久久久| 真人做人爱边吃奶动态| 老司机深夜福利视频在线观看| 午夜激情av网站| 日韩精品青青久久久久久| 男女下面进入的视频免费午夜 | 国产黄a三级三级三级人| 成人免费观看视频高清| 久久国产精品男人的天堂亚洲| 亚洲自拍偷在线| 国产亚洲精品第一综合不卡| 久久精品人妻少妇| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文字幕一区二区三区有码在线看 | 国产国语露脸激情在线看| 后天国语完整版免费观看| 又大又爽又粗| 午夜福利在线观看吧| 亚洲国产欧美一区二区综合| 69av精品久久久久久| 狠狠狠狠99中文字幕| 搡老妇女老女人老熟妇| 免费观看人在逋| 久久中文字幕一级| 亚洲狠狠婷婷综合久久图片| 亚洲av电影在线进入| 久久久国产精品麻豆| 亚洲精品国产精品久久久不卡| 免费高清视频大片| 欧美黑人欧美精品刺激| 亚洲精品色激情综合| 99热只有精品国产| 美女高潮喷水抽搐中文字幕| 88av欧美| 天堂动漫精品| 久久久水蜜桃国产精品网| 十八禁网站免费在线| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 1024视频免费在线观看| 老鸭窝网址在线观看| 精品久久久久久久末码| 午夜福利在线观看吧| 99riav亚洲国产免费| 日韩高清综合在线| 男人的好看免费观看在线视频 | 国产一卡二卡三卡精品| 亚洲第一青青草原| 长腿黑丝高跟| 久久久久久大精品| 真人做人爱边吃奶动态| 亚洲av中文字字幕乱码综合 | 草草在线视频免费看| 国产精品,欧美在线| 十八禁网站免费在线| 琪琪午夜伦伦电影理论片6080| 露出奶头的视频| 国产黄色小视频在线观看| cao死你这个sao货| 国产主播在线观看一区二区| 久久精品国产清高在天天线| 中文字幕人妻丝袜一区二区| 亚洲精品粉嫩美女一区| 国产精品爽爽va在线观看网站 | 国产精品久久视频播放| 99riav亚洲国产免费| 一级作爱视频免费观看| 国产日本99.免费观看| 免费看日本二区| 国产精品 欧美亚洲| 亚洲在线自拍视频| 亚洲av成人一区二区三| 欧美精品啪啪一区二区三区| 亚洲专区国产一区二区| 久久精品91蜜桃| 此物有八面人人有两片| 99国产极品粉嫩在线观看| 国产一区在线观看成人免费| 午夜免费观看网址| 美女高潮到喷水免费观看| 免费看美女性在线毛片视频| 男女视频在线观看网站免费 | 免费高清视频大片| 久久中文字幕人妻熟女| 一个人观看的视频www高清免费观看 | 久久久国产欧美日韩av| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| 免费看美女性在线毛片视频| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 成年女人毛片免费观看观看9| 高清在线国产一区| 国产激情偷乱视频一区二区| 无限看片的www在线观看| 精品少妇一区二区三区视频日本电影| 国产高清视频在线播放一区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人国产一区在线观看| 淫秽高清视频在线观看| 99久久无色码亚洲精品果冻| 欧美人与性动交α欧美精品济南到| 国产97色在线日韩免费| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 久久久国产欧美日韩av| 男女之事视频高清在线观看| 国产亚洲欧美98| 日日爽夜夜爽网站| 亚洲成人久久性| 亚洲男人天堂网一区| 中国美女看黄片| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 一本大道久久a久久精品| 色哟哟哟哟哟哟| 一区福利在线观看| a级毛片a级免费在线| 桃红色精品国产亚洲av| 可以免费在线观看a视频的电影网站| 我的亚洲天堂| 手机成人av网站| 神马国产精品三级电影在线观看 | 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 亚洲成av片中文字幕在线观看| а√天堂www在线а√下载| 法律面前人人平等表现在哪些方面| 午夜福利在线在线| 一个人观看的视频www高清免费观看 | 国产极品粉嫩免费观看在线| 麻豆一二三区av精品| 无遮挡黄片免费观看| 欧美成人一区二区免费高清观看 | 欧美国产精品va在线观看不卡| 成人三级做爰电影| 中文字幕久久专区| 麻豆成人av在线观看| 国产亚洲精品综合一区在线观看 | 窝窝影院91人妻| 精品不卡国产一区二区三区| 成人三级黄色视频| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片 | 日本一本二区三区精品| 亚洲午夜精品一区,二区,三区| 日本五十路高清| 国产男靠女视频免费网站| 黄色a级毛片大全视频| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 亚洲av片天天在线观看| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 黄色 视频免费看| 中亚洲国语对白在线视频| 国产免费男女视频| 亚洲无线在线观看| 啪啪无遮挡十八禁网站| 日韩欧美一区二区三区在线观看| 久久中文字幕一级| 精品无人区乱码1区二区| 啦啦啦韩国在线观看视频| 亚洲人成网站在线播放欧美日韩| 波多野结衣av一区二区av| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 久久午夜综合久久蜜桃| 欧美日韩精品网址| 97人妻精品一区二区三区麻豆 | 国产欧美日韩一区二区三| 夜夜爽天天搞| 亚洲avbb在线观看| 免费在线观看视频国产中文字幕亚洲| 日韩欧美国产一区二区入口| 久久久水蜜桃国产精品网| 青草久久国产| 最近最新中文字幕大全电影3 | 狠狠狠狠99中文字幕| 久久久国产成人精品二区| 美国免费a级毛片| 男女午夜视频在线观看| 天天添夜夜摸| 精品无人区乱码1区二区| 中文字幕高清在线视频| 亚洲 国产 在线| 久久久国产精品麻豆| 女警被强在线播放| 真人做人爱边吃奶动态| 大型黄色视频在线免费观看| 国产精品日韩av在线免费观看| 国产真实乱freesex| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 黄色视频不卡| 国产麻豆成人av免费视频| 久久 成人 亚洲| 麻豆久久精品国产亚洲av| 日韩三级视频一区二区三区| 在线观看日韩欧美| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av在线| or卡值多少钱| e午夜精品久久久久久久| 岛国在线观看网站| 日日干狠狠操夜夜爽| 不卡av一区二区三区| 满18在线观看网站| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 亚洲一区中文字幕在线| 久久久久久久精品吃奶| 欧美日本视频| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 免费观看人在逋| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 久久婷婷人人爽人人干人人爱| 日韩大码丰满熟妇| 久久青草综合色| 精品人妻1区二区| 国产高清有码在线观看视频 | 国产一卡二卡三卡精品| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 夜夜看夜夜爽夜夜摸| 国产亚洲欧美在线一区二区| 很黄的视频免费| 90打野战视频偷拍视频| xxxwww97欧美| 国产乱人伦免费视频| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 无限看片的www在线观看| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 91九色精品人成在线观看| 国产高清激情床上av| 制服诱惑二区| 99久久99久久久精品蜜桃| 欧美一级毛片孕妇| 久久性视频一级片| 午夜激情av网站| 精品免费久久久久久久清纯| 久久久久免费精品人妻一区二区 | 99精品欧美一区二区三区四区| 欧美色欧美亚洲另类二区| 亚洲专区国产一区二区| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 国产精品一区二区精品视频观看| 波多野结衣高清作品| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 日韩视频一区二区在线观看| 在线播放国产精品三级| 韩国精品一区二区三区| 久久亚洲真实| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| www国产在线视频色| 亚洲成人久久性| 一级作爱视频免费观看| 成人国产一区最新在线观看| 午夜老司机福利片| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 亚洲电影在线观看av| 久久久久九九精品影院| 美女国产高潮福利片在线看| 男女之事视频高清在线观看| 国产熟女xx| 国产一区二区三区在线臀色熟女| 成人欧美大片| 在线天堂中文资源库| 成人欧美大片| 黄色视频不卡| 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 中文字幕人成人乱码亚洲影| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 日韩视频一区二区在线观看| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| 国产成人av教育| 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频 | 狠狠狠狠99中文字幕| 成人精品一区二区免费| 岛国视频午夜一区免费看| 亚洲精品国产一区二区精华液| 国产精品久久久久久亚洲av鲁大| 一区二区三区精品91| 亚洲最大成人中文| 欧美性猛交╳xxx乱大交人| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片| 亚洲免费av在线视频| 亚洲 国产 在线| tocl精华| 国产亚洲精品久久久久久毛片| 国产成人精品无人区| 欧美日本视频| 成人免费观看视频高清| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 精品久久蜜臀av无| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 久久亚洲真实| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 国产成人精品久久二区二区免费| www.999成人在线观看| 精品久久久久久久久久久久久 |