• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RANSE-based simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller

    2018-09-25 03:46:38XiaoQianDongWeiLiChenJunYangFrancisNoblesse

    Xiao-Qian Dong, Wei Li, Chen-Jun Yang , Francis Noblesse

    Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), State Key Laboratory of Ocean Engineering (SKLOE), Shanghai Jiao Tong University, Shanghai 200240, China

    Abstract This paper presents our numerical study of the scale effects on a tip-rake propeller, the PPTC-II, based on the RANS simulations using software FLUENT 6.3. The low Re option in SST k–ω model is adopted at model scale, together with fine prism grids to resolve the viscous sub-layer. At full scale, standard wall function is adopted. The scale-effect corrections yielded by our RANS simulations are compared with those obtained from the ITTC method. To explain the CFD results, an analysis of sectional forces is performed. To investigate how the tip rake influences propeller scale effects, the geometry of PPTC-II is modified by removing the tip rake only, and the RANS-predicted scale effects for the modified propeller, PPTC-II-m, are compared with those for the PPTC-II. The study indicates that the scale effect on propeller thrust can be as important as that on the torque; somehow the RANS- and ITTC-based predictions for full-scale efficiency agree quite well;the tip-rake reduces tip loading and tip vortex strength, and brings about large differences in the scale effects as compared with the propeller without tip-rake.)

    Keywords: Propeller; Tip rake; Open water; Scale effect; RANSE.

    1.Introduction

    Theoretically, the scale effects on propeller open water performance need to be corrected for when predicting the powering performance of a ship. The empirical formulae in the 1978 ITTC Performance Prediction Method [1] (referred to as the ITTC method hereinafter) have been widely used for the correction. In the ITTC method the amounts of correction to model-scale thrust and torque coefficients depend on the model- and full-scale section drag coefficients at 0.75R, the chord and pitch ratios at the same radius, and the number of blades, whereRdenotes propeller tip radius. Apparently,the corrections would be the same for two propellers which differ in the skew and rake only. Special tip geometries, such as the tip endplates and tip-rake, are not accounted for in the ITTC method as well. For more accurate prediction of the full scale performance, it is necessary to know how and to what extent the geometric parameters not considered in the ITTC method would influence the results of scale effect corrections. To elucidate the problem and update the present ITTC method for correcting propeller scale effects when possible, the Propulsion Committees of the 27th and 28th ITTC initiated a computational campaign in each term of service using the PPTC, a conventional highly skewed propeller, and the PPTC-II, an unconventional propeller with the tip-rake,respectively. The two test cases were provided by SVA Potsdam, and the data are available to the public at the company’s website.

    Fig. 1. The computational domain.

    Fig. 2. Geometry of the sub-domain enclosing the back and face of adjacent blades.

    In fact, viscous flow CFD simulation has been almost the only approach for the research of propeller scale effects since the last century [2] . The extensive laminar flow region at the Reynolds number of 2–3 ×105is an issue which necessitates the use of very fine prism grid layers to resolve the viscous sub-layer and the lowReturbulence model at model scale [3,4] . It was found that the scale effects on propeller thrust and efficiency are underestimated by the ITTC method when compared with the RANS results, especially for highly skewed propellers [4] . Alternative extrapolation formulae for propeller open water performance were proposed via analysis of RANS simulation results [5] , where the thrust loading,skew, and the changes in magnitude and direction of section force were taken into account in addition to the geometric parameters considered in the ITTC formulae. The comparison for one test case shows that the CFD-based formulae predicts the increments in thrust and efficiency from modelto full-scale are larger than those predicted by the ITTC method.

    Propellers with special tips may present new challenges to the ITTC method for predicting propeller scale effects. It was found through CFD simulations that the scale effects on the Kappel and CLT propellers are larger than those on conventional propellers [6] . More recently, the RANS approach was employed in selecting optimal endplates of the CLT propeller[7] . Besides, the RANS tool was also utilized in the scale effect researches for ducted propellers [8] and the rudder bulb[9] .

    This paper presents our numerical study of the scale effects on a tip-rake propeller, the PPTC-II, based on the RANS simulations using software FLUENT 6.3. The lowReoption in SSTk–ω model is adopted in model scale, together with fine prism grids to resolve the viscous sub-layer. At full scale,standard wall function is adopted. The scale-effect corrections yielded by our RANS simulations are compared with those obtained from the ITTC method. To explain the CFD results, an analysis of sectional forces is performed. To investigate how the tip rake influences propeller scale effects,the geometry of PPTC-II is modified by removing the tip rake only, and the RANS-predicted scale effects for the modified propeller, PPTC-II-m, are compared with those for the PPTC-II.

    2.Numerical modeling approach

    2.1. Governing equations

    The flow around the propeller working in open water is simulated by solving the RANS equations together with the SSTk–ω model for turbulence closure. The continuity and momentum transport equations for an incompressible fluid are written as

    Fig. 3. Zoom-up view of blade-surface prism layer grids.

    Fig. 4. Geometric model of propeller PPTC-II.

    Table 1 Geometric particulars and operating conditions of propeller PPTC-II at model- and full-scale.

    whereuianduj(i,j= 1, 2, 3) are the velocity components,pis the static pressure, μis the dynamic viscosity of water,δijis the Kronecker delta, and ?is the Reynolds stress.The transport equations of the SSTk–ω model are written as wherekis the turbulence kinetic energy, ω is the specific dissipation rate,GkandGωdenote the generation ofkand ω,respectively, Γkand Γωdenote the effective diffusivity ofkand ω, respectively,YkandYωdenote the dissipation ofkand ω due to turbulence,Dωis the cross-diffusion term,YkandYωare user-defined source terms.

    2.2. Computational model and setup

    Fig. 5. RANSE-predicted open water performances of PPTC-II at model- and full-scale.

    Fig. 6. Comparison RANS- and ITTC-predicted scale effects on the open water performance of PPTC-II.

    Fig. 8. Comparison of the pressure component of section normal forces for PPTC-II.

    The governing equations are solved numerically by means of FLUENT 6.3, a CFD software package based on the finite volume method. Since flow in open water is assumed to be steady and periodic for all blades in the coordinate system fixed to the propeller, a single blade passage suffices for the simulation. As illustrated in Fig. 1 , the computational domain is a portion of the cylinder which is coaxial with the propeller shaft. It is bounded by a pair of periodic surfaces which pass through the shaft axis and make an angle of 360/Zdegrees, whereZis the number of blades. The inlet and outlet of the domain are 5Dupstream and 10Ddownstream of the propeller, whereDis the propeller diameter. The radial size of the domain is 10D. As shown in Fig. 2 , the periodic boundary surfaces pass through the leading and trailing edges of adjacent blades, hence the back and face of the adjacent blades, instead of the same blade, become boundaries of the domain. By doing so, prism layer grids of high quality can be generated easily on blade surfaces, as shown in Fig. 3 . Using the SSTk–ω model for turbulence closure, the boundary layer flow is resolved down to the viscous sub-layer at model scale, while the wall function is adopted at full scale. The wall distance averaged over blade surfaces,y+, ranges 0.64–1.12 at model scale, and 32–62 at full scale. All the boundary surfaces are discretized via triangular grids, while the space outside the prism layers is discretized via tetrahedral cells. To reduce numerical uncertainties, blade surface grids are geometrically similar at both scales, only the thicknesses of the prism layers are adjusted. The total number of cells is about 4.38 million at both scales.

    Fig. 9. Comparison of the frictional component of section normal forces for PPTC-II.

    Fig. 11. Comparison of the pressure component of section chordwise forces for PPTC-II.

    The blade, hub, and shaft surfaces are set as stationary noslip walls in the rotating frame. As shown in Fig. 1 , the inlet and far boundary are set as velocity inlets, while the outlet as the pressure outlet. For a fixed rotation speed of the propeller,the inlet velocity is specified according to the desired value ofJ, the advance coefficient.

    The convection terms in all the governing equations are discretized with 2nd-order upwind schemes. The SIMPLE scheme is employed for velocity-pressure coupling.

    3.Results and discussions

    As shown in Fig. 4 , the PPTC-II is a four-bladed propeller with a large tip rake. Its geometric data are provided by SVA Potsdam and available in the public domain. The geometric particulars as well as operating conditions of propeller PPTCII at model- and full-scale are listed in Table 1 .

    Fig. 12. Comparison of the frictional component of section chordwise forces for PPTC-II.

    3.1. Scale effects on open water performance

    Fig. 5 compares the model- and full-scale open water performances of the PPTC-II predicted by CFD, as well as the model-scale EFD data by SVA Potsdam. Except forJ= 0.1 andJ= 0.9, the CFD results agree well with EFD data.As is well known, the full-scale efficiency is higher than the model-scale one. However, the increase in full-scale efficiency is largely due to the increase in thrust atJ= 0.1–0.5; atJ= 0.7, it is due to the increase in thrust and the decrease in torque, and the latter becomes more important as blade loading decreases.

    Fig. 13. Relation of the axial and circumferential forces to the normal and chordwise forces of a blade section.

    The ITTC-1978 method is also employed to predict the full-scale performance of PPTC-II by using the RANS results at model-scale. Fig. 6 compares the RANS- and ITTC-predicted scale effects on the open water performance. According to the ITTC method, the increase in full-scale efficiency is mainly due to the decrease in torque. On the contrary, the RANS results indicate that, at full scale, the thrust increases by 2–3% (see Fig. 6 (a)), however, the torque changes little except forJ= 0.7 (see Fig. 6 (b)). Amazingly,the increases in full-scale efficiency predicted in both methods differ by less than 0.5% (see Fig. 6 (c)).

    3.2. Analysis of sectional forces

    Fig. 14. Comparison of section axial (thrust direction) forces for PPTC-II.

    Fig. 15. Comparison of section circumferential (torque direction) forces for PPTC-II.

    To find out whether the present CFD results can be explained from the physics of flow, and if there are other factors which influence the scale effects in addition to the drag coefficient, an analysis of hydrodynamic forces is conducted on a sectional basis for propeller PPTC-II. The pressure and frictional forces on a blade section are projected onto directions normal and tangential to the nose-tail line and named as section normal and chordwise forces, respectively.Figs. 7 –9 compare the model- and full-scale normal force coefficients,KSN,KSN_P, andKSN_F, where the subscriptsPandFdenote pressure and frictional forces, respectively. Similarly,the chordwise force coefficients are denoted byKSC,KSC_P,andKSC_F, respectively, and the results at model- and fullscale are compared in Figs. 10 –12 . All the sectional forces are non-dimensionalized byn2D3, wherenandDare the rate of revolution and the diameter of the propeller, respectively,and ρis the density of water.

    Fig. 16. Geometric model of propeller PPTC-II-m.

    As seen in Fig. 7 , the section normal forces increase at full scale mainly at outer radii over the range of loading conditions investigated. Looking further at Figs. 8 and 9 , it is obvious that the increase in normal force is primarily due to the pressure component. It is inferred that the section angle of attack becomes larger at full scale due to reduced differences in the displacement thicknesses of boundary layers on the back and face.

    Fig. 10 shows that the section chordwise forces decrease at full scale from root to tip over the range of loading conditions investigated. It is clear from Figs. 11 and 12 that this result is almost solely due to the decrease in the frictional force.

    A further discussion can be made on how the changes in section normal and chordwise forces due to the scale effect influence those in propeller thrust and torque. As illustrated in Fig. 13 , the axial (thrust direction) and circumferential (torque direction) force coefficients of a blade section are expressed as

    where φis the geometric pitch angle of the blade section.

    According to the results shown in Figs. 7 –12 , the scale effects onKSN_FandKSC_Pcan be neglected. Then

    where Δdenotes the difference of full- and model-scale values. Since ΔKSN_P> 0 and ΔKSC_F< 0, it is clear that ΔKST> 0, as shown in Fig. 14 ; however, the sign of ΔKSQdepends on the magnitudes of ΔKSN_Pand ΔKSC_F, as well as the pitch angle. But the contribution of ΔKSN_Palways cancel out that of ΔKSC_Fto some extent, as shown in Fig. 15 .Thus the analysis explains the reasons for the scale effects on propeller thrust and torque shown in Fig. 5 .

    The present CFD results and analysis indicate that it might be necessary to take into account the scale effect on the thickness of blade surface boundary layer. Then the predicted scale effect can be equally important for both thrust and torque, or even primarily for the thrust.

    Fig. 17. RANSE-predicted open water performances of PPTC-II-m at model- and full-scale.

    Fig. 18. Comparison of RANS-predicted scale effects on the open water performances of PPTC-II and PPTC-II-m.

    Fig. 19. Section normal forces for PPTC-II-m.

    3.3. Influence of tip-rake on scale effects

    The PPTC-II is a propeller with the tip rake that is meant to load the tip (hence increase the efficiency) without creating strong tip vortices. It would be interesting to make a comparison of the scale effects on propellers with and without the tip rake. Therefore, the blade geometry of PPTC-II is modified by removing the tip rake, but keeping all the other geometric parameters untouched. The new propeller is named as PPTC-II-m, and the RANS simulations are carried out for it by using identical modeling approach and operating conditions to those for the PPTC-II. Fig. 16 shows the geometric model of the PPTC-II-m.

    Fig. 20. Section chordwise forces for PPTC-II-m.

    Fig. 17 compares the open water performances yielded by RANS simulations for the PPTC-II-m at model- and fullscale, which are quite close to those for the PPTC-II except for extremely high/light loading conditions (J= 0.1 andJ= 0.9).

    Fig. 18 compares the scale effects on propeller thrust,torque, and efficiency for the PPTC-II and PPTC-II-m based on RANS simulation results. As seen in Fig. 18 (a) and (b), in light loading conditions (J= 0.5 andJ= 0.7), there are large differences between PPTC-II and PPTC-II-m in the scale effects on propeller thrust and torque. Fig. 18 (c) shows that the scale effect on propeller efficiency is generally larger for PPTC-II than for PPTC-II-m by 0.5–1%.

    Fig. 21. Comparison of section axial (thrust direction) forces for PPTC-II-m.

    Figs. 19 and 20 show the results of sectional force analysis for propeller PPTC-II-m. By comparing Fig. 19 (a) and (b) it is obvious that the frictional force contributes little to the section normal force, which is the same as for the PPTCII. However, as shown in Fig. 19 (b), ΔKSN_Pdecreases from positive to negative value asJincreases. Fig. 20 (a) and (b)indicate that, the frictional force is not the only contributor to the decrease of chordwise force at full scale, especially close to the tip, which is different from the results for PPTCII (see Figs. 10 and 11 ), but it is still the main contributor.So we can use the same method (formula ( 4 )) to analyze the scale effects on axial and circumferential forces. The decrease of ΔKSN_Presults in ΔKSTand ΔKSQdecreasing positive to negative value asJincreases, as shown in Figs. 21 and 22 ,which explains the results atJ= 0.5 andJ= 0.7 for PPTCII-m in Fig. 18 (a) and (b).

    Fig. 22. Comparison of section circumferential (torque direction) forces for PPTC-II-m.

    Fig. 23. RANS-simulated pressure fields in the cross section 0.005 D downstream of the trailing edge of tip. PPTC-II, J = 0.7.

    Fig. 24. RANS-simulated pressure fields in the cross section 0.005 D downstream of the trailing edge of tip. PPTC-II-m, J = 0.7.

    Besides, as shown in Figs. 19 and 20 , the monotonic increase in section normal force as well as the sharp increase in section chordwise force close to the tip are both different from the case of PPTC-II. The tip rake actually reduces the loading close to the tip, especially when the angle of attack is small. By comparing Figs. 23 and 24 , the pressure fields in the cross sections immediately downstream of the tip trailing edge, it is clear that the tip vortices of PPTC-II are much weaker (due to reduced tip loading) than those of PPTC-II-m.

    Finally, the scale effects predicted by the ITTC method are compared with those by RANS simulations in Fig. 25 .Similar to the comparison made for the PPTC-II in Fig. 6 ,the differences between ITTC and RANS results are large forKT, but relatively small forKQ. The ITTC-predicted increases in the full-scale efficiency of PPTC-II-m are still quite close to the RANS predictions, but are all higher than the latter.

    Fig. 25. Comparison of RANS- and ITTC-predicted scale effects on the open water performance of PPTC-II-m.

    4.Conclusions

    Based on the RANS simulations, the scale effects on propeller open water performance have been numerically studied for PPTC-II, an ITTC benchmark propeller, and PPTC-II-m,a modified version of the PPTC-II by removing the tip rake.By analyzing the RANS-based blade section forces, and comparing the scale effects predicted by RANS with those by the ITTC-1978 method, the following conclusions are drawn,

    (1) The scale effect on propeller thrust can be as important as that on the torque, which seems to be the result of reduced boundary layer thickness on full-scale blade surfaces. On the contrary, the scale effect correction forKTis one magnitude smaller than that forKQaccording to the ITTC method.

    (2) Although the corrections forKTandKQby the ITTC method differ largely from those by the RANS method,the corrections for η0by the two methods agree quite well at least in the cases of PPTC-II and PPTC-II-m.Further investigations are necessary to find out if this is just a coincidence.

    (3) The tip rake serves to reduce the hydrodynamic loading close to the tip. At small angle of attack where the propeller is designed to work, large differences in the scale effects onKTandKQare identified with and without the tip rake, but not on η0. To account for the tip rake and predict the scale effects onKTandKQmore accurately, the existing ITTC method might need to be updated.

    十八禁网站免费在线| 宅男免费午夜| av免费在线观看网站| 免费一级毛片在线播放高清视频| 精品久久久久久成人av| 男女下面进入的视频免费午夜 | 欧美三级亚洲精品| 精品久久久久久久人妻蜜臀av| 成年免费大片在线观看| 最近最新中文字幕大全免费视频| 亚洲成人国产一区在线观看| 亚洲全国av大片| 少妇熟女aⅴ在线视频| 欧美性长视频在线观看| 老熟妇乱子伦视频在线观看| 国产精品亚洲av一区麻豆| a级毛片在线看网站| 亚洲精品粉嫩美女一区| 丁香欧美五月| 精品国产超薄肉色丝袜足j| 人人妻人人看人人澡| 国产精品久久电影中文字幕| 好男人在线观看高清免费视频 | 黄片播放在线免费| aaaaa片日本免费| 一边摸一边抽搐一进一小说| 久久久久久久午夜电影| 亚洲片人在线观看| 亚洲 欧美 日韩 在线 免费| 国产成人精品久久二区二区免费| 欧洲精品卡2卡3卡4卡5卡区| 日韩有码中文字幕| 免费人成视频x8x8入口观看| 十八禁网站免费在线| 啦啦啦免费观看视频1| 亚洲精品国产区一区二| 超碰成人久久| 亚洲人成网站高清观看| 精品久久蜜臀av无| 国产av又大| 99久久无色码亚洲精品果冻| 哪里可以看免费的av片| 97人妻精品一区二区三区麻豆 | 日韩欧美一区视频在线观看| 好男人电影高清在线观看| 国产亚洲精品第一综合不卡| 欧美精品亚洲一区二区| 久久久久久久久中文| 国产高清videossex| 桃色一区二区三区在线观看| tocl精华| 欧美成人性av电影在线观看| 亚洲精品国产精品久久久不卡| 国产精品久久久av美女十八| 久久婷婷成人综合色麻豆| 亚洲国产精品合色在线| 男女那种视频在线观看| 欧美一级毛片孕妇| 欧美色视频一区免费| 欧美zozozo另类| 日韩三级视频一区二区三区| 国产主播在线观看一区二区| 人人妻,人人澡人人爽秒播| 中文亚洲av片在线观看爽| 无限看片的www在线观看| 午夜免费鲁丝| 一卡2卡三卡四卡精品乱码亚洲| 精品熟女少妇八av免费久了| a级毛片在线看网站| 亚洲av日韩精品久久久久久密| 国产高清激情床上av| 久久精品人妻少妇| 亚洲人成网站在线播放欧美日韩| 一级毛片高清免费大全| 国产人伦9x9x在线观看| 国产亚洲欧美98| 一本一本综合久久| 亚洲av熟女| 欧美性猛交黑人性爽| 少妇被粗大的猛进出69影院| 在线视频色国产色| 午夜福利18| 日本免费一区二区三区高清不卡| av免费在线观看网站| 欧美 亚洲 国产 日韩一| 成人欧美大片| 欧美日韩亚洲国产一区二区在线观看| 国内精品久久久久久久电影| 十八禁人妻一区二区| 色播亚洲综合网| 亚洲性夜色夜夜综合| 免费高清视频大片| 亚洲片人在线观看| 国产真人三级小视频在线观看| 好男人电影高清在线观看| 午夜激情av网站| 国产亚洲精品一区二区www| 国内久久婷婷六月综合欲色啪| 国产区一区二久久| 久久性视频一级片| 国产精品日韩av在线免费观看| 19禁男女啪啪无遮挡网站| 亚洲熟妇中文字幕五十中出| 亚洲 国产 在线| 国产亚洲av高清不卡| 久久青草综合色| 久久国产亚洲av麻豆专区| 精品久久久久久成人av| 欧洲精品卡2卡3卡4卡5卡区| 欧美国产日韩亚洲一区| 精品久久蜜臀av无| 精品欧美一区二区三区在线| 欧美大码av| 国产成人av激情在线播放| 国产激情欧美一区二区| 久久精品亚洲精品国产色婷小说| 老司机在亚洲福利影院| 岛国在线观看网站| 久热爱精品视频在线9| 天天躁夜夜躁狠狠躁躁| 99热只有精品国产| 欧美zozozo另类| 99热6这里只有精品| 高清在线国产一区| 9191精品国产免费久久| 国产午夜福利久久久久久| 麻豆久久精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 欧美黑人欧美精品刺激| 久久亚洲真实| 国产单亲对白刺激| 一本精品99久久精品77| 亚洲最大成人中文| 欧美+亚洲+日韩+国产| 日本精品一区二区三区蜜桃| 亚洲精品国产精品久久久不卡| 99精品欧美一区二区三区四区| 美女午夜性视频免费| 女人高潮潮喷娇喘18禁视频| 男人舔女人的私密视频| 三级毛片av免费| 成人手机av| 最近最新免费中文字幕在线| 黄频高清免费视频| 中亚洲国语对白在线视频| 国产区一区二久久| 欧美大码av| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| 丝袜在线中文字幕| 妹子高潮喷水视频| 97碰自拍视频| 亚洲专区中文字幕在线| 波多野结衣高清无吗| 嫩草影视91久久| 嫩草影视91久久| 亚洲美女黄片视频| 97人妻精品一区二区三区麻豆 | 亚洲第一av免费看| 一a级毛片在线观看| 久久亚洲精品不卡| 亚洲精品久久成人aⅴ小说| av欧美777| 两个人免费观看高清视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久久中文| 在线国产一区二区在线| 国产伦一二天堂av在线观看| 搞女人的毛片| av免费在线观看网站| 不卡一级毛片| 亚洲精品在线观看二区| 欧美av亚洲av综合av国产av| 久久国产精品男人的天堂亚洲| 久久狼人影院| 草草在线视频免费看| 久热这里只有精品99| 国产精品,欧美在线| 亚洲熟妇中文字幕五十中出| 日韩三级视频一区二区三区| 一个人免费在线观看的高清视频| 国内毛片毛片毛片毛片毛片| 少妇裸体淫交视频免费看高清 | av中文乱码字幕在线| 成人三级黄色视频| 精品国产一区二区三区四区第35| 午夜a级毛片| 黄片小视频在线播放| www.999成人在线观看| 久久久久久大精品| 黄频高清免费视频| 国产精品 国内视频| 久久九九热精品免费| 亚洲成人久久爱视频| 99久久精品国产亚洲精品| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 啦啦啦韩国在线观看视频| 国产伦一二天堂av在线观看| 国产精品98久久久久久宅男小说| 妹子高潮喷水视频| 啦啦啦免费观看视频1| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 成人午夜高清在线视频 | 波多野结衣巨乳人妻| 欧美乱色亚洲激情| 精品福利观看| 亚洲国产高清在线一区二区三 | 欧美午夜高清在线| 亚洲久久久国产精品| av有码第一页| 日韩视频一区二区在线观看| 一夜夜www| 99riav亚洲国产免费| 操出白浆在线播放| 91麻豆av在线| 精品一区二区三区av网在线观看| 热re99久久国产66热| 国产精品乱码一区二三区的特点| 精品少妇一区二区三区视频日本电影| 亚洲成人久久性| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产美女av久久久久小说| 90打野战视频偷拍视频| 久久人妻福利社区极品人妻图片| 色精品久久人妻99蜜桃| 很黄的视频免费| 欧美大码av| 精品国产国语对白av| 91字幕亚洲| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 欧美一级a爱片免费观看看 | 91在线观看av| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 男女之事视频高清在线观看| 成年免费大片在线观看| 男男h啪啪无遮挡| 日本成人三级电影网站| 欧美成人一区二区免费高清观看 | 此物有八面人人有两片| 99re在线观看精品视频| 在线天堂中文资源库| 一级片免费观看大全| 欧美日韩一级在线毛片| 亚洲精品国产一区二区精华液| 一级毛片女人18水好多| 亚洲国产欧美网| 女同久久另类99精品国产91| 亚洲全国av大片| 亚洲,欧美精品.| 香蕉丝袜av| 1024手机看黄色片| 可以免费在线观看a视频的电影网站| 我的亚洲天堂| 搞女人的毛片| 在线观看www视频免费| 亚洲五月色婷婷综合| av天堂在线播放| 黄片小视频在线播放| 国产亚洲精品久久久久5区| 好男人在线观看高清免费视频 | 精品人妻1区二区| 亚洲精品久久成人aⅴ小说| 色综合站精品国产| 国产精品久久视频播放| 成人国语在线视频| 人妻丰满熟妇av一区二区三区| 少妇熟女aⅴ在线视频| 999精品在线视频| 在线免费观看的www视频| 欧美日韩乱码在线| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 国产激情久久老熟女| 国产成人精品久久二区二区免费| 中文亚洲av片在线观看爽| 欧美在线黄色| or卡值多少钱| 久久香蕉激情| e午夜精品久久久久久久| 观看免费一级毛片| 一本综合久久免费| 久久久久久免费高清国产稀缺| 中文字幕人成人乱码亚洲影| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 日本三级黄在线观看| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 99热只有精品国产| 免费看十八禁软件| 91麻豆av在线| 欧美日韩瑟瑟在线播放| 在线永久观看黄色视频| 亚洲精华国产精华精| 男女那种视频在线观看| 国内少妇人妻偷人精品xxx网站 | 十分钟在线观看高清视频www| 99精品在免费线老司机午夜| 又紧又爽又黄一区二区| 国产又爽黄色视频| 90打野战视频偷拍视频| 国产av又大| 亚洲天堂国产精品一区在线| 亚洲一区二区三区不卡视频| 久久久久久九九精品二区国产 | 日韩精品免费视频一区二区三区| 极品教师在线免费播放| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 男人舔女人的私密视频| 香蕉av资源在线| 亚洲国产精品成人综合色| 国产区一区二久久| 国产精品野战在线观看| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 黄色毛片三级朝国网站| 999精品在线视频| 国产成年人精品一区二区| 1024视频免费在线观看| 欧美成人免费av一区二区三区| 亚洲国产日韩欧美精品在线观看 | 日本成人三级电影网站| 国产又爽黄色视频| 免费看美女性在线毛片视频| 国产成人一区二区三区免费视频网站| 成人一区二区视频在线观看| 精品不卡国产一区二区三区| 日本 av在线| 最近最新中文字幕大全免费视频| 97超级碰碰碰精品色视频在线观看| 麻豆一二三区av精品| 免费在线观看影片大全网站| 天堂√8在线中文| 男人操女人黄网站| 精品久久久久久久久久免费视频| 国产乱人伦免费视频| 久久婷婷人人爽人人干人人爱| 国产黄色小视频在线观看| 国内精品久久久久久久电影| 国产99久久九九免费精品| 亚洲人成网站在线播放欧美日韩| 国产蜜桃级精品一区二区三区| 日韩av在线大香蕉| 99久久综合精品五月天人人| 搡老熟女国产l中国老女人| 97碰自拍视频| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 久久亚洲精品不卡| 满18在线观看网站| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利在线观看吧| 亚洲第一电影网av| 亚洲专区国产一区二区| 在线观看一区二区三区| 欧美在线一区亚洲| 欧美中文综合在线视频| 成年版毛片免费区| 亚洲精品久久成人aⅴ小说| 色播亚洲综合网| 老司机午夜福利在线观看视频| 国产免费男女视频| 欧美日本亚洲视频在线播放| 听说在线观看完整版免费高清| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 亚洲真实伦在线观看| 人成视频在线观看免费观看| 一本精品99久久精品77| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇熟女久久| 国产视频内射| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 变态另类丝袜制服| 国产日本99.免费观看| 成人国产综合亚洲| 两个人免费观看高清视频| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 老司机福利观看| 久久香蕉精品热| 久久中文字幕人妻熟女| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉国产精品| 三级毛片av免费| 中文资源天堂在线| 国产真人三级小视频在线观看| av超薄肉色丝袜交足视频| 高清在线国产一区| 一区二区三区激情视频| 久久精品影院6| 午夜激情福利司机影院| 搞女人的毛片| 两个人免费观看高清视频| 亚洲五月婷婷丁香| 丁香六月欧美| 91成人精品电影| 69av精品久久久久久| 午夜久久久久精精品| 不卡一级毛片| 91成年电影在线观看| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 亚洲第一青青草原| 一级作爱视频免费观看| 在线观看舔阴道视频| 亚洲国产看品久久| 亚洲五月婷婷丁香| 成人精品一区二区免费| 午夜福利18| 久久精品91无色码中文字幕| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| 一夜夜www| 精品国产乱子伦一区二区三区| 91成人精品电影| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 少妇被粗大的猛进出69影院| 香蕉国产在线看| 国产精品乱码一区二三区的特点| av有码第一页| 两个人看的免费小视频| 欧美在线黄色| 男人的好看免费观看在线视频 | 久久伊人香网站| 黄色 视频免费看| 欧美日韩乱码在线| 级片在线观看| 亚洲 国产 在线| 国产成人精品无人区| 在线国产一区二区在线| 亚洲第一青青草原| 久久久国产成人精品二区| 欧美日韩黄片免| 51午夜福利影视在线观看| 91大片在线观看| 国产男靠女视频免费网站| 日韩大码丰满熟妇| 女人爽到高潮嗷嗷叫在线视频| 免费av毛片视频| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 又大又爽又粗| 一本综合久久免费| 淫秽高清视频在线观看| 一本精品99久久精品77| 亚洲国产看品久久| 三级毛片av免费| 999精品在线视频| 99久久无色码亚洲精品果冻| 一本久久中文字幕| 黑人欧美特级aaaaaa片| 2021天堂中文幕一二区在线观 | 99精品在免费线老司机午夜| 国产精品久久久av美女十八| 成人手机av| 日韩国内少妇激情av| 亚洲第一青青草原| 亚洲免费av在线视频| 亚洲五月色婷婷综合| 亚洲狠狠婷婷综合久久图片| svipshipincom国产片| 韩国精品一区二区三区| 母亲3免费完整高清在线观看| 亚洲精品一区av在线观看| 精品久久久久久久末码| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 曰老女人黄片| 亚洲无线在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩免费av在线播放| a级毛片在线看网站| 亚洲国产欧美网| 亚洲成人国产一区在线观看| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 人人妻人人看人人澡| 宅男免费午夜| 久久精品国产99精品国产亚洲性色| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| 精品国内亚洲2022精品成人| 国内揄拍国产精品人妻在线 | 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 很黄的视频免费| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一小说| 天天一区二区日本电影三级| 亚洲av电影在线进入| 久久青草综合色| 国产私拍福利视频在线观看| 日本三级黄在线观看| 波多野结衣av一区二区av| 国产麻豆成人av免费视频| 欧美日韩黄片免| 在线观看午夜福利视频| 色老头精品视频在线观看| 国产精品精品国产色婷婷| 成人欧美大片| 国产精品免费一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 一区二区三区激情视频| 国产精品 国内视频| 超碰成人久久| 久久中文字幕一级| 精品高清国产在线一区| 老汉色av国产亚洲站长工具| 观看免费一级毛片| 丰满的人妻完整版| 婷婷丁香在线五月| 久久人人精品亚洲av| 美女 人体艺术 gogo| 精品电影一区二区在线| 香蕉国产在线看| 熟女电影av网| 日本 欧美在线| 女性被躁到高潮视频| 香蕉丝袜av| 99久久99久久久精品蜜桃| 哪里可以看免费的av片| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 村上凉子中文字幕在线| e午夜精品久久久久久久| 波多野结衣高清无吗| 在线观看免费午夜福利视频| 成人av一区二区三区在线看| 久久九九热精品免费| 国产午夜福利久久久久久| 成年人黄色毛片网站| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 成人av一区二区三区在线看| 成人手机av| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 欧美精品啪啪一区二区三区| 日本免费a在线| 又黄又粗又硬又大视频| 久久中文字幕一级| 国产亚洲精品av在线| 久久久久久大精品| 波多野结衣巨乳人妻| 变态另类丝袜制服| 国产99久久九九免费精品| www.999成人在线观看| 我的亚洲天堂| 亚洲男人天堂网一区| 久久热在线av| 久久久久久久久久黄片| 久久久久精品国产欧美久久久| 久久亚洲精品不卡| 欧美大码av| 哪里可以看免费的av片| 看片在线看免费视频| a级毛片a级免费在线| 韩国av一区二区三区四区| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 国产黄色小视频在线观看| 久久精品亚洲精品国产色婷小说| 91成年电影在线观看| 久久久久久久久中文| a级毛片a级免费在线| netflix在线观看网站| or卡值多少钱| 精品国产国语对白av| 日韩视频一区二区在线观看| 亚洲av成人一区二区三| 两个人视频免费观看高清| 国产精品亚洲一级av第二区| 可以在线观看的亚洲视频| 日韩成人在线观看一区二区三区| 精品久久久久久成人av| 深夜精品福利| 国产成人精品久久二区二区免费| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 精品国产乱码久久久久久男人| av电影中文网址| 性色av乱码一区二区三区2| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 动漫黄色视频在线观看| 97超级碰碰碰精品色视频在线观看| 美女大奶头视频| 亚洲第一电影网av| 亚洲成av片中文字幕在线观看| 窝窝影院91人妻| 露出奶头的视频|