• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TWO ALGORITHM FRAMEWORKS BASED ON DISCRETIZATION METHOD AND LOCAL REDUCTION FOR SEMI-INFINITE PROGRAMMING

    2018-09-19 08:13:38XUQingjuanJIANJinbao
    數(shù)學(xué)雜志 2018年5期

    XU Qing-juan,JIAN Jin-bao

    (1.College of Mathematical and Statistics Sciences,Guangxi Teachers Education University,Nanning 530001,China)

    (2.College of Science,Guangxi University for Nationalities,Nanning 530006,China)

    Abstract:In this paper,two algorithm frameworks for semi-in finite programming(SIP)are discussed.Using discretization method and local reduction method,we present two algorithm frameworks for SIP.Under some mild assumptions,the algorithm framework based on discretization method possesses weak global convergence.Numerical experiments show that the proposed algorithm frameworks are effective.

    Keywords: semi-in finite programming;discretization method;local reduction method;global convergence

    1 Introduction

    In recent decades,semi in finite programming(SIP)attracted the attention and favor of many scholars at home and abroad,and the research results were abundant[1–4].A simple form of SIP is given as follows:

    where f:Rn→ R is continuously differentiable and g:Rn×[a,b]→ R is continuously differentiable with respect to x.

    Discretization method is a common method,and local reduction method is an intrinsic method for solving SIP.Refs.[1–3]made a analysis in detail.In view of the wide application of discretization method in engineering,many scholars studied the discretized problem from SIP[5–11].The discretized problem has the following form

    For better analysis of how to solve SIP through solving SIPq,we attempt to present two algorithm frameworks based on discretization method and local reduction method,respectively.Of course,the two algorithm frameworks can be considered to be designed for the algorithms for SIPqin[8–11].In addition,under some necessary assumptions,the global convergence of the previous algorithm framework is proved.Finally,some preliminary numerical results are reported.

    2 Algorithm Framework Based on Discretization Method

    2.1 Description of Algorithm

    In this section,inspired by the idea of discretization method[2],we present an algorithm framework for SIP on this basis of the algorithms for SIPqin[8–11].

    For clarity,we denote the algorithm for SIPqin[8–11]as“Algorithm A”,which is taken as an inner iteration of Algorithm below.Define the distance of Hausdorffbetween? and ?qas dist(?q,?)=As to discretization method,the sequence of discretized set{?qi}i∈N0satisfies the following conditions:

    Our algorithm framework based on discretization method is described as follows.

    Algorithm 2.1 An algorithm framework based on discretization method for SIP.

    Parameters {τi}i∈N0such that 0 < τi+1< τi,?i∈ N0andand initialized parameters of Algorithm A.

    Datax0=∈Rn,choose discretized set ?q0? ? such that|?q0|< ∞and dist(?q0,?)≤ τ0.

    Step 0 Set i=0.

    Step 1 Solve SIP(?qi)(i.e.,SIPqi)by applying Algorithm A to obtain a KKT pointqi.

    Step 2 Choose discretized set ?qi+1? ? such that ?q0? ?qi+1,|?qi+1|< ∞ and dist(?qi+1,?)≤ τi+1.

    Step 3 Set i=i+1,and go back to Step 1.

    Discretization method is actually an outer approximation algorithm.The real solution is approximated by the exterior approximation of the feasible region of SIP.From a numerical viewpoint,only the conceptual discretization method is useful.The latest research on discretization method can be seen in refs.[12,13].

    2.2 Global Convergence

    In this part,we will discuss the global convergence of Algorithm 2.1 under mild assumptions.For the sake of convenience,we denote

    Definition 2.1 For x0∈ Rnand discretized set ?qi? ?,i∈ N0in Algorithm 2.1,the level set is defined as

    Assumption 2.1 Level set LV(x0,?q0,?)is bounded,thus is compact.

    Remark 1 The assumption that{xk}is bounded in refs.[8–11]can be replaced by Assumption 2.1.

    Assumption 2.2 Functions g(·,·)are Lipschitz continuous in the bounded set,i.e.,there exist Lipschitz constants Lgxand Lgωsuch that

    Assumption 2.3 Suppose that linearly independent constraint qualification(LICQ)is satisfied by problem SIP at any∈?act,i.e.,the vectorsare linearly independent.

    Lemma 2.1(see[3])Suppose that Assumption 2.3 holds,then the number of indices of ?act()is finite.

    Definition 2.2(see[3])Suppose thatthenis the KKT point of SIP,if there existsuch that

    Lemma 2.2 Suppose that iteration point sequence{}i∈N0is yielded by Algorithm 2.1,then there exists an accumulation pointof{}i∈N0.

    Proof If x ∈ LV(x0,?qi,?),according to ?q0? ?qi,?i∈ N0{0},one can see that ?q0(x)≤ ?qi(x0)≤ ψ(x0).Thus,it follows that LV(x0,?qi)? LV(x0,?q0,?).Further,we can conclude that set LV(x0,?qi,?)is a closed subset of compact set LV(x0,?q0,?),and so it is compact.For iteration point sequence{}i∈N0,one has∈LV(x0,?qi,?),thus,there exists an accumulation pointof{}i∈N0,and the proof is finished.

    Lemma 2.3 Suppose that iteration point sequence{}i∈N0is generated by Algorithm 2.1,and the subsetconverges to.Thenis convergent,and

    Proof First,we prove that 0 ≤ ψ(x)??qi(x)≤ Lgωdist(?qi,?),?x ∈ LV(x0,?q0,?),i∈N0.

    If ψ(x)=0,then the formula above hold obviously.

    If ψ(x) > 0,choosing ωg∈ ?g(x),then there exists ωqi∈ ?qisuch that ‖ωg? ωqi‖ ≤Lgωdist(?qi,?).Furthermore,it follows that

    By Algorithm 2.1,one can see thatApplying(2.3),we can conclude thatThus,the proof of this lemma is finished.

    Lemma 2.4 Suppose that the stated assumption of Lemma 2.3 holds.Then,forthere exists an iteration point sequence{ωqi}i∈Isuch thatand ωqi→holds for i∈I large enough.

    Proof From Lemma 2.1,we haveFor anyone obtainswe can conclude that

    Theorem 2.1 Suppose that Assumptions 2.1–2.3 hold,and{}i∈N0is yielded by Algorithm 2.1,there exists an accumulation pointof{}i∈N0which is a KKT point for SIP(1.1).In such sense,Algorithm 2.1 is said to possess weak global convergence.

    Proof By Lemma 2.2,one knows that there exists an accumulation pointof{}i∈N0.Choose an subset{}i∈I,I?N0,|I|=∞that converges toFrom the structure of Algorithm 2.1,we can see thatis the KKT point of SIPqi.Further,taking into account the theorem of Caratheodory,for s=n+1,i∈I and ωqi∈ ?act,qi(),one can conclude that

    In view of[10,Lemma 3.4]and[11,Lemma 3.5],we can conclude that1,2,···,s are bounded.Thus,there exists a subset that converges to,j=1,2,···,s.Without loss of generality,we regard the subset as original sequence.Denote Jact()as an index set of ?act().By Lemma 2.4,one knows that,forthere exists a sequencesuch thatandfor i∈I large enough.Furthermore,through putting in order,one can get that,the firstindices of S(=1,2,···,s)correspond toofandMoreover,note that|S|< ∞ and ? are compact,we know that sequence or its subsequence···,s converges to∈ ?,j=l+1,···,s.So,passing to the limit for i∈ I and i→ ∞ in(2.4)–(2.7),combining with Lemma 2.3,we have

    3 Algorithm Framework Based on Local Reduction Method

    Local reduction method originates from ref.[14],which studies how to convert SIP local reduction to optimization problem with finite constraints.Conditions for the establishment of local reduction lemma and related conclusions can be seen in[1,15].The essence of local reduction lemma is that,under certain conditions,the original SIP problem is locally equivalent to an implicit finite constrained programming in the optimal solution.

    Note that the algorithms for SIPq[8–11]can obtain an approximate solution of SIP.Inspired by local reduction method[1,15],we present a two phase algorithm framework for SIP.In the first phase,we apply algorithms for SIPqto obtain an approximate solution of SIP.Then,taking the approximate solution as a initial point,we switch to the second stage,i.e.,solve the local reduction problem of SIP,which is based on the idea of local reduction.As to the iterative method solving for SIP,a sufficient condition for the local reduction is given below.

    Assumption 3.1(see[15])Suppose that iteration point sequence{xk}k∈N0is yielded by some iteration method for SIP.For any iteration point xk,k∈N0,problem

    is regular,i.e.,

    (i)any critical point of problem P(xk)is non-degenerative;

    (ii)LICQ is satisfied by problem P(xk)at any ω ∈ ?.

    Remark 2 Originally,local reduction lemma(see[1])and the assumptions need to solve global maximum points of P(xk).However,it is difficult to solve the global solution.In practice,we would like to solve local maximum points of P(xk).Some scholars improve the assumptions of local reduction lemma,in which we need to solve the local maximum points.Assumption 3.1 implies the updated assumptions hold[15],i.e.,it is a sufficient condition for the local reduction lemma.Moreover,it is also the basis of Lemma 3.1 below.

    Lemma 3.1 (see[15])Suppose that Assumption 3.1 holds.Then there exists an neighborhood U(xk)of xksuch that,for any x∈U(xk),problem SIP(1.1)is equivalent to the following local reduction problem

    The lemma above is the corollary of local reduction lemma,which is the basis of Algorithm 3.1 below.

    Algorithm 3.1 A two phase algorithm framework based on local reduction method for SIP

    Phase 1(Approximate phase)Choose a proper positive integer q(depending on the length of[a,b]),and discretize ? into ?q.For any x ∈ Rn,applying Algorithm A(see[8–11])to solve SIPqand obtain an approximate solution.

    Phase 2(see[1,15])(Global phase)

    Step 0x0=.Set k=0;

    Step 1 Solve P(xk)to obtain all local maximum points,j∈Jl(xk);

    Step 3 Applying some iterative methods such as SQP to solve(xk).Suppose the ikiterations are performed,and let initial point be,then the inner iteration points are in turn,i=1,2,···,ik.If i∈ {1,2,···,ik?1},then local maximum points of P()are made local correction,and yield

    Step 4 Set xk+1=,k=k+1,and go back to Step 1.

    Although the hypothesis of local reduction method is strong,local reduction is intrinsic method for SIP.In recent years,it is still concerned and studied,such as ref.[16].

    4 Numerical Experiments

    In this section,some preliminary numerical results are reported.All the numerical experiments are implemented on MATLAB 2016a on a 64-bit PC with an Intel Core i7-4790 CPU and 32GB of RAM.The tested problem P1 from[17],and P2 through P3 are taken from[18],which have the following form

    with g and ? as follows:

    P1:g(x,ω)=(1?ω2)?(0.5x2?2xω),? =[?1,1],x0=1,f(x?)=1.

    P2:g(x,ω)= ω2?(x1ω +x2exp(ω)), ? =[0,2],x0=(1,1),f(x?)=0.53825.

    For the record,x0is the initial point used the same as that of algorithms[6,7],and f(x?)is the objective function value given in refs.[15,17,18].Moreover,the tested problems above can be equivalent to inequality constrained SIP such as(1.1),and can be solved by our algorithm framework.

    From the viewpoint of discretization method,for the closed interval ?=[a,b]of variation ω,it can be discretized into the following set by

    where q re flects the discretization level of SIP(1.1).

    During the test experiments,the following parameters are used for all tested problems:

    In addition,for a given discretization level q,the stopping criterion is‖dk‖≤ 1×10?4or|zk|≤ 10?4,which is the same as of refs.[7,8].

    To test the validity of Algorithm 2.1,in view of the equivalence ofandwithout loss of generality,we can assume that qi+1=2qi.The algorithm[8]is selected as Algorithm A,and the partial iterative results of Algorithm 2.1 for P1–P3 are reported in Table 1.

    Table 2:Numerical results for problems with different discretization level q

    In Table 1,the column i is ith iteration;qiindicates the discretization level at ith iteration.At ith iteration,SIPqiis solved,which is an inner loop.Assume that k iterations are executed in the inner loop.The columns Ni(=k)and Nf are the number of iterations and objective function evaluations,respectively;Ng is the number of constraint function g(x,ω)evaluations for a given x and ω; Σ|?k|is the sum over all iterations of the size of?k;||means the average size of ?k,i.e.,||=Σ|?k|/Ni;|??|is the size of ?kat the end of ith iteration;is the value of zkat the end of the ith iteration.Finally,f()is the objective function value at the end of ith iteration.From the column of||,we find that the average number of constraints per iteration is small,which can reduce the computational cost of Algorithm 2.1.Compared with previous numerical results,our algorithm framework based on discretization method is effective.

    In addition,in view of ref.[15]reported the theory and the numerical experimentation in detail on Phase 2 of Algorithm 3.1,we just need to further illustrate the efficiency of Algorithm A in Phase 1 of Algorithm 3.1.For this purpose,we select q=10,20,50,100,200,500,1000,2000,5000,10000,respectively.For a given discretization level q,we apply Algorithm A(may as well take Algorithm A of[8]as an example)to solve SIPq.The computational results are reported in Table 2.

    In Table 2,the column q indicates the given discretization level.The meanings of Ni,Nf,Ng,Σ|?k|,||,|??|are similar to those above,but all of them are generated by solving SIPq.Moreover,z?is the value of zkat the final iterate,and f(x?)is the objective function value at the final iterate point.

    Comparing the results of Table 2 with previous numerical results[6,7,15,17,18],we find that choosing an appropriately large q can reduce calculation cost greatly,and the solution of SIPqis usually a good approximate solution of SIP,which is exactly required in Phase 1 of Algorithm 3.1.Thus,Phase 1 of Algorithm 3.1 can be better implemented.

    5 Conclusions

    In this paper,based on discretization method and local reduction,we present two algorithm frameworks for SIP,and solve problem how to solve SIP by the proposed algorithm in[8–11].The two algorithm frameworks not only improve the theory of algorithms for[8–11],but also play an important role to achieve the real solution of SIP.Finally,some preliminary numerical results are reported,which show the proposed two algorithm frameworks are effective.

    午夜福利视频在线观看免费| 国产精品秋霞免费鲁丝片| 老鸭窝网址在线观看| 欧美日韩成人在线一区二区| 桃花免费在线播放| 人妻人人澡人人爽人人| 色婷婷久久久亚洲欧美| 免费在线观看影片大全网站 | 午夜免费成人在线视频| 久久精品aⅴ一区二区三区四区| 国产精品二区激情视频| 香蕉国产在线看| 女人精品久久久久毛片| 午夜免费鲁丝| 亚洲中文字幕日韩| 搡老岳熟女国产| 午夜免费观看性视频| 精品免费久久久久久久清纯 | 精品福利永久在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲国产日韩一区二区| 国产av精品麻豆| 亚洲欧洲国产日韩| 久久人人爽av亚洲精品天堂| 亚洲成人手机| 午夜免费成人在线视频| 黄色视频不卡| 男女边摸边吃奶| 99精品久久久久人妻精品| 大片电影免费在线观看免费| a 毛片基地| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 精品福利永久在线观看| 中文字幕色久视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 午夜免费男女啪啪视频观看| 日本a在线网址| 女人精品久久久久毛片| 91精品国产国语对白视频| 手机成人av网站| 欧美在线黄色| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 亚洲精品av麻豆狂野| 老司机靠b影院| 欧美变态另类bdsm刘玥| 美女高潮到喷水免费观看| 制服诱惑二区| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 80岁老熟妇乱子伦牲交| 狠狠婷婷综合久久久久久88av| 老司机午夜十八禁免费视频| 青春草亚洲视频在线观看| 一级毛片我不卡| 精品人妻1区二区| 精品少妇黑人巨大在线播放| 人成视频在线观看免费观看| 欧美少妇被猛烈插入视频| 咕卡用的链子| 999久久久国产精品视频| 亚洲国产日韩一区二区| 汤姆久久久久久久影院中文字幕| 色综合欧美亚洲国产小说| 欧美 亚洲 国产 日韩一| 免费在线观看影片大全网站 | 亚洲精品乱久久久久久| 天天躁日日躁夜夜躁夜夜| 性色av一级| 亚洲av美国av| 亚洲欧美精品自产自拍| 交换朋友夫妻互换小说| 大陆偷拍与自拍| 欧美黄色片欧美黄色片| 午夜免费男女啪啪视频观看| 18禁国产床啪视频网站| 国产精品二区激情视频| 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性xxxx| 99国产精品99久久久久| 悠悠久久av| 国产一区二区激情短视频 | 久久性视频一级片| 亚洲,一卡二卡三卡| 国产精品国产三级国产专区5o| 女人被躁到高潮嗷嗷叫费观| 波多野结衣av一区二区av| 女人被躁到高潮嗷嗷叫费观| 丝瓜视频免费看黄片| 成人国产一区最新在线观看 | 亚洲久久久国产精品| 久久久久精品人妻al黑| 国产免费又黄又爽又色| 久久狼人影院| 欧美黑人精品巨大| 18禁国产床啪视频网站| 看十八女毛片水多多多| 五月开心婷婷网| 天天添夜夜摸| 90打野战视频偷拍视频| 90打野战视频偷拍视频| 国产欧美亚洲国产| 亚洲一码二码三码区别大吗| 色94色欧美一区二区| 免费在线观看完整版高清| av欧美777| 欧美变态另类bdsm刘玥| 亚洲成人国产一区在线观看 | 精品免费久久久久久久清纯 | 香蕉丝袜av| 国产色视频综合| 国产一区二区在线观看av| 日本wwww免费看| 桃花免费在线播放| 又粗又硬又长又爽又黄的视频| 日本av手机在线免费观看| 免费在线观看日本一区| 午夜久久久在线观看| 国产视频首页在线观看| 91老司机精品| 欧美精品av麻豆av| 50天的宝宝边吃奶边哭怎么回事| 水蜜桃什么品种好| 在线精品无人区一区二区三| 国产熟女午夜一区二区三区| 人人澡人人妻人| 久久久久久久大尺度免费视频| 国产91精品成人一区二区三区 | 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 成人国语在线视频| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 在线看a的网站| 国产一区二区在线观看av| 亚洲av片天天在线观看| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 国产亚洲午夜精品一区二区久久| 国产激情久久老熟女| 中国国产av一级| 美女视频免费永久观看网站| 黄色视频不卡| 一区在线观看完整版| 好男人视频免费观看在线| 三上悠亚av全集在线观看| 亚洲成av片中文字幕在线观看| 黄色片一级片一级黄色片| 国产99久久九九免费精品| 韩国高清视频一区二区三区| 国产精品av久久久久免费| 午夜老司机福利片| 精品高清国产在线一区| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 看免费av毛片| 十八禁高潮呻吟视频| 久久国产精品大桥未久av| 又大又黄又爽视频免费| 日日爽夜夜爽网站| 国产亚洲精品第一综合不卡| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 婷婷色综合www| 一级黄片播放器| 国产视频一区二区在线看| 性色av一级| 黑人巨大精品欧美一区二区蜜桃| 亚洲男人天堂网一区| 视频区欧美日本亚洲| 天天添夜夜摸| 亚洲精品久久久久久婷婷小说| av福利片在线| 亚洲精品乱久久久久久| 91成人精品电影| 80岁老熟妇乱子伦牲交| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看 | 丝袜美足系列| 亚洲精品国产区一区二| 在线观看人妻少妇| 久久久精品免费免费高清| 日韩熟女老妇一区二区性免费视频| 99国产综合亚洲精品| 亚洲国产精品一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人澡人人看| 成年女人毛片免费观看观看9 | 欧美精品亚洲一区二区| 日韩免费高清中文字幕av| 久热爱精品视频在线9| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀 | 欧美精品av麻豆av| 国产精品久久久久成人av| 国产精品国产av在线观看| 1024视频免费在线观看| 久久青草综合色| 欧美av亚洲av综合av国产av| 电影成人av| 激情五月婷婷亚洲| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 久久精品国产亚洲av高清一级| www.熟女人妻精品国产| 精品久久久精品久久久| 国产精品久久久久久精品电影小说| 在线 av 中文字幕| 韩国高清视频一区二区三区| 日本91视频免费播放| 人妻一区二区av| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 精品少妇黑人巨大在线播放| 人人妻人人澡人人看| 国产黄色视频一区二区在线观看| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 欧美精品亚洲一区二区| 宅男免费午夜| 久久久精品国产亚洲av高清涩受| av电影中文网址| 日韩电影二区| 免费看十八禁软件| 久久精品国产综合久久久| 无遮挡黄片免费观看| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 乱人伦中国视频| 国产精品久久久久久人妻精品电影 | 一二三四社区在线视频社区8| 国产有黄有色有爽视频| 亚洲激情五月婷婷啪啪| 亚洲国产av影院在线观看| 多毛熟女@视频| 欧美成人午夜精品| 搡老岳熟女国产| 美女高潮到喷水免费观看| 亚洲精品日韩在线中文字幕| 婷婷色综合大香蕉| 久久久国产一区二区| 亚洲成人手机| 性色av一级| 国产一区有黄有色的免费视频| 免费女性裸体啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 国产av精品麻豆| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区久久| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 成在线人永久免费视频| 精品一区二区三区四区五区乱码 | 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 亚洲国产精品一区三区| 欧美人与性动交α欧美软件| 新久久久久国产一级毛片| 黄色一级大片看看| 日韩大码丰满熟妇| 91老司机精品| 国产av一区二区精品久久| 午夜福利,免费看| 亚洲av电影在线进入| 日本一区二区免费在线视频| 国产视频首页在线观看| 欧美性长视频在线观看| av天堂在线播放| 国产一区二区三区综合在线观看| 这个男人来自地球电影免费观看| 91麻豆av在线| 九色亚洲精品在线播放| 日韩电影二区| 国产精品一国产av| 国产精品免费视频内射| 亚洲人成77777在线视频| 天堂8中文在线网| 女人高潮潮喷娇喘18禁视频| 黄色一级大片看看| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费av在线播放| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 悠悠久久av| 天天添夜夜摸| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 国产一卡二卡三卡精品| 又大又黄又爽视频免费| 每晚都被弄得嗷嗷叫到高潮| 午夜福利免费观看在线| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品国产一区二区电影| 国产亚洲精品第一综合不卡| 亚洲精品久久成人aⅴ小说| 日韩,欧美,国产一区二区三区| 国产成人影院久久av| 亚洲综合色网址| 欧美国产精品va在线观看不卡| 新久久久久国产一级毛片| 欧美在线一区亚洲| av网站在线播放免费| 国产在视频线精品| 自线自在国产av| 黄片小视频在线播放| 99热国产这里只有精品6| 国产av国产精品国产| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 啦啦啦在线观看免费高清www| a级毛片黄视频| 免费看不卡的av| 又大又爽又粗| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 又紧又爽又黄一区二区| 久久亚洲精品不卡| 日韩一本色道免费dvd| 色播在线永久视频| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 久久久欧美国产精品| 1024视频免费在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美在线一区| 激情五月婷婷亚洲| 美女扒开内裤让男人捅视频| 亚洲欧美中文字幕日韩二区| 搡老岳熟女国产| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 午夜福利视频精品| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 久久久精品区二区三区| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 老司机靠b影院| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 精品一区在线观看国产| 熟女av电影| 可以免费在线观看a视频的电影网站| videos熟女内射| 日本色播在线视频| 另类精品久久| 男女边摸边吃奶| 成年人午夜在线观看视频| videosex国产| 久久久久久亚洲精品国产蜜桃av| 欧美av亚洲av综合av国产av| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 一级,二级,三级黄色视频| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 成年人免费黄色播放视频| 免费久久久久久久精品成人欧美视频| 精品一品国产午夜福利视频| 成人国语在线视频| 美女中出高潮动态图| 99久久精品国产亚洲精品| 婷婷丁香在线五月| 国产一区亚洲一区在线观看| 国产亚洲午夜精品一区二区久久| 9191精品国产免费久久| 亚洲精品一区蜜桃| 国产精品一区二区在线观看99| 波多野结衣一区麻豆| 美女国产高潮福利片在线看| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 搡老乐熟女国产| kizo精华| 午夜久久久在线观看| 赤兔流量卡办理| 91麻豆av在线| 在线亚洲精品国产二区图片欧美| 亚洲国产av影院在线观看| 亚洲av综合色区一区| 欧美日韩一级在线毛片| 久久久精品区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩一区二区三区影片| 老鸭窝网址在线观看| av一本久久久久| 欧美精品高潮呻吟av久久| 91麻豆av在线| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 中文字幕制服av| 青草久久国产| 夜夜骑夜夜射夜夜干| 国产福利在线免费观看视频| 高清欧美精品videossex| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 一本大道久久a久久精品| 久久中文字幕一级| 国产在视频线精品| 日本黄色日本黄色录像| 咕卡用的链子| 在线精品无人区一区二区三| 好男人视频免费观看在线| 国产欧美亚洲国产| 99久久99久久久精品蜜桃| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | 久久久久久免费高清国产稀缺| 亚洲av欧美aⅴ国产| 日韩 亚洲 欧美在线| 久久99一区二区三区| 久久精品久久久久久久性| 天天添夜夜摸| 欧美黄色淫秽网站| 亚洲精品国产区一区二| 色94色欧美一区二区| 国产成人啪精品午夜网站| 热99久久久久精品小说推荐| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 国产99久久九九免费精品| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 国产午夜精品一二区理论片| 欧美国产精品va在线观看不卡| 亚洲av日韩精品久久久久久密 | 国产一级毛片在线| 欧美精品一区二区免费开放| www.自偷自拍.com| 99久久精品国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 亚洲精品乱久久久久久| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区 | 精品熟女少妇八av免费久了| 免费在线观看影片大全网站 | 超碰成人久久| 老司机影院毛片| 成年人午夜在线观看视频| 精品国产乱码久久久久久男人| 午夜激情av网站| 日本a在线网址| 亚洲欧美激情在线| 一区在线观看完整版| 欧美亚洲日本最大视频资源| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播 | 一边摸一边抽搐一进一出视频| 婷婷色麻豆天堂久久| 丝袜在线中文字幕| 青草久久国产| 丁香六月天网| 在线观看国产h片| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 久久99一区二区三区| 激情视频va一区二区三区| 国产成人影院久久av| 亚洲av片天天在线观看| 亚洲人成77777在线视频| 99久久综合免费| 国产亚洲欧美在线一区二区| a级毛片黄视频| 亚洲av欧美aⅴ国产| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 亚洲av成人不卡在线观看播放网 | 丁香六月欧美| 国产三级黄色录像| 久久精品亚洲熟妇少妇任你| cao死你这个sao货| 免费看av在线观看网站| 中文字幕人妻熟女乱码| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 熟女av电影| 亚洲欧美日韩高清在线视频 | 三上悠亚av全集在线观看| 精品国产乱码久久久久久小说| 国产又爽黄色视频| 亚洲综合色网址| 亚洲成av片中文字幕在线观看| 9色porny在线观看| 久久人妻福利社区极品人妻图片 | 久久久久久久久久久久大奶| 在线观看国产h片| 啦啦啦 在线观看视频| 99国产精品一区二区三区| 欧美精品一区二区大全| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| www.av在线官网国产| 亚洲中文日韩欧美视频| 日韩一本色道免费dvd| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 久久人人爽人人片av| 精品熟女少妇八av免费久了| 日本五十路高清| 亚洲精品国产色婷婷电影| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 亚洲欧美激情在线| 亚洲熟女精品中文字幕| 国产在线一区二区三区精| 亚洲人成电影免费在线| 精品视频人人做人人爽| 久久久精品94久久精品| 99精国产麻豆久久婷婷| 天堂俺去俺来也www色官网| 国产熟女午夜一区二区三区| 美女午夜性视频免费| 一级毛片电影观看| 老司机影院毛片| 热99国产精品久久久久久7| 久9热在线精品视频| 久久人人97超碰香蕉20202| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 我要看黄色一级片免费的| 欧美在线一区亚洲| 黑人巨大精品欧美一区二区蜜桃| 亚洲av男天堂| 欧美黄色片欧美黄色片| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 国产日韩欧美视频二区| 亚洲熟女精品中文字幕| 一区福利在线观看| 亚洲情色 制服丝袜| 久久精品国产亚洲av高清一级| 国产在视频线精品| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花| 欧美性长视频在线观看| 久久精品久久久久久噜噜老黄| 成人国产一区最新在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 午夜福利乱码中文字幕| 久久国产精品人妻蜜桃| 一区福利在线观看| 亚洲国产欧美网| cao死你这个sao货| 亚洲伊人色综图| 大片电影免费在线观看免费| 90打野战视频偷拍视频| 中文字幕精品免费在线观看视频| 观看av在线不卡| 日韩电影二区| 精品一区二区三区av网在线观看 | 一本大道久久a久久精品| 一区在线观看完整版| av线在线观看网站| 久久热在线av| 午夜福利免费观看在线| 啦啦啦啦在线视频资源| 国产一区二区在线观看av| 深夜精品福利| 国产成人免费无遮挡视频| 免费高清在线观看视频在线观看| 亚洲成人免费av在线播放| av一本久久久久| 精品国产乱码久久久久久男人| 侵犯人妻中文字幕一二三四区| 国产成人欧美在线观看 | 丝袜美腿诱惑在线| 欧美日韩av久久| 91国产中文字幕| 91字幕亚洲| 亚洲情色 制服丝袜| 大型av网站在线播放| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲国产一区二区在线观看 | 国产在线一区二区三区精|