• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BAYES PREDICTION OF POPULATION QUANTITIES IN A FINITE POPULATION

    2018-09-19 08:13:28HUGuikaiXIONGPengfeiWANGTongxin
    數(shù)學(xué)雜志 2018年5期

    HU Gui-kai,XIONG Peng-fei,WANG Tong-xin

    (School of Science,East China University of Technology,Nanchang 330013,China)

    Abstract:In this paper,we investigate the prediction in a finite population with the normal inverse-Gamma prior under the squared error loss.First,we obtain Bayes prediction of linear quantities and quadratic quantities based on Bayesian theory,respectively.Second,we compare Bayes prediction with the best linear unbiased prediction of linear quantities according to statistical decision theory,which shows that Bayes prediction is better than the best linear unbiased prediction.

    Keywords: Bayes prediction;linear quantities;quadratic quantities; finite populations

    1 Introduction

    LetP={1,···,N}denote a finite population of N identifiable units,where N is known.Associated with the ith unit ofP,there are p+1 quantities:yi,xi1,···,xip,where all but yiare known,i=1,···,N.Let y=(y1,···,yN)′and X=(X1,···,XN)′,where Xi=(xi1,···,xip)′,i=1,···,N.Relating the two sets of variables,we consider the linear model

    where β is a p× 1 unknown parameter vector,V is a known symmetric positive definite matrix,but the parameter σ2> 0 is unknown.

    For the superpopulation model(1.1),it is interesting to study the optimal prediction of the population quantity θ(y)such as the population Total,the population variance,where=T/N is the population mean and the finite population regression coefficient βN=(X′V?1X)?1X′V?1y,and so on.In the literature,a lot of predictions for the population quantities were produced.For example,Bolfarine and Rodrigues[1]gave the simple projection predictor,and obtained necessary and sufficient conditions for it to be optimal.Bolfarine et al.[2]studied the best unbiased prediction of finite population regression coefficient under the generalized prediction mean squared error in different kinds of models.Xu et al.[3]obtained a kind of optimal prediction of linear predictable function,and got the necessary and sufficient conditions for any linear prediction to be optimal under matrix loss.Xu and Yu[4]further gave the admissible prediction in superpopulation models with random regression coefficients under matrix loss function.Hu and Peng[5]obtained some conditions for linear prediction to be admissible in superpopulation models with and without the assumption that the underlying distribution is normal,respectively.Furthermore,Hu et al.[6–7]discussed the linear minimax prediction in the multivariate normal populations and Gauss-Markov populations,respectively.Their results showed that linear minimax prediction for finite population regression coefficient is admissible in some conditions.Bolfarine and Zacks[8]studied Bayes and minimax prediction under square error loss function in a finite population with single parametric prior.Meanwhile,Bansal and Aggarwal[9–11]considered Bayes prediction of finite population regression coefficient using a balanced loss function under the same prior information.There are two characteristics in the above studies.

    On the one hand,they obtained the optimal,linear admissible and minimax predictions based on statistical decision theory.It is well known that statistical decision theory only consider the sample information and loss function and do not consider the prior information.However,people usually have these information.

    On the other hand,they discussed the Bayes prediction by considering the prior information of single parameter,and did not consider the situation of multi-parameters.In other words,they only made use of the prior information of regression coefficient,but not use the prior information of error variance in model(1.1).In fact,multi-parameter situations are often encountered in the practical problems.Therefore,in this paper,we will study Bayes prediction of linear and quadratic quantities in a finite population where regression coefficient and error variance have the normal inverse-Gamma prior.

    Assume that the prior distribution of β and σ2is normal inverse-Gamma distribution,that is,

    whereμ is a known p×1 vector,α and λ are known constants,k?1is a ratio between the prior variance of β and sample variance of model(1.1).We can suppose that k?1is known by experience or professional knowledge.Therefore,the joint prior distribution of(β,σ2)is

    where X and Xsare known column full rank matrices.

    The rest of this paper is organized as follows:in Section 2,we give Bayes predictor of population quantities in the Bayes model(1.4).Section 3 is devoted to discuss Bayesian prediction of linear quantities.In Section 4,we obtain Bayes prediction of quadratic quantities.Some examples are given in Section 5.Concluding remarks are placed in Section 6.

    2 Bayes Prediction of Population Quantities

    In this section,we will discuss the Bayes prediction of population quantities.Letbe a loss function for predicting θ(y)by.The corresponding Bayes prediction risk ofin model(1.4)is defined aswhere the expectation operator Eyis performed with respect to the joint distribution of y and(β,σ2).The Bayes predictor is the one minimizing the Bayes prediction riskIn particular,when we consider the squared error loss,then the Bayes prediciton of θ(y)is

    and the Bayes prediction risk is

    where the expectation operator Eysis performed with respect to the joint distribution of ysand(β,σ2).It is noted that ys|β,σ2~ Nn(Xsβ,σ2Vs)and

    This together with eq.(1.3)will yield the following results.

    Theorem 2.1 Under the Bayes model(1.4),the following results hold.

    (i)The joint posterior probability density of(β,σ2)is

    (ii)The marginal posterior distribution of β is p-dimensional t distributionwith probability density

    (iii)The marginal posterior distribution of σ2iswith probability density

    (iv)Bayes prediction distribution of yrgiven ysis N?n dimensional t distributionwith probability density

    where

    Proof The proof of(i):since

    and ys|β,σ2~ Nn(Xsβ,σ2Vs),the conditional probability density of ysgiven(β,σ2)is

    This together with eq.(1.3)will yield that the joint posterior probability density of(β,σ2)is

    where m(ys)is the marginal probability density of ys,symbol∝denotes proportional to.By adding the regularization constantto eq.(2.3),we obtain result(i).

    The proof of(ii):by the integral of eq.(2.2)about σ2,we have

    which implies that the marginal posterior distribution of β is p-dimensional t distribution with mean vector,correlation matrixand degrees of freedom n+α.

    The proof of(iii):by the integral of eq.(2.2)about β,we can obtain the result.Here it is omitted.

    where

    Adding the regularization constant to eq.(2.3)and integrating it by β and σ2,respectively,we can obtain the result.

    3 Bayes Prediction of Linear Quantities

    In order to obtain Bayes prediction of θ(y),we consider the squared error loss

    then Bayes prediciton of θ(y)is

    and Bayes prediction risk is

    where the expectation operator Eysis performed with respect to the joint distribution of ysand(β,σ2).By result(iv)of Theorem 2.1,we know

    and

    Now,let θ(y)=Qy be any linear quantity,whereis a known 1 × N vector.According to Theorem 2.1,eqs.(3.4)and(3.5),we have the following conclusions.

    Theorem 3.1 Under model(1.4)and squared error loss function,Bayes predictor of linear quantity Qy is,and Bayes predictor risk is

    As we know,the best linear unbiased prediction of Qy under the squared error loss is,where,and.In the following,we will discuss the superiority between Bayes prediction and the best linear unbiased prediction under the predicative mean squared error(PMSE),which is defined by PMSE(d(ys),Qy)=E[(d(ys)?Qy)2].

    Theorem 3.2 Under model(1.4),Bayes predictionof Qy is better than the best linear unbiased predictionunder the predicative mean squared error.

    Proof By the definition of PMSE and,we have

    Corollary 3.1 Bayes predictor of the population total T under model(1.4)and the loss function(3.1)isand Bayes risk of this predictor isMoreover,is dominated byunder the predicative mean squared error,where

    For the finite population regression coefficientfollowing Bolfarine et al.[2],we can write it as

    where

    and

    Then by Theorem 3.1,we have the following corollary.

    Corollary 3.2 Bayes predictor of the population total βNunder model(1.4)and the loss function(3.1)isand Bayes risk of this predictor is.Moreover,it is better thanunder the predicative mean squared error,where

    In order to illustrate our results,we give the following example.

    Example 3.1 Let X=(x1,x2,···,xN)′,V=diag(x1,x2,···,xN)in the Bayesian model(1.4),where xi≠0,i=1,2,···,N.If Xs=(x1,x2,···,xn)′,ys=(y1,y2,···,yn)′,we haveAccording to Theorem 3.1,we have the following conclusions.

    In the following,we continue to give the simulation study to explain our results according to the following steps,which are executed on a personal computer using Version 7.9(R2009b)Matlab software.

    (i)Generating randomly a N×p full column rank matrix X and a p-dimensional vectorμ;

    (ii)The number σ2and random error ε are generated from distributionand N(0,σ2V),respectively;

    (iii)Generating a p-dimensional vector β by the distribution

    (iv)Obtaining the dependent variable y by the model y=Xβ+ε.

    (v)Generating randomly N-dimensional vector Q,then Bayes prediction and the best linear unbiased prediction of Qy are derived by Theorem 3.1,respectively.

    (vi)Finally,we compare the PMSE between Bayes prediction and best linear unbiased prediction.

    Now,we assume that N=10,n=6,p=3,α =8,λ =12,k=10,and obtain the above data.The simulation study shows that Bayes prediction is better than the best linear unbiased prediction,which is consistent to our theoretical conclusions.Here,we give the above data in one experiment as following.

    At this time,we get randomly

    By direct computation,we have Qy=?4.3971.By Theorem 2.1,we know?4.8497,=?5.7928,andTherefore,Bayes prediction of Qy is better than the best linear unbiased predictor.

    4 Bayes Prediction of Quadratic Quantities

    In this section,we will discuss Bayes prediction of quadratic quantities f(H)=y′Hy,where H is a known symmetric matrix.Assume thatwith H12=then

    By Theorem 2.1 and eq.(3.2),we have the following results.

    Theorem 4.1 Under model(1.4)and the loss function(1.3),the Bayes prediction of f(H)is

    For the population variance,we know that

    where 1ndenotes n dimensional vector with elements 1.Then by Theorem 4.1,we can obtain the following corollary.

    Corollary 4.1 The Bayes prediction of the population varianceunder model(1.4)and the loss function(3.1)is

    Remark 4.1 The Bayes prediction of the population varianceunder model(1.4)and the loss function(3.1)is

    According to eqs.(4.1)–(4.2)and the expression of,we can derive the result of this remark.It is easy to verify that the result of this remark is consistent to Corollary 4.1.

    Then,

    5 Concluding Remarks

    In this paper,we obtain Bayes prediction of linear and quadratic quantities in the finite population with normal inverse-Gamma prior information.In our studies,on the one hand,the distribution of the superpopulation model is need to be normal.However,in many occasions,the distribution of the model is usually unknown in addition to the mean vector and covariance matrix.At this time,how to deal with the Bayes prediction?On the other hand,if the prior distribution is hierarchical and improper,how to obtain the generalized Bayes prediction and discuss its optimal properties?Such as these problems are deserved to discuss in the future.

    久久中文看片网| 岛国毛片在线播放| 香蕉丝袜av| 久久午夜亚洲精品久久| 黄色丝袜av网址大全| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 搡老乐熟女国产| 在线十欧美十亚洲十日本专区| 乱人伦中国视频| 亚洲熟妇熟女久久| 中文字幕人妻熟女乱码| 国产1区2区3区精品| 国产精品久久久久久精品古装| 另类亚洲欧美激情| 久久免费观看电影| 最近最新中文字幕大全电影3 | 国产高清视频在线播放一区| 黄色视频不卡| 国产一区二区在线观看av| 窝窝影院91人妻| 国产亚洲一区二区精品| 91精品三级在线观看| 亚洲av国产av综合av卡| av一本久久久久| 曰老女人黄片| 久久毛片免费看一区二区三区| 母亲3免费完整高清在线观看| 91麻豆av在线| 成人永久免费在线观看视频 | 国产成人系列免费观看| 中文字幕色久视频| 亚洲天堂av无毛| 后天国语完整版免费观看| 亚洲人成伊人成综合网2020| 成年女人毛片免费观看观看9 | 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月 | 欧美日韩黄片免| 又紧又爽又黄一区二区| 精品少妇内射三级| 9色porny在线观看| 50天的宝宝边吃奶边哭怎么回事| 一区二区av电影网| 久久午夜亚洲精品久久| 久久精品亚洲av国产电影网| 欧美精品人与动牲交sv欧美| 亚洲性夜色夜夜综合| 老汉色av国产亚洲站长工具| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线观看jvid| 午夜视频精品福利| 亚洲三区欧美一区| 国产免费视频播放在线视频| 黄色丝袜av网址大全| 中文欧美无线码| 男女之事视频高清在线观看| 满18在线观看网站| 最近最新免费中文字幕在线| 欧美激情高清一区二区三区| 一区二区日韩欧美中文字幕| 久热这里只有精品99| 欧美+亚洲+日韩+国产| 久久精品国产综合久久久| av一本久久久久| 日本av手机在线免费观看| www.熟女人妻精品国产| 午夜福利视频精品| 国产成人精品久久二区二区免费| 9色porny在线观看| 久久热在线av| 国产精品一区二区免费欧美| 中文字幕精品免费在线观看视频| 99国产精品一区二区三区| 午夜日韩欧美国产| 久久精品国产综合久久久| 国产成人免费无遮挡视频| 国产av国产精品国产| 国产99久久九九免费精品| 天堂8中文在线网| 亚洲精品av麻豆狂野| 国产成人精品久久二区二区免费| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 老熟女久久久| 成年动漫av网址| 欧美日韩中文字幕国产精品一区二区三区 | 国产老妇伦熟女老妇高清| 亚洲欧美精品综合一区二区三区| 999久久久精品免费观看国产| 美女午夜性视频免费| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 久久久国产成人免费| 一本—道久久a久久精品蜜桃钙片| 成人影院久久| 日本av手机在线免费观看| 日日摸夜夜添夜夜添小说| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 高清欧美精品videossex| 老司机在亚洲福利影院| 欧美日韩精品网址| 中文字幕制服av| tube8黄色片| 欧美av亚洲av综合av国产av| 91成人精品电影| 欧美午夜高清在线| 国产亚洲精品久久久久5区| 波多野结衣一区麻豆| 两人在一起打扑克的视频| 国产一区二区在线观看av| 精品午夜福利视频在线观看一区 | 不卡av一区二区三区| 国产精品久久久久久精品电影小说| www日本在线高清视频| 999久久久精品免费观看国产| www.自偷自拍.com| 国产又爽黄色视频| 亚洲av美国av| 男女免费视频国产| 一边摸一边抽搐一进一小说 | 高清黄色对白视频在线免费看| 高清av免费在线| 国产精品免费视频内射| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 在线永久观看黄色视频| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 97人妻天天添夜夜摸| 青青草视频在线视频观看| 亚洲自偷自拍图片 自拍| 亚洲一区中文字幕在线| 曰老女人黄片| 亚洲专区中文字幕在线| 亚洲第一av免费看| 亚洲精品美女久久av网站| 亚洲av第一区精品v没综合| 制服诱惑二区| 大码成人一级视频| 国产高清国产精品国产三级| 无限看片的www在线观看| 午夜两性在线视频| 久久人人97超碰香蕉20202| 深夜精品福利| 午夜福利在线观看吧| 一级,二级,三级黄色视频| 亚洲av国产av综合av卡| 精品熟女少妇八av免费久了| 国产单亲对白刺激| 天堂8中文在线网| av免费在线观看网站| 黄色 视频免费看| 免费少妇av软件| 国产av精品麻豆| 后天国语完整版免费观看| 午夜激情久久久久久久| 丰满少妇做爰视频| 不卡一级毛片| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 两个人看的免费小视频| 欧美在线黄色| 精品国产乱码久久久久久小说| 一本大道久久a久久精品| 亚洲视频免费观看视频| 操出白浆在线播放| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 777米奇影视久久| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 国产成人精品无人区| 最近最新中文字幕大全电影3 | 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| 蜜桃在线观看..| 99精国产麻豆久久婷婷| 亚洲黑人精品在线| 精品欧美一区二区三区在线| 99精品在免费线老司机午夜| 一边摸一边做爽爽视频免费| 精品一区二区三卡| 欧美激情极品国产一区二区三区| 最新的欧美精品一区二区| 777米奇影视久久| 美女福利国产在线| 美女视频免费永久观看网站| 大型av网站在线播放| 久久影院123| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 超碰成人久久| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 国产精品美女特级片免费视频播放器 | 91成人精品电影| a在线观看视频网站| 久久精品国产综合久久久| 另类亚洲欧美激情| 婷婷丁香在线五月| 精品人妻1区二区| 久久99一区二区三区| 久久青草综合色| 国产真人三级小视频在线观看| 欧美乱妇无乱码| av不卡在线播放| 亚洲精品美女久久久久99蜜臀| 少妇的丰满在线观看| 精品国产亚洲在线| 交换朋友夫妻互换小说| 精品久久久精品久久久| av有码第一页| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 亚洲人成电影观看| 欧美日韩国产mv在线观看视频| 国产91精品成人一区二区三区 | 日本欧美视频一区| 欧美成狂野欧美在线观看| 高清欧美精品videossex| 91精品三级在线观看| 一级片'在线观看视频| 免费在线观看影片大全网站| 超色免费av| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 91精品三级在线观看| 国产亚洲欧美精品永久| 日韩成人在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 国产精品一区二区免费欧美| 国产免费av片在线观看野外av| 精品久久久久久电影网| 黄色 视频免费看| 欧美精品人与动牲交sv欧美| 免费日韩欧美在线观看| 香蕉丝袜av| 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 日韩大片免费观看网站| 韩国精品一区二区三区| 成人黄色视频免费在线看| 下体分泌物呈黄色| 亚洲av日韩在线播放| 黄色毛片三级朝国网站| 99精品欧美一区二区三区四区| 亚洲国产欧美在线一区| 三上悠亚av全集在线观看| 免费看十八禁软件| 一边摸一边抽搐一进一出视频| 午夜福利在线免费观看网站| 国产99久久九九免费精品| 国产免费av片在线观看野外av| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久精品电影小说| 午夜福利在线免费观看网站| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 亚洲少妇的诱惑av| 国产精品美女特级片免费视频播放器 | 久久99一区二区三区| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 久久影院123| 国产淫语在线视频| e午夜精品久久久久久久| 国产一区二区三区视频了| 亚洲精华国产精华精| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| 精品国产国语对白av| 中文字幕人妻丝袜一区二区| 91大片在线观看| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 自线自在国产av| 制服诱惑二区| 蜜桃国产av成人99| 久久性视频一级片| 欧美成人午夜精品| 丝袜人妻中文字幕| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影 | 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 黑人猛操日本美女一级片| 一个人免费看片子| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 视频区图区小说| 久久久精品区二区三区| 欧美亚洲 丝袜 人妻 在线| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影 | 亚洲精品美女久久av网站| 久久影院123| 久久久精品免费免费高清| 精品午夜福利视频在线观看一区 | 国产极品粉嫩免费观看在线| 亚洲国产成人一精品久久久| 国产欧美日韩综合在线一区二区| 久久久久久人人人人人| 日本一区二区免费在线视频| 久久久久久人人人人人| 女警被强在线播放| 999久久久国产精品视频| 日本av免费视频播放| 成年人午夜在线观看视频| 香蕉丝袜av| 午夜91福利影院| 国产成人精品在线电影| 91九色精品人成在线观看| 成人亚洲精品一区在线观看| 天堂8中文在线网| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 国产精品av久久久久免费| 亚洲av片天天在线观看| 极品教师在线免费播放| 高清欧美精品videossex| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 亚洲九九香蕉| 丰满少妇做爰视频| 狠狠婷婷综合久久久久久88av| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 丰满少妇做爰视频| 性色av乱码一区二区三区2| 美女福利国产在线| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 黄频高清免费视频| 国产精品久久久久久精品电影小说| 国产福利在线免费观看视频| 亚洲一区中文字幕在线| 精品福利永久在线观看| 亚洲欧美日韩另类电影网站| 免费看十八禁软件| 精品一区二区三区视频在线观看免费 | 咕卡用的链子| 精品国产一区二区三区久久久樱花| 中文字幕高清在线视频| 黄色视频,在线免费观看| 在线观看舔阴道视频| 99国产综合亚洲精品| 色播在线永久视频| 国产亚洲精品久久久久5区| 亚洲自偷自拍图片 自拍| 天堂中文最新版在线下载| 久久精品亚洲熟妇少妇任你| 男女下面插进去视频免费观看| 欧美性长视频在线观看| 久久久久久久久久久久大奶| 国产精品亚洲一级av第二区| 制服诱惑二区| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 免费看a级黄色片| 99久久精品国产亚洲精品| 丁香六月天网| 亚洲第一欧美日韩一区二区三区 | 免费不卡黄色视频| 天天影视国产精品| 午夜久久久在线观看| 人妻 亚洲 视频| 国产高清videossex| kizo精华| 国产av国产精品国产| 女性生殖器流出的白浆| 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 日韩欧美一区二区三区在线观看 | 欧美日韩国产mv在线观看视频| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 超色免费av| 黄色 视频免费看| 国产国语露脸激情在线看| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | 大型av网站在线播放| 九色亚洲精品在线播放| 黄片大片在线免费观看| 成人av一区二区三区在线看| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 99九九在线精品视频| 香蕉丝袜av| 亚洲午夜精品一区,二区,三区| 午夜福利在线观看吧| 亚洲精品在线美女| 久久这里只有精品19| 在线观看人妻少妇| 欧美国产精品一级二级三级| 国产高清激情床上av| 99久久国产精品久久久| 久久 成人 亚洲| 成年人午夜在线观看视频| 99在线人妻在线中文字幕 | 操美女的视频在线观看| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 亚洲精品av麻豆狂野| 久久精品国产亚洲av香蕉五月 | 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 狠狠狠狠99中文字幕| av国产精品久久久久影院| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 欧美 日韩 精品 国产| 国产成人精品无人区| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 搡老乐熟女国产| 国产真人三级小视频在线观看| 久久这里只有精品19| 欧美日韩黄片免| 中国美女看黄片| 欧美精品啪啪一区二区三区| 亚洲久久久国产精品| av一本久久久久| 美女午夜性视频免费| 黑人猛操日本美女一级片| 国产精品二区激情视频| 91九色精品人成在线观看| 纵有疾风起免费观看全集完整版| 亚洲中文字幕日韩| 精品一区二区三区四区五区乱码| 精品视频人人做人人爽| 精品国产乱子伦一区二区三区| 亚洲av电影在线进入| 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一小说 | 视频区欧美日本亚洲| 欧美性长视频在线观看| 大香蕉久久成人网| 黑人巨大精品欧美一区二区蜜桃| 高清av免费在线| 亚洲成av片中文字幕在线观看| 精品卡一卡二卡四卡免费| 99国产精品一区二区蜜桃av | 99在线人妻在线中文字幕 | 国产日韩欧美在线精品| 中文字幕最新亚洲高清| 成人亚洲精品一区在线观看| 9热在线视频观看99| 制服诱惑二区| 波多野结衣av一区二区av| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 99riav亚洲国产免费| 大型黄色视频在线免费观看| 亚洲精品国产一区二区精华液| 亚洲成av片中文字幕在线观看| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 午夜精品国产一区二区电影| 午夜激情久久久久久久| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 97在线人人人人妻| 欧美精品av麻豆av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 国产在线免费精品| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片精品| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| 久久久欧美国产精品| 多毛熟女@视频| 精品人妻在线不人妻| 国产单亲对白刺激| 乱人伦中国视频| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 在线观看免费高清a一片| 国产在线免费精品| 午夜免费鲁丝| 99国产精品免费福利视频| 黄色a级毛片大全视频| 99国产精品免费福利视频| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| av线在线观看网站| 高清av免费在线| 国产午夜精品久久久久久| 久久精品亚洲熟妇少妇任你| 一区在线观看完整版| 国产一区有黄有色的免费视频| 久久人人爽av亚洲精品天堂| 精品熟女少妇八av免费久了| 久久狼人影院| 国产成人免费无遮挡视频| av网站免费在线观看视频| 18禁观看日本| 欧美国产精品一级二级三级| 国产男女超爽视频在线观看| 亚洲熟女毛片儿| 国产区一区二久久| 99精品欧美一区二区三区四区| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区| 欧美av亚洲av综合av国产av| 免费在线观看日本一区| 国产精品久久久久久人妻精品电影 | 99在线人妻在线中文字幕 | 两个人免费观看高清视频| 亚洲成人手机| 这个男人来自地球电影免费观看| 精品亚洲成a人片在线观看| 国产一区二区 视频在线| 国产伦人伦偷精品视频| 国产精品久久久久久精品古装| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美亚洲国产| 国产精品98久久久久久宅男小说| 国产一区二区在线观看av| a级片在线免费高清观看视频| 咕卡用的链子| 如日韩欧美国产精品一区二区三区| 日韩视频在线欧美| 50天的宝宝边吃奶边哭怎么回事| 纵有疾风起免费观看全集完整版| 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 免费观看人在逋| 国产一区二区三区视频了| 欧美日韩亚洲国产一区二区在线观看 | 欧美午夜高清在线| 午夜福利影视在线免费观看| 99riav亚洲国产免费| 午夜福利视频在线观看免费| 久久99热这里只频精品6学生| 久久亚洲真实| 久久精品国产a三级三级三级| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av高清一级| 日韩免费av在线播放| 欧美精品av麻豆av| 精品免费久久久久久久清纯 | 亚洲av日韩精品久久久久久密| 在线观看免费视频日本深夜| 日韩中文字幕视频在线看片| 女人久久www免费人成看片| 久热爱精品视频在线9| 成人国语在线视频| 久久久久精品人妻al黑| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久精品电影小说| 极品人妻少妇av视频| 99re6热这里在线精品视频| 亚洲色图av天堂| 女人精品久久久久毛片| 久久久水蜜桃国产精品网| 一级黄色大片毛片| 精品久久蜜臀av无| 国产一区二区激情短视频| 国产日韩欧美视频二区| av网站在线播放免费| 黑丝袜美女国产一区| 丝袜在线中文字幕| 午夜成年电影在线免费观看| 90打野战视频偷拍视频| 丰满饥渴人妻一区二区三| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 精品国产超薄肉色丝袜足j| av网站在线播放免费|