• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of MBR Membrane Pollution Based on Improved PSO and Fuzzy RBF Neural Network

    2018-09-14 07:50:00TAOYingxinLIChunqingSUHua
    軟件 2018年8期
    關(guān)鍵詞:權(quán)值通量閾值

    TAO Ying-xin, LI Chun-qing, SU Hua

    ?

    Prediction of MBR Membrane Pollution Based on Improved PSO and Fuzzy RBF Neural Network

    TAO Ying-xin, LI Chun-qing, SU Hua

    (College of Computer Science and Software, Tianjin Polytechnic University, Tianjin, China)

    In order to improve the prediction accuracy of MBR membrane flux, using a fuzzy Radial Basis Function neural network to establish a network prediction model, and use the improved Particle Swarm Optimization (PSO) algorithm to optimize. The functional equivalence of the fuzzy inference process and the RBF neural network is used to unify the system function. When using a modified PSO algorithm to train a fuzzy RBF neural network, First, using the improved PSO algorithm to obtain the initial weights and thresholds of the fuzzy RBF neural network, and then perform a second optimization on them to get the final weights and thresholds. The experimental simulation results show that this method of this paper shortens the response time, has a small steady-state error, and can better fit the expected value of the membrane flux and better predict the membrane flux.

    MBR; PSO; RBF

    0 Introduction

    The membrane bioreactor (MBR) is a new was-tewater treatment technology, which combines membrane separation technology with bioreactor technology. Membrane flux is an important parameter in the MBR study. Membrane flux reflects membrane fouling. The prediction of membrane pollution through the establishment of prediction models has become an important research direction in MBR simulation. Most of the commonly used prediction models have some defects, such as insufficient analysis of the membrane fouling mechanism and poor prediction accuracy.In this paper, the improved PSO algorithm is used to optimize the fuzzy RBF neural network so that the experimental results of the simulation system are closer to the prediction results.

    1 Improved PSO and Fuzzy RBF Neural Network

    1.1 Fuzzy RBF neural network

    RBF neural network as a good feedforward neural network has global approximation ability. It is superior to backpropagation neural network in terms of approximation ability, classification ability and learning speed. Combining RBF neural network with fuzzy control, utilize the function equivalence of the fuzzy inference process and the RBF neural network to unify the system function. The structure of the fuzzy RBF neural network is shown in the figure.

    Fig.1 Fuzzy RBF neural network structure model

    Tab.1 Comparison of membrane flux prediction results

    In this equation: X1 is the membership function, X2 and X3 represent the center and width of the membership function, respectively. The number of nodes in this layer is 16. Layer 3 is the rule layer, and each node represents a fuzzy rule. Its role is to match the premise of fuzzy rules, and calculate the applicability of each rule. Which is

    In this paper, the “multiply” operator is used to complete the simulation and normalized calculations are performed at the same time, which is

    The fourth layer is the defuzzification layer, which is the output y, which is used as a predictor of the flux of the membrane. which is

    1.2 Standard PSO Algorithm

    The standard PSO algorithm is a heuristic search technology with simple implementation, strong global search capability and superior performance. The standard PSO algorithm uses a speed-position search method in which all particles have been performing search motions in parallel. By recording the best position of each particle so far and simultaneously communicating the local information between the particles, the best solution so far for the entire particle group or domain is obtained. The flow chart is shown in Figure 2. Expressed as a mathematical model

    In the formula: i=1, 2,…, m represents the number of the particle; j=1,2,…, n is the j-th component of the n-dimensional vector; and represent the velocity vector and position vector of particle i in k iterations, respectively; are the learning rates that control the relative contributions of individual cognitive component and social component of the group, respectively; g denotes the particle number with the global best fit value so far; and gen-erate a uniform distribution of random numbers between S and M, respectively. Its introduction will increase the randomness of the cognitive and social search direction and the diversity of algorithms, a1, a2 are the corresponding control parameters. represents the current position of the i-th particle, relative to the distance of the particle so far to the optimal position , represents the current position of the i-th particle, relative to the distance of the particle so far to the optimal position .

    1.3 Improved PSO algorithm

    The standard PSO algorithm has a fast search speed and high efficiency, but it also has many shortcomings, such as the existence of premature convergence or prematurely falling into local extremum, which makes the search speed of the whole algorithm slower and sometimes stagnate.For this reason, this paper proposes an improved PSO algorithm, trying to expand the global search ability and improve the local search accuracy.Practice shows that if the PSO algorithm is iteratively linearly decremented, the local search accuracy in the later iteration can be enhanced, thereby improving the convergence performance of the algorithm.Often adopt the following formula

    From the standard PSO algorithm, the current position of the particle and the current velocity determine the position of the next moment, so the particle will update its velocity and position by iterating to move closer to the optimal position. However, if this optimal location is a local optimal location, the particle swarm cannot be searched again in the solution space and thus falls into a local optimum. If the genetic algorithm is used to modify the global extremum P by referring to the genetic algorithm at this time,then the direction of the particles will change, so that you can enter other areas to search, and you can find the optimal solution by looping.This is the basic idea of the PSO algorithm.In order to make the PSO algorithm have better optimization performance, this paper introduces a random operator to make the particle group perform the mutation operation with a certain probability q under the condition of satisfying the variation. The calculation formula of q is as follows

    1.4 Improved PSO and RBF neural network algorithm

    The fuzzy RBF neural network learning method has strong nonlinear mapping ability and is a good learning method.What it needs to solve is a complex non-linearization problem. The weight of the network is gradually adjusted in the direction of local improvement. This will cause the algorithm to fall into local extremum and lack globality. At the same time, the adjustment of its convergence is also determined by the choice of initial state. The PSO algorithm has better global search ability. When training the fuzzy RBF neural network, a combination of the two is adopted. Firstly, the initial weights and thresholds of the fuzzy RBF neural network are found by using the PSO algorithm, and then the initial weights and thresholds are used for the second optimization to obtain the final weights and thresholds. The specific steps are as follows:

    Initialize the particle swarm first according to initial conditions and constraints.

    (2) Determine the initialization speed, position and population size of the particle swarm, learning factor, inertia weight, and number of iterations.

    (3) Determine the fitness function of the particle swarm. In this paper, the mean square error of BP neural network is used as a fitness function. Its formula is as follows:

    In the formula: N is the number of samples for network training, X1 is the actual output value of the i-th sample, and X2 is the expected output value of the i-th sample.

    (4) Calculate the fitness value of each particle in the particle swarm. According to formula (6), the fitness of each particle under network training is calculated. In this paper, the network excitation function is taken as the sigmoid function.

    (5) Extreme update. The fitness of each particle is compared with the fitness of the local best position, and if it is better, it is the best position at present. For the global extremum, the fitness of the particle is compared with the global optimal fitness. If it is better, the current fitness value of the particle is taken as the global optimal fitness value of the population.

    (6) Speed update. The position and velocity of the particles are updated according to equations (1) to (3).

    (7) Mutation operation. Calculate the mutation probability according to Equation (4) and perform the mutation operation according to Equation (5).

    (8) Iteration stops. The iteration is stopped when the iteration reaches the error requirement or the number of iterations reaches the maximum number of times.The weights and thresholds obtained at this time are then substituted into the network for secondary optimization, otherwise, go to step (3) to continue the iteration.

    Figure 3 is the change curve of fitness of PSO and improved PSO algorithm after the mean squared error is equal to 0.002. It can be seen that the PSO algorithm got into a local optimum when iterating 14 times.For the improved PSO algorithm, due to the addition of mutation operations, the particles entering the local optimum are searched into other regions. Although the convergence rate is reduced, the local convergence ability is enhanced and the training ability of the neural network is improved.

    Fig.3 Fitness curve

    2 Application of the algorithm in MBR membrane pollution prediction

    2.1 Application of the algorithm in MBR membrane pollution prediction

    In order to verify the effectiveness of the fuzzy RBF neural network optimized by PSO algorithm in this paper, the MBR membrane pollution prediction accuracy is improved. The membrane bioreactor is used as the research object, and the transfer function is as follows

    In the formula: T=10, k=9, setting temperature is 24°C. For a fuzzy RBF neural network controller, first we use the expected rate of flux and flux of the membrane flux as input, and the actual flux of the membrane as output. The performance index of BP neural network online learning is

    2.2 Analysis of experimental results

    A simple RBF neural network prediction model is established under the same training conditions, and the relative results of the improved PSO and fuzzy RBF models are used to obtain the prediction results.

    Table 1 shows the comparison table of predicted membrane flux prediction results. As can be seen from the table, the average relative error of the prediction model of the unoptimized RBF algorithm is 4.85%, while the average relative error of the prediction of the fuzzy RBF optimized by the improved PSO is 2.87%.

    It can be seen by comparing Figure 4 that the simulated RBF neural network optimized by the improved PSO algorithm enhances its own learning adaptability, has a small steady-state error, and can well fit the output of the reference model. The control effect is significantly better than the traditional RBF algorithm model prediction results.

    Fig.4 Comparison of prediction results

    3 Conclusion

    In this paper, the PSO algorithm is applied to the fuzzy RBF neural network, so that it has a stronger nonlinear approximation ability.

    At the same time, it overcomes the problem that the standard PSO algorithm is easy to fall into the local minimum, improves the self-learning and self- adaptive ability of the fuzzy RBF neural network, and improves the transient and steady-state performance of the system.It is proved that the fuzzy RBF neural network optimized by PSO algorithm is feasible in MBR membrane pollution prediction simulation and has achieved good prediction results.

    [1] IYAN Hong-ying, LI Chun-qing, 2013. Study on Intelligent Simulation and Prediction Method of MBR Membrane Fouling[J]. Journal of Computer Measurement and Control, 21(8): 1-5.

    [2] TANG Jia, LI Chun-qing, 2016. Study on Simulation and Prediction of MBR Fouling Based on RBF Neural Network Optimized by Genetic Algorithm[J]. Software Engineering, 19(9): 11-13.

    [3] Zhang Dingxue, Guan Zhihong, Liu Xizhi. 2006. A RBF Neural Network Learning Algorithm Based on PSO and Its Application[J]. Computer Engineering & Applications, 42 (20): 13-15.

    [4] ZHANG Jian, LIU Ding-Yi. 2014, A Method of Optimizing RBF Neural Network with PSO. Computer Simulation, 31(11): 269-272.

    [5] Li Jie-jia, Li Xiao-feng, Xie Jin-xiang, 2014. Temperature Control of Annealing Furnace Based on Improved PSO and Fuzzy RBF Neural Network[J]. Acta Metallurgica Sinica, 38 (3): 337-341.

    [6] Liang Kai. 2017. Application of Support Vector Machine Based on Simulated Annealing Algorithm in MBR Membrane Pollution[D]. Tianjin University of Technology.

    [7] ZHANG Zhi-yu, ZHAO Dan-guo, HOU Xiao-yu. 2013. Application of PSO-RBF Neural Network in Prediction of Urban Water Demand[J]. Hydropower Energy Science, (6): 55-57.

    [8] Xie Yugui, Zhong Shaodan, Wei Yuke. Improved particle swarm optimization and convergence analysis[J]. Computer Engineering and Applications. 2011, 47(1): 46-49.

    [9] Ren Zihui, Wang Jian. An adaptive example group algorithm for dynamically changing inertia weights[J]. Computer, 2009, 36(2): 227-229,25.

    基于改進(jìn)的PSO和模糊RBF神經(jīng)網(wǎng)絡(luò)的MBR膜污染預(yù)測

    陶穎新,李春青,蘇 華

    (天津工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與軟件學(xué)院)

    為了提高對(duì)MBR膜通量的預(yù)測精度,采用模糊徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)建立網(wǎng)絡(luò)預(yù)測模型,并采用改進(jìn)的粒子群(PSO)算法進(jìn)行優(yōu)化。采用模糊推理過程與RBF神經(jīng)網(wǎng)絡(luò)所具有的函數(shù)等價(jià)性,統(tǒng)一系統(tǒng)函數(shù)。在利用改進(jìn)的PSO算法對(duì)模糊RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練時(shí),先利用改進(jìn)PSO算法得到模糊RBF神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,然后對(duì)其進(jìn)行二次優(yōu)化得到最終的權(quán)值和閾值。實(shí)驗(yàn)仿真結(jié)果表明:本文的這種方法,縮短了響應(yīng)時(shí)間,穩(wěn)態(tài)誤差很小,能夠與膜通量的期望值更好的擬合,更好的預(yù)測膜通量。

    MBR;PSO;RBF

    TP39

    A

    國家自然科學(xué)基金(51378350);國家青年科學(xué)基金(50808130)

    陶穎新(1992-),女,碩士研究生,主要研究方向:MBR計(jì)算機(jī)模擬仿真,大數(shù)據(jù);李春青(1962-),男,博士,主要研究方向:MBR計(jì)算機(jī)模擬仿真,大數(shù)據(jù)云計(jì)算;蘇華,女,碩士,主要研究方向:計(jì)算機(jī)網(wǎng)絡(luò),可信計(jì)算。

    本文著錄格式:陶穎新,李春青,蘇華. 基于改進(jìn)的PSO和模糊RBF神經(jīng)網(wǎng)絡(luò)的MBR膜污染預(yù)測[J]. 軟件,2018,39(8):52-56

    10.3969/j.issn.1003-6970.2018.08.012

    猜你喜歡
    權(quán)值通量閾值
    一種融合時(shí)間權(quán)值和用戶行為序列的電影推薦模型
    冬小麥田N2O通量研究
    CONTENTS
    小波閾值去噪在深小孔鉆削聲發(fā)射信號(hào)處理中的應(yīng)用
    基于自適應(yīng)閾值和連通域的隧道裂縫提取
    比值遙感蝕變信息提取及閾值確定(插圖)
    河北遙感(2017年2期)2017-08-07 14:49:00
    基于權(quán)值動(dòng)量的RBM加速學(xué)習(xí)算法研究
    室內(nèi)表面平均氡析出率閾值探討
    緩釋型固體二氧化氯的制備及其釋放通量的影響因素
    春、夏季長江口及鄰近海域溶解甲烷的分布與釋放通量
    国产精品久久久久久久电影| 91精品伊人久久大香线蕉| 日日啪夜夜撸| 亚洲成人中文字幕在线播放| 欧美精品一区二区免费开放| 国国产精品蜜臀av免费| 在线观看国产h片| 久久久久久伊人网av| 国产成人免费无遮挡视频| 韩国高清视频一区二区三区| 91精品国产国语对白视频| 在线免费十八禁| 国产无遮挡羞羞视频在线观看| 久久久久久人妻| 久热这里只有精品99| 亚洲精华国产精华液的使用体验| 两个人的视频大全免费| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 亚洲色图综合在线观看| 卡戴珊不雅视频在线播放| 美女高潮的动态| 国产又色又爽无遮挡免| 国产精品无大码| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 97超碰精品成人国产| 1000部很黄的大片| 久久精品国产自在天天线| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 久久 成人 亚洲| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 亚洲成人av在线免费| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 久久久久久久国产电影| 国产男女超爽视频在线观看| 亚州av有码| 日韩免费高清中文字幕av| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 男女边吃奶边做爰视频| 青春草国产在线视频| 蜜桃在线观看..| 亚洲激情五月婷婷啪啪| 久久99热这里只频精品6学生| 欧美3d第一页| 国产日韩欧美在线精品| 久久久久久九九精品二区国产| 免费久久久久久久精品成人欧美视频 | 亚洲精品国产成人久久av| 在现免费观看毛片| 精品久久久噜噜| 男女免费视频国产| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 国产成人一区二区在线| 3wmmmm亚洲av在线观看| 欧美成人一区二区免费高清观看| 久久久久久久久久久丰满| av天堂中文字幕网| 大片电影免费在线观看免费| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 天美传媒精品一区二区| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 激情 狠狠 欧美| 国产精品一二三区在线看| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说| 噜噜噜噜噜久久久久久91| 人妻系列 视频| 日韩成人伦理影院| 欧美bdsm另类| 高清欧美精品videossex| 免费黄频网站在线观看国产| 在线观看av片永久免费下载| 噜噜噜噜噜久久久久久91| 色视频www国产| 在线精品无人区一区二区三 | 国产大屁股一区二区在线视频| 夫妻性生交免费视频一级片| 2018国产大陆天天弄谢| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 成人国产麻豆网| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 久久99蜜桃精品久久| 久久久久久久精品精品| 久久久久久久久久久丰满| 国产熟女欧美一区二区| 免费av中文字幕在线| 国产乱来视频区| 亚洲在久久综合| 看非洲黑人一级黄片| 亚洲高清免费不卡视频| 成年女人在线观看亚洲视频| 亚洲精品亚洲一区二区| 久久 成人 亚洲| 97在线人人人人妻| 中文天堂在线官网| 久久青草综合色| 九九爱精品视频在线观看| 老司机影院毛片| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| av免费观看日本| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 91久久精品电影网| 一区二区三区四区激情视频| 成人美女网站在线观看视频| 只有这里有精品99| 国模一区二区三区四区视频| 欧美97在线视频| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图 | 嫩草影院新地址| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 亚洲国产欧美人成| 国产91av在线免费观看| 永久网站在线| 在线观看国产h片| 亚洲国产成人一精品久久久| 在线看a的网站| 国产高清国产精品国产三级 | 在线观看三级黄色| 婷婷色av中文字幕| 成年美女黄网站色视频大全免费 | 一级毛片 在线播放| 在线免费十八禁| 人人妻人人爽人人添夜夜欢视频 | 高清av免费在线| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区| 久久久成人免费电影| 毛片女人毛片| 国产毛片在线视频| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 赤兔流量卡办理| av免费观看日本| 国产在视频线精品| 在线精品无人区一区二区三 | 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区视频9| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 男女边摸边吃奶| 久久青草综合色| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久av不卡| 赤兔流量卡办理| 男女下面进入的视频免费午夜| 国产在视频线精品| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| av线在线观看网站| 亚洲欧美精品专区久久| 国产精品熟女久久久久浪| 久热这里只有精品99| 美女主播在线视频| 久久精品夜色国产| 日本免费在线观看一区| 校园人妻丝袜中文字幕| 精品视频人人做人人爽| 精品一区二区免费观看| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 免费大片18禁| 日韩电影二区| 少妇人妻一区二区三区视频| 精品久久久精品久久久| 内射极品少妇av片p| 一本—道久久a久久精品蜜桃钙片| 国产中年淑女户外野战色| 九草在线视频观看| 国产精品一区二区在线不卡| 国产日韩欧美在线精品| 日本wwww免费看| 国产美女午夜福利| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 赤兔流量卡办理| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 国产亚洲av片在线观看秒播厂| 亚洲精品视频女| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 777米奇影视久久| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 日韩免费高清中文字幕av| 亚洲国产精品999| 十分钟在线观看高清视频www | 亚洲精品一区蜜桃| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 内地一区二区视频在线| 在线观看免费日韩欧美大片 | 亚洲高清免费不卡视频| 亚洲无线观看免费| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 午夜福利高清视频| 国产在视频线精品| 少妇高潮的动态图| 久久人人爽av亚洲精品天堂 | 偷拍熟女少妇极品色| 又黄又爽又刺激的免费视频.| 亚洲精品,欧美精品| 大片免费播放器 马上看| 精品久久久噜噜| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 成人综合一区亚洲| 美女国产视频在线观看| 欧美极品一区二区三区四区| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 99视频精品全部免费 在线| 成人18禁高潮啪啪吃奶动态图 | 精品久久久精品久久久| 女人久久www免费人成看片| 多毛熟女@视频| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 免费观看的影片在线观看| 97超碰精品成人国产| 我的女老师完整版在线观看| 在线亚洲精品国产二区图片欧美 | 九九在线视频观看精品| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 日日撸夜夜添| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 国产av精品麻豆| 午夜免费鲁丝| 中国美白少妇内射xxxbb| 最近最新中文字幕免费大全7| 成人二区视频| 高清黄色对白视频在线免费看 | 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 有码 亚洲区| 老师上课跳d突然被开到最大视频| av免费观看日本| 欧美xxxx性猛交bbbb| 日本免费在线观看一区| 午夜老司机福利剧场| 久久av网站| 亚洲内射少妇av| 新久久久久国产一级毛片| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| av网站免费在线观看视频| 一级毛片我不卡| 国产在线免费精品| 国产高清有码在线观看视频| 久久久欧美国产精品| 日韩大片免费观看网站| 日韩亚洲欧美综合| 成年女人在线观看亚洲视频| 国产精品偷伦视频观看了| 大片免费播放器 马上看| 免费人成在线观看视频色| 91久久精品电影网| 国产亚洲最大av| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 男女边摸边吃奶| 天美传媒精品一区二区| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级 | 国内揄拍国产精品人妻在线| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 日韩伦理黄色片| 中文字幕精品免费在线观看视频 | 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 国产精品无大码| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验| 少妇被粗大猛烈的视频| 国产精品熟女久久久久浪| 精品一区二区三卡| 国产免费一级a男人的天堂| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 久久综合国产亚洲精品| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 国产91av在线免费观看| 大话2 男鬼变身卡| 成人影院久久| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av | 欧美成人精品欧美一级黄| 在线观看免费日韩欧美大片 | 亚洲精品日本国产第一区| 高清午夜精品一区二区三区| 国产在视频线精品| 久久人妻熟女aⅴ| 亚洲综合精品二区| 在线天堂最新版资源| 成人无遮挡网站| h日本视频在线播放| 亚洲色图综合在线观看| 亚洲中文av在线| 免费观看无遮挡的男女| 成人亚洲精品一区在线观看 | 熟女av电影| 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 成人影院久久| 伦精品一区二区三区| 偷拍熟女少妇极品色| 在线播放无遮挡| 国产视频首页在线观看| 中文资源天堂在线| 日本av手机在线免费观看| 亚洲人成网站在线观看播放| 青春草亚洲视频在线观看| 日韩在线高清观看一区二区三区| 青春草亚洲视频在线观看| 亚洲精品一二三| 中国国产av一级| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 丝瓜视频免费看黄片| 日韩一本色道免费dvd| 好男人视频免费观看在线| 亚洲丝袜综合中文字幕| av国产免费在线观看| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 国产男女内射视频| 成人二区视频| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 日韩在线高清观看一区二区三区| 中国三级夫妇交换| 少妇熟女欧美另类| 在线天堂最新版资源| 天堂8中文在线网| 99热这里只有是精品50| 精华霜和精华液先用哪个| 国产片特级美女逼逼视频| 91狼人影院| 欧美精品一区二区免费开放| 精华霜和精华液先用哪个| 91精品国产国语对白视频| av在线app专区| 欧美精品一区二区免费开放| 国产精品久久久久久av不卡| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 熟女av电影| 亚洲自偷自拍三级| 国产精品蜜桃在线观看| 纵有疾风起免费观看全集完整版| 毛片一级片免费看久久久久| 国产在线男女| 十分钟在线观看高清视频www | 国产精品女同一区二区软件| 久久国产精品男人的天堂亚洲 | 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 国产欧美日韩一区二区三区在线 | 内射极品少妇av片p| 国产高清有码在线观看视频| 色网站视频免费| 久久国内精品自在自线图片| av网站免费在线观看视频| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 欧美丝袜亚洲另类| 日韩中字成人| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 成人午夜精彩视频在线观看| 黄色怎么调成土黄色| 国产精品.久久久| 久久午夜福利片| 日本-黄色视频高清免费观看| 久久久久精品性色| 国产精品偷伦视频观看了| 如何舔出高潮| 中国三级夫妇交换| 国产av一区二区精品久久 | 中文字幕久久专区| 91久久精品国产一区二区三区| 久久久久久久久久成人| 99久久综合免费| 欧美日韩一区二区视频在线观看视频在线| 国产人妻一区二区三区在| 亚洲精品自拍成人| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 赤兔流量卡办理| 观看美女的网站| 亚洲中文av在线| 国语对白做爰xxxⅹ性视频网站| 日本-黄色视频高清免费观看| 国产成人aa在线观看| 黄片无遮挡物在线观看| 欧美高清性xxxxhd video| 97超视频在线观看视频| 国产精品人妻久久久久久| 免费观看性生交大片5| 国产乱人偷精品视频| 精华霜和精华液先用哪个| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 一二三四中文在线观看免费高清| 亚洲国产高清在线一区二区三| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 成人毛片60女人毛片免费| 免费在线观看成人毛片| 国产精品秋霞免费鲁丝片| 免费少妇av软件| 我要看日韩黄色一级片| 波野结衣二区三区在线| a 毛片基地| 男人舔奶头视频| 女的被弄到高潮叫床怎么办| av又黄又爽大尺度在线免费看| 小蜜桃在线观看免费完整版高清| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 亚洲国产色片| 欧美日韩在线观看h| 亚洲精品一区蜜桃| 黑人猛操日本美女一级片| 国产在线视频一区二区| 国产亚洲精品久久久com| 日日啪夜夜撸| 亚洲精品一区蜜桃| 久久久精品94久久精品| 成人免费观看视频高清| 五月天丁香电影| 亚洲真实伦在线观看| 亚洲不卡免费看| 午夜激情久久久久久久| 伊人久久精品亚洲午夜| 毛片女人毛片| 亚洲美女黄色视频免费看| 新久久久久国产一级毛片| 欧美另类一区| 国产黄片美女视频| 简卡轻食公司| 少妇丰满av| 男人添女人高潮全过程视频| 日本爱情动作片www.在线观看| 日本免费在线观看一区| 国产亚洲一区二区精品| 日本vs欧美在线观看视频 | 亚洲av国产av综合av卡| 狠狠精品人妻久久久久久综合| 自拍欧美九色日韩亚洲蝌蚪91 | 久久国产乱子免费精品| 丝袜喷水一区| 深爱激情五月婷婷| 人体艺术视频欧美日本| 99热全是精品| 高清日韩中文字幕在线| 日韩成人伦理影院| 一本久久精品| 国产精品国产三级专区第一集| 国产爽快片一区二区三区| 高清av免费在线| 伊人久久精品亚洲午夜| 五月天丁香电影| 免费观看a级毛片全部| 在线观看一区二区三区激情| 观看美女的网站| 久久人妻熟女aⅴ| 国产69精品久久久久777片| 色吧在线观看| 国产伦在线观看视频一区| 亚洲欧美清纯卡通| 国产精品无大码| 一级爰片在线观看| 人人妻人人添人人爽欧美一区卜 | 嫩草影院入口| 男人舔奶头视频| 直男gayav资源| 国产亚洲最大av| 久久国产精品大桥未久av | 伦精品一区二区三区| 婷婷色综合www| 在线观看免费日韩欧美大片 | 久久精品国产亚洲av天美| 欧美少妇被猛烈插入视频| 亚洲av二区三区四区| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 免费看不卡的av| 一区二区三区免费毛片| 男人舔奶头视频| 又爽又黄a免费视频| 成人18禁高潮啪啪吃奶动态图 | 联通29元200g的流量卡| 一二三四中文在线观看免费高清| 久久热精品热| 伊人久久国产一区二区| 成人漫画全彩无遮挡| 岛国毛片在线播放| 午夜老司机福利剧场| 欧美xxⅹ黑人| 国产精品99久久99久久久不卡 | 高清视频免费观看一区二区| 国产亚洲最大av| 国产精品国产av在线观看| 在线观看国产h片| 国产在线视频一区二区| 嫩草影院入口| av.在线天堂| 黄色视频在线播放观看不卡| freevideosex欧美| 国产精品久久久久久精品古装| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 久久人人爽av亚洲精品天堂 | 亚洲欧美日韩卡通动漫| 黑丝袜美女国产一区| 国产精品嫩草影院av在线观看| 久久精品人妻少妇| 热re99久久精品国产66热6| 久久久久精品久久久久真实原创| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦在线观看免费高清www| av视频免费观看在线观看| 在线观看美女被高潮喷水网站| 免费看光身美女| 能在线免费看毛片的网站| 欧美精品人与动牲交sv欧美| 日本黄色片子视频| 在线观看一区二区三区| 国产 一区 欧美 日韩| 大香蕉久久网| 免费大片18禁| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频 | 日本av手机在线免费观看| 五月开心婷婷网| 婷婷色综合www| 永久网站在线| 亚洲国产色片| 只有这里有精品99| 熟妇人妻不卡中文字幕| 成人国产av品久久久| 插逼视频在线观看| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 成年免费大片在线观看| 久久精品国产自在天天线| 在线观看人妻少妇| 亚洲欧洲日产国产| 欧美人与善性xxx| 毛片一级片免费看久久久久| 制服丝袜香蕉在线| 99热全是精品| 又大又黄又爽视频免费| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 人妻夜夜爽99麻豆av|