周小燕 胡萍 梁青青
摘 要:? 用試探函數(shù)法求得一類反應(yīng)擴(kuò)散方程的反應(yīng)擴(kuò)散方程通解,驗(yàn)證當(dāng)參數(shù) m =1時(shí)解的正確性,得到連接不同平衡點(diǎn)的異宿軌道.可以把該解法推廣到高維反應(yīng)擴(kuò)散方程中.
關(guān)鍵詞: 反應(yīng)擴(kuò)散方程; 行波解;平衡點(diǎn);異宿軌道
[中圖分類號(hào)]O415?? [文獻(xiàn)標(biāo)志碼]A
Travelling Wave Solutions to a Kind of Reaction-diffusion Equations
ZHOU Xiao-yan,?? HU-Ping?? LIANG? Qing-qing
(Lan Zhou University of arts and science?? ,Lanzhou 730070,China)
Abstract: By using the trial? function method, we obtained the general solutions of reaction diffusion equations, And obtained the heteroclinic orbit of connecting? to a different equilibrium point.The results show that it is righted when the parameter m=1, It is shown that the method? can also be used to solve high-dimensional nonlinear reaction diffusion equations.
Key words: Reaction-diffusion? equations; travelling? wave? solutions ; equilibrium point;heteroclinic orbit
非線性科學(xué)是目前科學(xué)研究的熱點(diǎn)問題之一,求解非線性偏微分方程,也是數(shù)學(xué)和物理學(xué)家研究的重要內(nèi)容.研究人員提出了很多方法,構(gòu)造非線性方程精確解,如齊次平衡法[1]、反散射法、雙曲正切函數(shù)展開法[2-5]、Darboux變換法、試探函數(shù)法[6]、Hirota雙線性法、Sine-Gonsine法[7]、齊次平衡法、輔疊加法[8]、輔助常微分方程法[9]和雙函數(shù)法[10-11],但由于問題的復(fù)雜性,至今尚無統(tǒng)一的方法,能夠得到精確解的方程也是鳳毛麟角.因此,本文用試探函數(shù)法,解出一類反應(yīng)擴(kuò)散方程的行波解的通解,分析不同情況下解的形式并驗(yàn)證.
1 反應(yīng)擴(kuò)散方程及行波變換
反應(yīng)擴(kuò)散方程(1)中,ν,k分別為擴(kuò)散系數(shù)和反應(yīng)系數(shù)且ν>0,k>0.
(13)式恰好是方程(10)當(dāng)m=1的情況,說明方程(10)的正確性.即方程(10)就是連接鞍點(diǎn)(u*,P*)=(1,0)和結(jié)點(diǎn)(u*,P*)=(0,0)的異宿軌道,且 m 為任意值時(shí)都成立.至此,利用試探函數(shù)法解出了方程(1)的行波解的通解,并驗(yàn)證了當(dāng) m =1時(shí)結(jié)論的正確性.從而可知方程(10)就是方程(1)的通解.解對(duì)這類方程有一定的指導(dǎo)意義.
參考文獻(xiàn)
[1] ?Wang ML? Solitar? wave solution for Boussinesq? equation[J].Physics Letters A,1995,199:162-172.
[2] ?Parkes E J.Duffy? B R.Traveling solitary? wave solution to a compound Kdv-Burgers equation[J] .Physics? Letters A,1997,229:217-220.
[3] ?Zhang G X,Li Z B,Duan Y S .Exact solitary waves solutions of nonlinear wave equations[J].Sci Sin A,2000,44(3):369-401.
[4] ?張鵬飛,房維維,李利.? 一類P(x)-laplace 方程非平衡解的存在性[J]. 牡丹江師范學(xué)院學(xué)報(bào):自然科學(xué)版,2011(4):1-2.
[5] ?劉希強(qiáng).非線性發(fā)展方程顯式解的研究[D].北京:中國(guó)工程物理研究院,2002.
[6] ?Fan E C,Zhang H Q. A note on homogeneous balance methed[J].Phys Lett A,1998,246:403-406.
[7] ?Kudryasow N A. Exact? solutions of the generalized kuramoto Sivashinsky equations [J].Physics Letters A,1990,147:287-292.
[8] ?Yan C T.A simple transformation? for nonlinear? waves[J].Physics? Letters A,1996,224:77-84.
[9] ?徐淮娟 .二次曲線簡(jiǎn)化方程的定理[J].牡丹江師范學(xué)院學(xué)報(bào):自然科學(xué)版,2003(3):2-3.
[10] ?Xie Y X.Tang J S. A unified approach in seeking the solitary wave solutions to sine-Gordon type equtions[J].Chinese Physics,2005,14(7):1303-1306.
[11] ?關(guān)偉,張鴻慶.求解非線性方程的雙函數(shù)法[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào):A輯,2001,16(2):163-168.
[12] ?劉式適,劉式達(dá).物理學(xué)中的非線性方程[M].北京:北京大學(xué)出版社,2000.195-200.