• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural eigenvalue analysis under the constraint of a fuzzy convex set model

    2018-09-05 07:28:42WencaiSunZichunYangGuobingChen
    Acta Mechanica Sinica 2018年4期

    Wencai Sun·Zichun Yang·Guobing Chen

    Abstract In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set (FCS) model is built and investigated in detail. An approach was developed to analyze the fuzzy properties of the structural eigenvalues with FCS constraints.Through this method,the approximate possibility distribution of the structural eigenvalue can be obtained.Furthermore,based on the symmetric F-programming theory,the conditional maximum and minimum values for the structural eigenvalue are presented,which can serve as nonfuzzy quantitative indicators for fuzzy problems.A practical application is provided to demonstrate the practicability and effectiveness of the proposed methods.

    Keywords Structural eigenvalue·Fuzzy·Convex set·Conditional extreme·Symmetric F-programming

    1 Introduction

    The finite element method(FEM)has been widely applied in various fields of engineering and science,such as solid/ fluid mechanics,heat transfer, electromagnetics, and acoustics[1].The traditional FEM s are based on deterministic model,which can be called deterministic FEM s.However,in recent years,people have realized that many uncertain factors(e.g.,environmental loads,material parameters,geometries,and boundary conditions)exist in practical structures.Consequently,some non-deterministic FEMs have been developed.The probabilistic FEM(PFEM),which is based on the probability distribution of the input parameters[2–6]was first developed.However,in many cases,because of limited statistical information,obtaining an accurate probability density function(PDF)is difficult.Therefore,the PFEM suffers from many limitations in practical applications.Elishakoff[7]implemented a universal survey and systematically summarized the limitations of the probabilistic methods in engineering problems.

    Recently,a number of non-probabilistic approaches for non-deterministic analysis have emerged[8].The fuzzy FEM(FFEM)has been studied by many researchers[9–11].FFEM is based on the possibility distribution of imprecise parameters,and the foundation is the subjective statistical data.In many cases,we cannot obtain sufficient statistical data from an objective test due to high cost and a long test cycle,but we can always obtain the possibility distribution function through careful planning.Thus,we can say that the fuzzy theory is an effective tool suitable for small-sample problems.

    As another non-probabilistic FEM,the interval FEM(IFEM),which is based on the interval concept to describe the non-deterministic model properties,has been studied on an academic level not only for static analysis[12–19],but also dynamic analysis[20,21]and reliability optimization problems[22–24].Furthermore,Yang and Sun[25]investigated the set-based eigenvalue problem using the Kriging model and particles warm optimization(PSO)algorithm.The IFEM and FFEM are not independent,and realization of the FFEM is based on the interval cut set of fuzzy parameters.

    However,when the uncertainties of the imprecise parameters are described by convex set models such as the interval(hyper-cuboid),hyper-ellipsoid,Minkowski norm convex set,cumulative energy convex set,and multiple convex set models,their exact boundaries can hardly be determined because of limited statistical information.Therefore,for problems with scarce statistical data,the ordinary rigid convex set may cause an unexpected error.

    In addition,existing research works about the FFEM mainly focus on the fuzzy properties or the possibility distributions of the structural responses.However,the fuzzy property or the possibility distribution cannot definitely reflect the rough scope of the structural response,and have weak comparability.Thus,they have significant limitations in engineering application.

    In the current study,the general convex set models are extended,and their boundaries are considered as fuzzy zones.Thus,a novel uncertainty model named fuzzy convex set(FCS)is presented.Then,the structural eigenvalue analysis methods based on FCS are investigated.The fuzzy properties and the definite indicators(conditional extremes)of the structural eigenvalues are studied and presented.The remainder of this paper is organized as follows.The FCS model is defined and its properties are investigated in Sect.2.Several typical FCS models are built in Sect.3.Section 4 presents a method for analysis of the fuzzy properties of the structural eigenvalues.In Sect.5,a non-fuzzy indicator,i.e.,the conditional extremes of the fuzzy eigenvalues,is presented,and two equivalent methods are provided.In Sect.6,several practical applications are provided to demonstrate the practicability and feasibility of the proposed methods.In Sect.7,some discussions are listed.In Sect.8,we complete this paper with some concluding remarks.

    2 FCS models

    According to fuzzy mathematics, membership function is the quantification of the compatibility of elements and a concept,or it represents the possibility that a certain element is F. For example, the possibility or the compatibility degree that Hans eats five eggs for breakfast is 0.8, but the probability is almost zero[26].In general,the probability and possibility have the following relationship[27]:

    In fact,probability and possibility are two uncertainty methods with different mathematical ideas.When obtaining the PDF is difficult,we can express the parameter uncertainty from the point of view of possibility. Equation(1)shows that the uncertainty measure of the possibility tends to be larger than that of the probability.Therefore,in engineering problems,when we cannot obtain accurate PDF,we can conservatively or safely apply the possibility distribution.

    From the statistical cost perspective,although the possibility and probability distribution functions are all based on statistical data,the costs contain differences.The basis of the PDF is objective test data,and that of the possibility distribution function is subjective statistical data,which can be obtained using expert scoring or questionnaire.Therefore,generally speaking,the cost of the possibility statistics is lower than that of the probability statistics.In many cases,we cannot obtain sufficient statistical data from the objective test because of the limitations in terms of high cost and long test cycle,but can always obtain the possibility distribution function through careful planning.Thus,we can say that the fuzzy theory is another tool suitable for small sample-size problem,in addition to the convex set theory.

    In the following,the FCS model will be defined,and as its basis,the convex F-set and convex set are first introduced.

    2.1 Convex F-set

    Definition 1We assume that C is a set in n-dimensional real space,i.e.,C?Rn.If the relationship(1?t)x+t y∈C is always true as long as x,y∈C and t∈[0,1],C is a convex set.

    Definition 2We assume that R represents the real number if eld,F(R)represents all the fuzzy sets in R andis one of them,i.e.,.If Eq.(2)is always true as long as x1,x2,x3∈R and x1>x2>x3,? is a convex F-set.

    According to Definition 2,we can obtain the following corollary:

    Corollary1The cut sets of convex F-set must be intervals;a fuzzy set with any cut set is an interval must be a convex fuzzy set.

    2.2 FCS model

    In this subsection,the FCS will be defined,and some properties will be proven.

    Definition 3Let us assume thatis a formal fuzzy set in Rnand the membership function ofisIf Eq.(3)is always true as long as x,y∈Rn,t∈(0,1)and z=is called an FCS model.

    According to Definition 3,we can obtain the following corollary:

    Corollary2(1)The cut sets of an FCS must be convex sets.(2)A normal fuzzy set with any one cut set is a convex set must be an FCS.

    Proof for Corollary 2

    According to Definition 3,Eq.(5)is always true as long as t∈(0,1)and x3=(1?t)x1+t x2.

    Therefore,x3∈Uλ,and Uλis a convex set model.

    (2)In contrast,we assume thatis a normal fuzzy set in the domain Rn.?x1,x2∈Rn,andThe following relationship can be obtained:

    Let us assume that t∈(0,1)and x3=(1?t)x1+t x2.Because Uλis a convex set,x3∈ Uλ.The following relationship can then be obtained:

    Combined with the condition that ? is a formal fuzzy set,we can learn that? is an FCS according to Definition 1.The proof ends here.

    3 Typical FCS models

    In practice,people often choose the convex set models,which contain analytical expressions and are convenient to use.In the following,several FCS models will be built by introducing a new parameter—the fuzzy extending parameter—into some typical convex set models[28,29].

    (1)Interval FCS model:

    where φ is the deviation of the interval—the kernel of the FCS—andis the fuzzy extending parameter.

    (2)N-dimensional ellipsoidal FCS model:

    where W is a real symmetric positive definite matrix.(3)Minkowski norm FCS model:

    (4)FCS model for cumulative energy:

    (5)FCS model for slope tolerance:

    (6)Multiple FCS model:

    Let us assume that non-deterministic vector x=(x1,x2,…,xn)Tcan be expressed as,where k≤n and ui(i=1,2,...,k)are sub-vectors of x.The uncertainties of the sub-vectors can be quantified by the k FCS models,i.e.,(i=1,2,...,k).The FCS model for x can be obtained as follows

    where∫denotes the collection of the correspondence relationships of x and its membership grades.is the nominal value vector ofis the fuzzy vector that includes the fuzzy extending parameters.φ =(φ1,φ2,...,φk)is the scale parameter vector of the kernel of the multiple FCS model.

    Fig.1 Typical distributions of.a Semi-rectangular distribution.b Sem i-trapezoidal distribution.c Parabolic distribution.d Normal distribution

    The possibility distribution ofθ is biased to bes mall.Some typical distributions are shown in Fig.1,whereis the possibility function of the fuzzy extending parameter

    4 Fuzzy properties of the structural eigenvalues

    The eigenvalue problem of an undamped structure can be expressed as

    We assume that the possibility distribution function of fuzzy parameteris π?i(αi).We consider some cut sets under various levels;then,a series of general interval eigenvalue problems can be obtained,i.e.,

    This equation is the general eigenvalue problem with interval parameters.

    The lower and upper bounds of the structural eigenvalues can form the interval vector as

    where

    If the uncertainties of the structural parameters are quantified by FCS modela series of general eigenvalue problems constrained by convex set Cτcan be obtained by considering different cut-set levels.

    Equations(15)and(19)are the set-based finite element(SFE)problems for structural eigenvalues.

    According to the decomposition theorem of the fuzzy set,the i th-order fuzzy eigenvalue can be obtained.

    Fig.2 Procedure for analysis of the structural eigenvalue responses under FCS constraint.A(α),A1(λ1),and A2(λ2)are the possibility degree of the input parameters,output parameter λ1,and output parameter λ2,respectively.SFEA denotes the SFE analysis

    In practical problems,we can choose some discrete cutset levels and analyze the corresponding intervals of the eigenvalues.The approximate possibility distribution function can be further obtained based on these intervals and corresponding cut-set levels.When the structural parameters are constrained by the FCS model, the procedure for analysis of the fuzzy properties of the structural eigenvalues is shown in Fig.2.

    5 Conditional extremes for structural fuzzy eigenvalues

    The possibility distributions of the structural eigenvalues can be obtained according to Sect. 4. The conditional extremes of the structural eigenvalues under fuzzy constraints are further presented in this section,which would serve as a non-fuzzy quantification indicator.

    We assume that the structural eigenvalue is λ(α).When α varies in the zero-level cut set,the upper and lower bounds ofλ(α)are denoted by M and m,respectively.The following fuzzy maximum and fuzzy minimum sets can be constructed:

    We assume that the possibility distribution of α is A(α).According to the symmetric F-programming theory[27],if existing point α?makes the following equation hold,point α?can be called the maximum element of λ(α)under the fuzzy constraint of A(α),and λ(α?)is the conditional maximum value of the structural fuzzy eigenvalue.

    Fig.3 Solution principle of the conditional extremes under fuzzy constraint.The solid line represents the possibility distribution of the structural eigenvalue λ.The dotted lines represent the membership function of the fuzzy maximum or minimum set for λ.The dot dash lines are auxiliary lines

    Similarly,if existing point α??makes the following equation hold,point α??is called the minimum element of λ(α)under the fuzzy constraint of A(α),and λ(α??)is the conditional minimum value of the structural eigenvalue under the constraint of A(α).

    In Sect.4,the possibility distribution of the structural eigenvalue was obtained according to the fuzzy properties of the input parameters.We assume that the possibility distribution of the structural eigenvalue is F(λ)and the upper and lower bounds of the zero-level cut set of F(λ)areandrespectively.The following fuzzy maximum and fuzzy minimum sets can be constructed:

    If existing point λ?makes the following equation hold

    λ?is the conditional maximum value of the structural eigenvalue under the fuzzy constraint of A(α).

    Fig.4 The spring mass system

    Table1 The cut sets of the physical parameters

    If existing point λ??makes the following equation hold

    λ??is the conditional minimum value of the structural eigenvalue under the fuzzy constraint of A(α).

    From this analysis,the following two relationships can be obtained:

    The optimization problems in Eqs.(22)and(23)or Eqs.(25)and(26)can be resolved by the PSO algorithm.

    Table2 The bounds of the structural eigenvalues under the corresponding cut set levels

    The solution principle of the conditional extremes of the structural eigenvalue is shown in Fig.3.

    6 Numerical examples and discussion

    6.1 An analytic example

    Let us take the following spring mass system shown in Fig.4 as our discussion object.

    The physical parameters such as the stiffness and mass parameters of this system are uncertain parameters and have fuzzy interval properties.Their possibility distributions are demonstrated as

    To analyze the fuzzy property of the structural eigenvalues,the physical parameters are made some cut sets as listed in Table 1.

    As we know, the elements of the stiffness matrix and mass matrix are functions about the stiffness and mass parameters.The generalized eigenvalue equation of this spring mass system is

    The eigenvalue equation can be abbreviated as

    where K is the stiffness matrix,M is the mass matrix,X is the eigenvector and λ is structural eigenvalue.

    The fuzzy properties of this system are analyzed according to the method shown in Fig.2.In order to ensure accuracy,the Monte Carlo method is applied for calculating the upper and lower bounds of every order eigenvalue.For every cut set level,the intervals values or the bounds of the structural eigenvalues are listed in Table 2.

    Fig.5 Possibility distributions and conditional extremes of the first-to fifth-order structural eigenvalues with fuzzy constraints.a First order.b Second order.c Third order.d Fourth order.e Fifth order

    Table 3 The conditional extremes of the structural eigenvalues based on the fuzzy convex set and the symmetric F-programming theories

    Table 4 The interval eigenvalues of the spring mass system based on the interval matrix perturbation method(Ref.[30])

    Table 5 The interval eigenvalues of the spring mass system based on the interval parameter perturbation method(Ref.[31])

    The possibility or fuzzy distributions of the structural eigenvalue can be obtained based on the intervals listed in Table2according to the decomposition theorem and Eq.(20).The possibility distributions of the first-to fifth-order eigenvalues are shown in Fig.5.Then,the conditional maximum values and the conditional minimum values can be got and the results are shown in the same figure.The detail values are listed in Table 3.The interval eigenvalues based on the interval matrix perturbation method and interval parameter perturbation method are listed in Tables 4 and 5.

    From this analytical example,the feasibility and scientific significance of the new methods proposed above have been verified.In addition,we can make some theoretical discussion and comparison as follows:

    (1)The interval physical parameters under zero-cut set level are the same as that in Ref.[31].The interval matrix perturbation method and interval parameter perturbation method were used in that monographs to calculate the upper and lower bounds of the structural eigenvalues.However,the two methods are all low order perturbation method.They are effective only when the parameter uncertainty is small,in other word,the perturbation momentum of the stiffness and mass matrix is small.In addition,the correlation of the interval parameters is ignored in the interval matrix perturbation method.So,the accuracy of the two methods is limited.By comparison with them,the Monte Carlo method is more accurate,and the obtained results listed in Table 2 are more closed to the true values.Therefore,they lay a good foundation for obtaining the fuzzy distributions of the structural eigenvalues.

    Fig.6 Geometric model of the turbine blade

    Table6 Nom inal values of various parameters

    (2)The conditional extremes of the eigenvalues are based on the fuzzy interval description of the physical parameters and the symmetric F-programming theory,and they are defuzzy fication indicators for the fuzzy properties of the structural dynamic characteristics.It can be found that the conditional minimum value is higher than the lower bound value by IFEM under zero-cut set level,and the conditional maximum value is lower than the upper bound value by IFEM.Therefore,if the fuzzy property of the physical parameters is ignored, the interval eigenvalues will be much wider and have no practical reference value.

    (3)The whole analysis process also shows that the procedure for analyzing the fuzzy distribution of structural eigenvalues shown in Fig.2 is correct and feasible.Besides,the conditional extremes are based on the F-programming theory and application of them is very image as shown in Fig.5 or Fig.3.The accuracy of the proposed method is also verified through this analytic example which has analytic eigenvalue equation.

    Fig.7 Optimization procedures for the first- and second-order natural frequencies. a Conditional maximum value of the first-order natural frequency. b Conditional minimum value of the first-order natural frequency. c Conditional maximum value of the second-order natural frequency.d Conditional minimum value of the second-order natural frequency.The symbols“ps,”“w,”and “gbest”in every figure denote the population size,inertia weight factor,and global optimum value in the PSO algorithm.The “gbest”values are the possibility degrees of the conditional extremes

    6.2 An engineering example

    We consider a gas-turbine blade shown in Fig.6 as an illustration example.

    The nominal values of the elastic modulus,density,angular velocity,and Poisson’s ratio are listed in Table 6.

    We assume that the structural parameters have fuzzy properties.Now,let us analyze the fuzzy properties and theconditional extremes of the first-to fifth-order natural frequencies of the pre-stressed turbine blade with an angular velocity.Three cases are discussed below.

    Table7 Conditional extremes of the natural frequencies and the corresponding parameters

    C a se 1

    The uncertainties of the parameters are quantified by fuzzy intervals,i.e.,the exact boundaries of the structural parameters cannot be obtained.A fuzzy zone exists between uncertainty degrees of 4%and 5%of the nominal values.The optimization procedures for the conditional maximum and minimum values of the first-and second-order natural frequencies are shown in Fig.7.

    The conditional maximum and minimum values of the first-to fifth-order natural frequencies and the corresponding parameters are listed in Table 7.

    C a se 2

    The uncertainties of the parameters are quantified by the following possibility distribution functions:

    The possibility distribution and the conditional extremes of the first-to fifth-order natural frequencies are shown in Fig.8.

    C a se 3

    The uncertainties of the structural parameters are quantified by the FCS,i.e.,the hyper-ellipsoidal set has fuzzy boundaries.The fuzzy zone is located between the two hyperellipsoidal models with uncertainty degrees of 3%and 5%.

    The conditional extremes obtained by the PSO method and the corresponding parameters are listed in Table 8.

    7 Discussion

    On the basis of the proposed theories,given examples,and results,some discussions can be listed as follows:

    (1)The FCS model presented in this paper developed the theory of convex F-set and can meet practical engineering requirements.When an FCS is single dimensional,it is reduced to a normal convex F-set,i.e.,a fuzzy number.The FCS model can effectively overcome the limitations of the traditional rigid convex set model,e.g.,the rigid boundary is difficult to determine and the potential error is difficult to control.Therefore,FCS can better reduce the project risk.

    (2)The ideas of analyzing the fuzzy properties of structural eigenvalues based on FCS model have been verified to be feasible.The further obtained conditional maximum and minimum values based on fuzzy programming theory are quantitative “defuzzification”indicators and have a significant value in engineering application.

    Fig.8 Possibility distributions and conditional extremes of the first-to fifth-order natural frequencies with fuzzy constraints.a First order.b Second order.c Third order.d Fourth order.e Fifth order

    Table8 Conditional extremes of the first to fifth natural frequencies and the corresponding parameters

    (3)This sample analysis shows that the presented two methods for solving the conditional extremes are all feasible and applicable in practice.If we can obtain the possibility distribution of the structural eigenvalues based on a series of cut sets of the input parameters and corresponding SFEA,the graphical solution method shown in Fig.3 is more convenient.If we construct the fuzzy maximum and minimum sets using input parameters as independent variables(i.e.,Eq.(21)),we can directly solve the optimization problems(i.e.,Eqs.(22)and(23)).In theory,the two methods are equivalent,but they have their own advantages and disadvantages.The graphical solution method can show the results in a more intuitive and concise manner but needs some SFEA times,which can reduce efficiency.In addition,an unavoidable error will occur in the drawing and reading processes.The optimization method only needs a single time of SFEA under a zero-level cut set and a single optimization time.Relatively speaking,the latter method is more efficient and accurate.However,this approach is relatively abstract in its application,and the accuracy is closely related to the optimization parameters and contains certain randomness.Generally speaking,we can choose any method depending only on the required accuracy,our habits,and even our preferences.

    8 Conclusions

    This paper has proposed a novel uncertainty model called the FCS model,and the problems of structural eigenvalues with fuzzy constraints are studied.The fuzzy theory(or in other words,the possibility theory)is another effective method for resolving small sample size-problems,in addition to the convex set models.A method is developed to analyze the fuzzy properties of structural eigenvalues with FCS constraint.According to the symmetric F-programming theory,the conditional maximum and minimum values of the structural eigenvalues are presented,which can serve as a non-fuzzy indicator for fuzzy eigenvalue problems.A practical application is provided,which indicates the effectiveness and practicability of the presented method.Although this study focuses on the structural eigenvalue problem,the presented methodology can be easily extended to solve other engineering problems with uncertainties,such as static response analysis,lifetime prediction,buckling,post-buckling and structural reliability.Moreover,the structural model is not limited to FEM.The method proposed in this paper can also be easily combined with the boundary element method and other novel methods such as the mesh less local Petrov–Galerkin method[32,33].These can be possible interesting study subjects in the future.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grant 51509254).

    亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 国产毛片在线视频| 精品亚洲成a人片在线观看| 999精品在线视频| 秋霞在线观看毛片| 热re99久久精品国产66热6| 秋霞在线观看毛片| 秋霞在线观看毛片| 国产精品免费视频内射| 在现免费观看毛片| 热99国产精品久久久久久7| 人妻人人澡人人爽人人| 美女福利国产在线| 毛片一级片免费看久久久久| 9191精品国产免费久久| 免费av中文字幕在线| 欧美中文综合在线视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品三级大全| 性少妇av在线| 久久久久视频综合| 午夜激情久久久久久久| 国产激情久久老熟女| www.精华液| 国产人伦9x9x在线观看 | 国产乱来视频区| 久久 成人 亚洲| videossex国产| 又黄又粗又硬又大视频| 久久久久精品性色| 九色亚洲精品在线播放| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区国产| av不卡在线播放| 国产精品熟女久久久久浪| 老司机影院成人| 久久久久国产精品人妻一区二区| 在现免费观看毛片| 国产成人aa在线观看| 久久人人爽人人片av| 国产片特级美女逼逼视频| 毛片一级片免费看久久久久| 日本欧美国产在线视频| 美女国产高潮福利片在线看| 亚洲欧美中文字幕日韩二区| 久久精品夜色国产| 久久久久国产精品人妻一区二区| 婷婷成人精品国产| 韩国精品一区二区三区| 日本91视频免费播放| 国产精品香港三级国产av潘金莲 | 一二三四在线观看免费中文在| 麻豆乱淫一区二区| 精品国产超薄肉色丝袜足j| 亚洲精品国产av蜜桃| 丁香六月天网| 久久精品熟女亚洲av麻豆精品| 精品人妻在线不人妻| 精品人妻在线不人妻| 黄色配什么色好看| 大陆偷拍与自拍| 欧美精品一区二区大全| 91午夜精品亚洲一区二区三区| 只有这里有精品99| 亚洲天堂av无毛| 亚洲美女视频黄频| 国产成人精品婷婷| 在线观看美女被高潮喷水网站| 国产成人a∨麻豆精品| www日本在线高清视频| 国产精品免费视频内射| 女人被躁到高潮嗷嗷叫费观| 91成人精品电影| 久久久精品免费免费高清| 宅男免费午夜| 欧美日本中文国产一区发布| 香蕉丝袜av| 亚洲国产日韩一区二区| 国产一区二区三区综合在线观看| 亚洲在久久综合| 性高湖久久久久久久久免费观看| 国产在线免费精品| 最近中文字幕2019免费版| 交换朋友夫妻互换小说| 国产精品偷伦视频观看了| 日韩精品有码人妻一区| 亚洲综合色网址| 校园人妻丝袜中文字幕| 精品卡一卡二卡四卡免费| av不卡在线播放| 97精品久久久久久久久久精品| 久久久久久久大尺度免费视频| 91成人精品电影| 成年女人在线观看亚洲视频| 亚洲,欧美精品.| 久久久久久久久久久免费av| 亚洲国产精品一区二区三区在线| 日韩人妻精品一区2区三区| 日韩中字成人| 日韩三级伦理在线观看| 免费av中文字幕在线| 久久久精品94久久精品| 欧美日韩视频高清一区二区三区二| 色视频在线一区二区三区| 日韩成人av中文字幕在线观看| 精品少妇内射三级| 欧美人与性动交α欧美软件| 韩国av在线不卡| 妹子高潮喷水视频| 欧美成人午夜免费资源| 国产一区有黄有色的免费视频| 另类亚洲欧美激情| 日本黄色日本黄色录像| 午夜福利在线观看免费完整高清在| 午夜福利网站1000一区二区三区| 2022亚洲国产成人精品| 亚洲熟女精品中文字幕| 日本vs欧美在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产一区二区精华液| 爱豆传媒免费全集在线观看| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 久久久久久久国产电影| 久久狼人影院| 亚洲在久久综合| 18在线观看网站| 日本wwww免费看| 男女国产视频网站| 中文字幕最新亚洲高清| 国精品久久久久久国模美| 女性被躁到高潮视频| 久久久久精品性色| 丝袜在线中文字幕| 欧美av亚洲av综合av国产av | www.自偷自拍.com| 一个人免费看片子| a级片在线免费高清观看视频| 亚洲中文av在线| 永久网站在线| 国产精品无大码| 成年女人毛片免费观看观看9 | 日韩大片免费观看网站| 男女高潮啪啪啪动态图| 丝袜美足系列| 一二三四在线观看免费中文在| 99久久人妻综合| 一区二区日韩欧美中文字幕| 五月开心婷婷网| 久久久久久久久久久免费av| 国产一区二区激情短视频 | av电影中文网址| 日日爽夜夜爽网站| 一二三四在线观看免费中文在| 亚洲国产成人一精品久久久| 成人午夜精彩视频在线观看| 国产免费现黄频在线看| a级毛片在线看网站| 十分钟在线观看高清视频www| 青春草亚洲视频在线观看| 国产精品久久久久久av不卡| 777久久人妻少妇嫩草av网站| 欧美成人午夜免费资源| 久久精品熟女亚洲av麻豆精品| 老汉色av国产亚洲站长工具| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 久久久久精品久久久久真实原创| www.精华液| 一二三四中文在线观看免费高清| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 久热这里只有精品99| 成年人免费黄色播放视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日韩在线中文字幕| 精品一区二区免费观看| 青青草视频在线视频观看| 国产日韩欧美视频二区| 在线观看人妻少妇| 国产精品不卡视频一区二区| 美女脱内裤让男人舔精品视频| 男的添女的下面高潮视频| 国产麻豆69| 一边亲一边摸免费视频| 丝袜美足系列| 国产无遮挡羞羞视频在线观看| 亚洲第一av免费看| 国产成人精品福利久久| 男女边摸边吃奶| 亚洲av成人精品一二三区| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 国产亚洲av片在线观看秒播厂| 国产成人一区二区在线| 免费观看av网站的网址| 午夜av观看不卡| 亚洲欧洲日产国产| 一区二区三区乱码不卡18| 性色av一级| 男人添女人高潮全过程视频| 大香蕉久久网| 日产精品乱码卡一卡2卡三| 少妇的丰满在线观看| 久久久久久久久免费视频了| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 国产成人精品一,二区| 亚洲男人天堂网一区| 伊人亚洲综合成人网| 国产97色在线日韩免费| 啦啦啦在线免费观看视频4| 亚洲欧美精品综合一区二区三区 | 日本黄色日本黄色录像| 久久99精品国语久久久| 亚洲av福利一区| 午夜91福利影院| 亚洲精品国产av蜜桃| 国产毛片在线视频| 永久网站在线| 日日撸夜夜添| 热re99久久国产66热| 久热久热在线精品观看| 国产成人午夜福利电影在线观看| 99国产综合亚洲精品| 免费在线观看黄色视频的| 久久久久久久精品精品| 一边摸一边做爽爽视频免费| 国产色婷婷99| 色网站视频免费| 最新中文字幕久久久久| 久久影院123| 在线免费观看不下载黄p国产| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 久久久亚洲精品成人影院| 久久久久国产一级毛片高清牌| 卡戴珊不雅视频在线播放| 日韩中文字幕欧美一区二区 | 黑人猛操日本美女一级片| 99久久精品国产国产毛片| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看| 18在线观看网站| www.精华液| 美女国产高潮福利片在线看| 日本欧美视频一区| 精品国产一区二区三区久久久樱花| 久久精品国产自在天天线| 国产综合精华液| 青春草国产在线视频| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 97人妻天天添夜夜摸| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 99香蕉大伊视频| 久久精品久久精品一区二区三区| 99热全是精品| 亚洲视频免费观看视频| 一级片免费观看大全| 男女高潮啪啪啪动态图| 97精品久久久久久久久久精品| 热99久久久久精品小说推荐| 久久热在线av| 精品少妇一区二区三区视频日本电影 | 国产成人91sexporn| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 老汉色av国产亚洲站长工具| 观看av在线不卡| 制服人妻中文乱码| 欧美成人午夜精品| 国产不卡av网站在线观看| freevideosex欧美| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 一区二区日韩欧美中文字幕| 男的添女的下面高潮视频| av网站在线播放免费| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 国产成人精品久久二区二区91 | 久久99一区二区三区| 最近最新中文字幕免费大全7| 高清欧美精品videossex| 欧美av亚洲av综合av国产av | 女性生殖器流出的白浆| 最新中文字幕久久久久| av卡一久久| 亚洲伊人色综图| 精品国产乱码久久久久久男人| 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 久久久久久人人人人人| 亚洲精华国产精华液的使用体验| 国产黄色免费在线视频| 男女国产视频网站| a级毛片黄视频| 国产精品99久久99久久久不卡 | a级毛片黄视频| 国产精品蜜桃在线观看| 欧美精品人与动牲交sv欧美| a级毛片在线看网站| 国产男人的电影天堂91| 欧美日韩精品网址| 午夜免费男女啪啪视频观看| 国产免费福利视频在线观看| 国产精品免费大片| 九色亚洲精品在线播放| 欧美黄色片欧美黄色片| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 国产亚洲精品第一综合不卡| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 性少妇av在线| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 久久久精品区二区三区| 久久久久国产网址| 日韩不卡一区二区三区视频在线| 咕卡用的链子| 巨乳人妻的诱惑在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区三区| 国产精品蜜桃在线观看| 90打野战视频偷拍视频| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| av国产精品久久久久影院| 91成人精品电影| 中文天堂在线官网| 久久人人爽av亚洲精品天堂| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| 2018国产大陆天天弄谢| 少妇 在线观看| 亚洲,欧美精品.| 日本wwww免费看| 成年人午夜在线观看视频| 在线精品无人区一区二区三| 色吧在线观看| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 观看av在线不卡| 国语对白做爰xxxⅹ性视频网站| 亚洲第一av免费看| 亚洲av国产av综合av卡| 亚洲 欧美一区二区三区| 国产亚洲精品第一综合不卡| 亚洲第一区二区三区不卡| 欧美精品av麻豆av| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 成人国语在线视频| a 毛片基地| 国产不卡av网站在线观看| 亚洲美女视频黄频| 亚洲精品日本国产第一区| 欧美人与善性xxx| 性少妇av在线| 最近2019中文字幕mv第一页| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡 | 免费看不卡的av| 国产极品粉嫩免费观看在线| 久久久久网色| a级片在线免费高清观看视频| 成人国产麻豆网| av电影中文网址| 少妇的逼水好多| 五月伊人婷婷丁香| 亚洲综合精品二区| 久热这里只有精品99| 日韩伦理黄色片| 精品久久久精品久久久| 另类亚洲欧美激情| 成人国产麻豆网| 婷婷色综合www| 午夜免费男女啪啪视频观看| 免费在线观看黄色视频的| 国产精品人妻久久久影院| 久久久久精品性色| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 99久国产av精品国产电影| 免费看不卡的av| 欧美bdsm另类| 免费在线观看视频国产中文字幕亚洲 | av一本久久久久| 亚洲三区欧美一区| 国产精品一区二区在线观看99| xxx大片免费视频| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| 精品午夜福利在线看| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 黄色一级大片看看| 国产成人精品婷婷| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频 | 美女中出高潮动态图| 亚洲美女黄色视频免费看| 午夜老司机福利剧场| 国产xxxxx性猛交| 日本色播在线视频| 婷婷色综合www| 不卡视频在线观看欧美| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| av免费在线看不卡| 妹子高潮喷水视频| 国产av码专区亚洲av| 中文字幕最新亚洲高清| 亚洲精品一区蜜桃| 男女边摸边吃奶| 男男h啪啪无遮挡| h视频一区二区三区| 日韩制服骚丝袜av| 青春草国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 伦理电影免费视频| 涩涩av久久男人的天堂| 成人手机av| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 黄片播放在线免费| 久久精品国产鲁丝片午夜精品| 国产精品成人在线| 国产精品熟女久久久久浪| 亚洲在久久综合| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 国产极品天堂在线| 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 观看美女的网站| 日韩欧美一区视频在线观看| 日日撸夜夜添| 国产精品久久久久久精品古装| 久久精品国产亚洲av高清一级| 大片免费播放器 马上看| 国产成人一区二区在线| 国产成人精品婷婷| 涩涩av久久男人的天堂| 五月伊人婷婷丁香| 国产成人aa在线观看| 久久国产精品大桥未久av| 日日啪夜夜爽| 免费高清在线观看日韩| 精品第一国产精品| 久久精品aⅴ一区二区三区四区 | 午夜免费鲁丝| 日韩精品免费视频一区二区三区| 亚洲伊人久久精品综合| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| www.av在线官网国产| 亚洲精品国产色婷婷电影| tube8黄色片| 亚洲欧洲国产日韩| 少妇熟女欧美另类| 精品国产乱码久久久久久男人| 成人漫画全彩无遮挡| 欧美在线黄色| 桃花免费在线播放| 老熟女久久久| 亚洲色图 男人天堂 中文字幕| 久久久久精品性色| 黑丝袜美女国产一区| 亚洲 欧美一区二区三区| 国产伦理片在线播放av一区| www.熟女人妻精品国产| 精品视频人人做人人爽| 亚洲一级一片aⅴ在线观看| 自线自在国产av| 国产熟女午夜一区二区三区| 亚洲欧美精品综合一区二区三区 | 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 日本欧美国产在线视频| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 深夜精品福利| 中文精品一卡2卡3卡4更新| 三上悠亚av全集在线观看| 青草久久国产| 亚洲精品国产av成人精品| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 尾随美女入室| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 亚洲图色成人| 99热国产这里只有精品6| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美网| 色94色欧美一区二区| 免费观看无遮挡的男女| 免费看不卡的av| 免费av中文字幕在线| 久久这里有精品视频免费| 2018国产大陆天天弄谢| 午夜影院在线不卡| 国产男人的电影天堂91| tube8黄色片| 亚洲成国产人片在线观看| 99热全是精品| 高清黄色对白视频在线免费看| 春色校园在线视频观看| 亚洲人成77777在线视频| 高清不卡的av网站| 午夜福利,免费看| 久久ye,这里只有精品| 午夜免费观看性视频| 国产精品三级大全| 国产淫语在线视频| 大码成人一级视频| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 在线观看人妻少妇| 亚洲成国产人片在线观看| 午夜影院在线不卡| 大码成人一级视频| 国产又爽黄色视频| 少妇的丰满在线观看| 一级爰片在线观看| 日韩一卡2卡3卡4卡2021年| 99久久人妻综合| 亚洲av男天堂| 久久久国产欧美日韩av| 国产麻豆69| 丁香六月天网| 成人国语在线视频| 天天影视国产精品| 久久久国产一区二区| 欧美97在线视频| 午夜激情久久久久久久| 美女中出高潮动态图| 多毛熟女@视频| 熟女av电影| 国产综合精华液| 亚洲,欧美,日韩| 观看美女的网站| 免费大片黄手机在线观看| 亚洲精品av麻豆狂野| 看免费成人av毛片| 啦啦啦视频在线资源免费观看| 女性生殖器流出的白浆| 9191精品国产免费久久| 久久久久久久久久人人人人人人| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| av.在线天堂| 曰老女人黄片| 老鸭窝网址在线观看| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 精品人妻偷拍中文字幕| 侵犯人妻中文字幕一二三四区| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 可以免费在线观看a视频的电影网站 | 免费观看性生交大片5| 岛国毛片在线播放| 精品久久久精品久久久| 精品福利永久在线观看| 久久人人爽人人片av| 午夜av观看不卡| 自线自在国产av| 18禁裸乳无遮挡动漫免费视频| 欧美97在线视频| 亚洲精品国产色婷婷电影| 亚洲男人天堂网一区| 日日摸夜夜添夜夜爱| 丝袜美腿诱惑在线| 久久久久精品性色| 国产黄色免费在线视频| 晚上一个人看的免费电影| 精品久久久久久电影网| 在线观看一区二区三区激情| 国产精品免费大片| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 国产av码专区亚洲av| 免费日韩欧美在线观看| 久久99精品国语久久久| 欧美 日韩 精品 国产| 女人精品久久久久毛片|