• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method for predicting the power outputs of wave energy converters

    2018-09-05 07:28:42YingguangWang
    Acta Mechanica Sinica 2018年4期

    Yingguang Wang

    Abstract This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves.A heaving two-body point absorber is utilized as a specific calculation example,and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter.It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest–trough asymmetries,and consequently,more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs.The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design,analysis and optimization of wave energy converters.

    Keywords Wave energy converters·Nonlinear simulation ·Nonlinear dynamic filter

    1 Introduction

    Wave energy is a kind of green and renewable energy,and the global wave power resources potential is tremendous(Gunn and Stock-Williams[1]).Recently the interest in exploiting the vast global wave energy resources has been growing rapidly,and different kinds of wave energy converters have been or are being developed in various parts of the world.For the robust design,analysis and optimization of a wave energy converter,realistically describing the ocean wave environment in which the converter will operate is of vital importance.However,in the current literature,the performance analysis of a wave energy converter is almost always carried out by assuming that the converter is operating in linear random waves(seee.g.,the publications:Cargoet al.[2],Eriksson et al.[3],Fan et al.[4],Fernandes and Fonseca[5],Gomes et al.[6],Herber and Allison[7],Sánchez et al.[8],Stelzer and Joshi[9],Wang and Isberg[10],Yu et al.[11]).However,the linear random wave model can only produce ideal waves with crest–trough symmetries,and this model is only suitable to approximately describe irregular waves in very deep sea or from a very moderate sea state.In the real world,however,when deep water waves become too steep,or as the water depth decreases, the waves will become statistically asymmetric,i.e.,the wave crests will become higher and sharper and the wave troughs will become shallower and flatter.This is called the crest–trough asymmetry in the ocean engineering literature.

    As stated in Ref.[5],most of the proposed wave energy converters will be installed in shallow sea areas with water depths less than 90 m.Because sea waves in shallow water areas are a nonlinear random process, the linear random wave model obviously cannot be used as an input in the design,analysis and optimization of most of the today’s wave energy converters.

    In order to generate shallow water nonlinear irregular waves,Lindgren[12]used a quasi-linear wave model for the movements of individual water particles.In Ref.[12]the power output performance of a wave energy converter in a linear sea,as well as in a quasi-linear sea has been investigated,and a conclusion has been drawn that the use of a linear wave model tends mostly to overestimate the generator power compared to what can be produced by a quasi-linear wave model. However, because the wave model used in Ref. [12] is only quasi-linear, it obviously cannot produce “truly” nonlinear waves. Most importantly, in the study of Lindgren [12] a simplest formulation of a linear converter (a mass-springdamper filter) with hydrostatic excitation only has been used, disregarding any hydrodynamical forces. Obviously this is not a correct model. Therefore, the prediction results in Ref.[12]cannot be deemed reliable.As pointed out in the conclusion of the paper of Lindgren[12]:“A nonlinear filter,taking also hydrodynamical forces into account,may give different results.”At this point it should also be mentioned that in the existing literature there are many studies dealing with the simulation and prediction of nonlinear irregular waves(see,e.g.,Forristall[13],Toffoli et al.[14],Wang and Xia[15,16],Wang[17,18],Dias et al.[19]).However,except Lindgren[12],none of the existing publications has investigated the power output performance of a wave energy converter operating in nonlinear irregular waves.

    Motivated by this, in this paper, the power outputs of a specific wave energy converter,i.e.,a heaving two-body point absorber in a realistic second order nonlinear random sea will be rigorously predicted by a novel nonlinear simulation method.A nonlinear dynamic filter,taking also hydrodynamic forces into account will be utilized to model the wave energy converter.Meanwhile,the power outputs of the wave energy converter in an ideal linear random sea will also be predicted for comparison purpose.The calculation results in this paper will be systematically analyzed and compared,and some valuable conclusions will finally be pointed out.

    2 The theories behind the non linear simulation method

    2.1 The theories behind the second order nonlinear random wave model

    We describe the fluid region by using the 3D Cartesian coordinates(x,y,z),with x the longitudinal coordinate,y the transverse coordinate,and z the vertical coordinate(positive upwards).We also denote the time by t.The location of the free surface is at z=η(x,y,t)at a specific time of t.Assuming that the fluid is ideal,incompressible and inviscid,and the fluid motion is irrotational,then the velocity potential Φ(x,y,z,t)exists.If the water depth d at the sea bottom is constant,then for constant water depth d the velocity potentialΦ (x,y,z,t)and the free surface elevation η(x,y,t)can be determined by solving the following boundary value problem(see,e.g.,Marthinsen[20])

    In this paper we try to solve the system Eqs.(1)–(4)by utilizing the following expansion(see,e.g.,Marthinsen[20])

    In this equation ε is a small parameter that is typically proportional to the wave steepness.For a random sea state characterized by a specific wave spectrum Sηη(ω)in which ω denotes the radian frequency,it can be shown that a first order linear solution of the system Eqs.(1)–(4)can be expressed as follows(see,e.g.,Marthinsen[20])

    as N tends to infinity.In the above two equations,cndenotes the random complex valued amplitude for each elementary sinusoidal wave,ωndenotes the angular frequency,kndenotes the wavenumber,εndenotes the random phase angle and g is the gravitational acceleration.

    However,for modelling shallow water nonlinear waves,the above linear random sea model should be corrected by including second order terms as follows(see,e.g.,Langley[21]and Hasselmann[22])

    The terms P(ωn,ωm),rmnand qmnin Eqs.(9)and(10)are called quadratic transfer functions,and their expressions are given as follows

    The wave surface elevations for the second order nonlinear waves can finally be obtained by combining Eqs.(7)and(9)as follows

    For the numerical implementation of Eq.(13),we consider η(1)in Eq.(13)at a specific reference location(say x=0).For a total time period T of computation,η(1)in Eq.(13)can be written as

    Assuming that there are npts computed points in the time period T and the regular spacing between points is Δt=T/npts,η(1)in Eq.(13)can then be written as

    In the above equation Xnare complex Fourier coefficients.The lower half of these are expressed as

    The upper half of these are expressed as:

    Because we have the relations Δt·Δω =2π/(npts)and ωn=n·Δω,Eq.(15)can be evaluated at t=tjto give that

    In Fig.1 the red curve shows an example to use Eq.(18)to calculate a linear wave time series of a sea state with a P-M spectrum with a significant wave height of Hs=3 m and a spectral peak period of 6 s.The water depth is 49.5 m.This wave time series contains 200 elevation points simulated with a regular spacing Δt=0.2s.

    The termη(2)in Eq.(13)can be generated similarly as the first order one and can be expressed as follows

    In Fig.1 the green curve shows an example to use Eqs.(18)and(19)to calculate a nonlinear wave time series(η(1)(t)+η(2)(t))of a sea state with a P-M spectrum with a significant wave height of Hs=3 m and a spectral peak period of 6 s.The water depth is 49.5 m.This wave time series contains 200 elevation points simulated with a regular spacing Δt=0.2s.We can notice that in comparison with the linear waves,the crests of the nonlinear waves have become higher and sharper,and the troughs have become flatter and shallower.

    2.2 The nonlinear dynamic filter for the wave energy converter

    The study by Lindgren[12]used a quasi-linear wave model when investigating the power output performance of a wave energy converter.However,in that study a simplest formulation of a linear converter(a mass-spring-damper filter)with hydrostatic excitation only was used,disregarding any hydrodynamical forces.The formulation of the linear filter specified in Ref.[12]is shown in Eq.(20)with L and Z denoting surface elevation and system elevation relative to the surface:

    In Eq.(20),m is the dry mass of the system and mais the added mass.? denotes the total damping coefficient and k denotes the spring constant.The parameter c depends on the geometry and size of the wave energy converter.The term c(L?Z)on the right side of Eq.(20)represents the hydrostatic excitation force.Because the equation does not include any term representing the hydrodynamic force,it obviously is not a correct model.Therefore,the calculation results in Ref.[12]can hardly be deemed reliable.In order to obtain more accurate calculation results,in this article we will utilize a nonlinear dynamic filter also taking hydrodynamic forces into account to model a wave energy converter operating in a realistic,nonlinear random sea.

    The time domain vector-form motion equations of the wave energy converter subjected to wave loads and other loads can be expressed as

    In this equation MRBis the rigid body inertia matrix,A(∞)is the constant infinite-frequency added mass matrix,x(t)is a vector of linear and angular displacements,Phsis a vector of the hydrostatic restoring forces and moments.Meanwhile,in Eq.(21)is a matrix of retardation functions.Because of the wave energy converter’s motion,waves will be generated in the free surface.These waves will persist at all subsequent times and affect the wave energy converter’s motion.This is known as the hydrodynamic memory effects,and they are captured in Eq.(21)by the convolution integral term that is a function of(τ)and the retardation functionsOn the right hand side of the equality(21),Pwave(t)denote the wave excitation loads(forces and moments).That is,the Pext(t)terms are the hydrodynamic forces and moments.Pext(t)denote the external loads(forces and moments),and Pvisc(t)denote the viscous loads(forces and moments)due to the hydrodynamic viscous effects.

    Fig.2 The WEC-Sim model of the chosen heaving two-body point absorber

    Up to now the wave excitation loads Pwave(t)acting on a wave energy converter are usually calculated by using linear random waves as inputs(i.e.,by inputting free surface elevation values generated by using Eq.(15)).As pointed out in Sect.1,this is not a very accurate approach.Therefore,in the present work we will also calculate the wave excitation loads Pwave(t)acting on a wave energy converter by using nonlinear random waves as inputs(i.e.,by inputting free surface elevation values generated by using Eqs.(18)–(19)).Our calculation results regarding a specific wave energy converter will be summarized and discussed in the next section.

    3 The calculation example and discussions of the calculation results

    3.1 The chosen wave energy converter

    In this paper we will show our calculation results regarding a chosen wave energy converter,i.e.,a heaving two-body point absorber.Figure2shows the WEC-Sim model of this specific wave energy converter.Pleasenote that WEC-Sim is an open source code for simulating the performances of wave energy converters(http://wec-sim.github.io/WEC-Sim/).Figure 3 shows the dimensions of this specific wave energy converter.

    The two-body point absorber is free to move in all 6 degrees of freedom in response to incident waves.Power is primarily captured in the heave direction.This two-body point absorber consists of a float and a spar/plate.The diameter of the float is 20 m,and the thickness of the float is 5 m.The mass of the float is 727.01 t.The height of the spar/plate is 38 m,and the diameter of the spar is 6 m.The mass of the spar/plate is 878.3 t.

    Fig.3 The main dimensions of the chosen heaving two-body point absorber

    At this point it should also be noted that the water depth is only 49.5 m at the site where the two-body point absorber is installed.Therefore,the shallow water irregular waves at this site will obviously be nonlinear(see,e.g.,the nonlinear wave theory in Ref.[23]).

    3.2 The calculation results and discussion

    We have calculated the power outputs of the aforementioned two-body point absorber in eight different sea states by numerical simulations.The widely used P-M wave spectrum is adopted in the process of simulation of the random sea waves.The mathematical expression of the P-M wave spectrum S(ω)is written as[24]

    where ω is the wave angular frequency(rad/s),Hsis the significant wave height of a specific sea state.In the above equationωpis the spectral peak angular frequency andωp=2π/Tp.Tpis the spectral peak period of a specific sea state.

    Fig.4 Power output time series under the sea state of linear waves with Hs=3m

    We next show our calculated power outputs of the abovementioned two-body point absorber operating in an ideal linear random sea versus operating in a realistic nonlinear random sea.Figure 3 shows our calculation results of the two-body point absorber power output time series under the sea state of linear random waves with a P-M spectrum with Hs=3 m,Tp=6 s.Figure 4 shows our calculation results of the power output time series under the sea state of nonlinear random waves with a P-M spectrum with Hs=3 m,Tp=6 s.These calculation results have been obtained by numerically integrating the wave energy converter motion equations(Eq.(21))in WEC-Sim.However,WEC-Sim does not has the ability of generating nonlinear random waves,which are the necessary inputs for calculating the hydrodynamic wave excitation load term Pwave(t)in Eq.(21).Therefore,in our research,we have separately generated the nonlinear waves in MATLAB according to the theories in Eqs.(18)–(19).The generated nonlinear random waves time series are saved as a.mat file and imported into WEC-Sim for subsequent calculations.For comparison purpose,we have also separately generated the linear random waves in MATLAB.The generated linear random waves time series are also saved as a “.mat” file and imported into WEC-Sim for subsequent calculations.After obtaining the calculation results as shown in Figs.3 and 4,we have continued to calculate the descriptive statistics based on these two time series and our calculation results are shown in Table 1.From Table 1 we can notice that the mean value of the wave energy converter 12,000 s power output time series under the sea state of linear random waves is smaller than the mean value of the wave energy converter 12,000 s power output time series under the sea state of nonlinear random waves.This result is different from that published in Ref.[12],which states that inputting a linear wave time series will lead to the overestimation of the generated power.However,the simple linear dynamic filter model without hydrodynamical forces terms in Ref.[12]is obviously not correct and cannot predict reliable power output results.To the contrary,the nonlinear dynamic filter model with hydrodynamical forces terms in this paper is obviously more rational,and thus can predict more reliable power output values.Furthermore,because the second order randomwave model can produce realistic waves which are the necessary inputs to the nonlinear dynamic filter(i.e.,Eq.(21))of the wave energy converter,therefore,the wave excitation loads(forces and moments)Pwave(t)can be more accurately calculated with the nonlinearly simulated second order waves as inputs.Consequently,more accurate generated power can be predicted by subsequently solving Eq.(21)in this paper with the nonlinearly simulated second order waves as inputs. At this point it should also be reminded that the author of Ref.[12]also admitted that“A nonlinear filter,taking also hydrodynamical forces into account,may give different results.”

    In the following we explain why there is a discrepancy between the linear wave model and the second order nonlinear wave model energy output.The absorbed power PPTOis calculated by using the following equation

    In this equation CPTOis the damping of the PTO(power take off)system of the wave energy converter.In the mentioned calculation example CPTO=1,200,000(N·s/m),i.e.,CPTOis a constant.relis the relative velocity between the two bodies of the wave energy converter in the aforementioned calculation example.We have performed specific calculations and have found thatrelwhen inputting nonlinearly simulated waves is often different from therelwhen inputting linearly simulated waves. This explains the discrepancy between the linear wave model and the second order non-linear wave model energy output.

    In our research we have also calculated the wave energy converter power output time series under seven other sea states with a P-M wave spectrum with the following parameters respectively:(Hs=4 m,Tp=7 s);(Hs=5 m,Tp=8 s);(Hs=6 m,Tp=9 s);(Hs=7 m,Tp=10 s);(Hs=8 m,Tp= 11 s);(Hs= 9 m,Tp= 12 s);(Hs=10 m,Tp=13 s);(Hs=11 m,Tp=15 s)and(Hs=12 m,Tp=16 s).After obtaining these calculation results,we have continued to calculate the descriptive statistics based on the obtained time series and our calculation results are summarized in Table 1.

    Analyzing the data in Table 1,we can find that inputting nonlinear random waves to the wave energy converter almost always leads to larger predicted mean power output values.In the case of the sea state with a significant wave height value of 12 m,the predicted mean power output value with the nonlinear waves as inputs is 6.12%larger than that with the linear waves as inputs.

    These calculation results contradict the findings in Ref.[12]that the use of a linear wave model tends to mostly overestimate the generator power.However,as explained before,our prediction results ought to be deemed more reliable.Meanwhile,if we study the calculation results in Table1 more carefully,we can find that in all cases the standard deviation values of the wave energy converter power out-put time series under the sea states of linear random waves are smaller than the corresponding standard deviation values under these a states of nonlinear random waves.These calculation results indicate that in all the cases using a nonlinear random wave model will predict power output values that spread out over a wider range of values(Fig.5).

    Fig.5 Power output time series under the sea state of nonlinear waves with Hs=3m

    4 Concluding rem arks

    In this paper we have realistically predicted the power outputs of a two-body point absorber wave energy converter operating in shallow water nonlinear waves.The generated power of the wave energy converter has been predicted by using a new method(a nonlinear simulation method)that incorporates a second order random wave model into a nonlinear dynamic filter.The nonlinear dynamic filter also takes the hydrodynamical forces into account.The nonlinear irregular waves time series have been generated separately in MATLAB based on the second order random wave model and have been used as the necessary inputs for calculating the hydrodynamic wave excitation load terms in the nonlinear dynamic filter.After obtaining the power output time series,we have continued to calculate the descriptive statistics based on the time series. As explained in the main part of this paper,the nonlinear dynamic filter is more sophisticated and more rational in comparison with a simple linear filter and can be utilized to obtain more reliable power output results.Meanwhile,it is shown that the nonlinear random wave model in this paper can be utilized to generate irregular waves with more realistic crest–trough asymmetries than a linear wave model can do,and when used in combination with the nonlinear dynamic filter will produce more accurate power output predictions.The research findings in this paper demonstrate that the new nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design,analysis and optimization of wave energy converters.

    AcknowledgementsThe work was supported by the State Key Laboratory of Ocean Engineering of China(Grant GKZD010038).Special thanks are due to the two anonymous reviewers whose valuable comments have led to the improved quality of this paper.

    免费久久久久久久精品成人欧美视频| 99re在线观看精品视频| 啦啦啦免费观看视频1| 美女午夜性视频免费| 免费av毛片视频| 欧美黄色片欧美黄色片| 国产精品九九99| 黄色视频,在线免费观看| 狠狠狠狠99中文字幕| 中亚洲国语对白在线视频| 制服诱惑二区| 在线观看午夜福利视频| 成人黄色视频免费在线看| 国产精品秋霞免费鲁丝片| 国产亚洲欧美98| 国产精品久久电影中文字幕| xxx96com| 真人做人爱边吃奶动态| 黄色毛片三级朝国网站| 人人澡人人妻人| 黑人操中国人逼视频| 亚洲自偷自拍图片 自拍| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 中文亚洲av片在线观看爽| 日韩免费av在线播放| 亚洲国产毛片av蜜桃av| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 国产精品九九99| 久久人妻熟女aⅴ| 日韩av在线大香蕉| 青草久久国产| 亚洲人成伊人成综合网2020| 操美女的视频在线观看| 精品久久久久久成人av| 精品久久久久久久久久免费视频 | 久久国产精品人妻蜜桃| 一级毛片高清免费大全| 亚洲一区中文字幕在线| 国产99白浆流出| 久久久久亚洲av毛片大全| 国产精品香港三级国产av潘金莲| 宅男免费午夜| 日韩视频一区二区在线观看| 这个男人来自地球电影免费观看| 老司机午夜十八禁免费视频| 国产精品久久电影中文字幕| 中文字幕av电影在线播放| 亚洲午夜精品一区,二区,三区| 悠悠久久av| 国产精品香港三级国产av潘金莲| 成人亚洲精品一区在线观看| 青草久久国产| 狂野欧美激情性xxxx| 亚洲在线自拍视频| 欧美性长视频在线观看| 老司机靠b影院| 亚洲精品在线观看二区| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 男女之事视频高清在线观看| 久久九九热精品免费| 精品欧美一区二区三区在线| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区久久| 亚洲成人免费电影在线观看| 一级a爱片免费观看的视频| 日韩三级视频一区二区三区| 夜夜爽天天搞| 热99re8久久精品国产| 欧洲精品卡2卡3卡4卡5卡区| 色播在线永久视频| 天堂俺去俺来也www色官网| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 丝袜美腿诱惑在线| 欧美色视频一区免费| 99精国产麻豆久久婷婷| 国产一区二区三区在线臀色熟女 | 欧美日韩国产mv在线观看视频| 亚洲欧美激情在线| 男女午夜视频在线观看| 99国产精品免费福利视频| 国产有黄有色有爽视频| 欧美日韩视频精品一区| 亚洲国产中文字幕在线视频| 看片在线看免费视频| 黄色成人免费大全| 99久久久亚洲精品蜜臀av| 国产主播在线观看一区二区| 久久久国产精品麻豆| 桃红色精品国产亚洲av| 少妇的丰满在线观看| 亚洲精品久久午夜乱码| 亚洲自偷自拍图片 自拍| 好男人电影高清在线观看| 黄色女人牲交| 精品国产乱码久久久久久男人| 免费看十八禁软件| 亚洲一区高清亚洲精品| 窝窝影院91人妻| 日韩精品中文字幕看吧| 嫩草影视91久久| 人人妻人人爽人人添夜夜欢视频| 满18在线观看网站| 很黄的视频免费| 国产日韩一区二区三区精品不卡| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 男女做爰动态图高潮gif福利片 | 国产精品香港三级国产av潘金莲| 国产精品日韩av在线免费观看 | 国产国语露脸激情在线看| 在线播放国产精品三级| 日韩免费高清中文字幕av| 免费在线观看影片大全网站| 一区福利在线观看| 天天添夜夜摸| 99香蕉大伊视频| 国产高清videossex| 无限看片的www在线观看| 亚洲成人久久性| 1024香蕉在线观看| 欧美成人性av电影在线观看| 在线观看免费午夜福利视频| svipshipincom国产片| 国产伦一二天堂av在线观看| 欧美亚洲日本最大视频资源| 男人舔女人下体高潮全视频| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 日韩欧美在线二视频| 国产成人精品久久二区二区免费| 日韩中文字幕欧美一区二区| 精品一区二区三卡| 亚洲av电影在线进入| 18禁裸乳无遮挡免费网站照片 | 亚洲国产精品999在线| 女生性感内裤真人,穿戴方法视频| 十八禁人妻一区二区| www国产在线视频色| 一级毛片精品| 久久精品91蜜桃| 婷婷六月久久综合丁香| 国产精品自产拍在线观看55亚洲| 后天国语完整版免费观看| www.熟女人妻精品国产| 99国产精品一区二区三区| 日韩欧美国产一区二区入口| 免费高清视频大片| 久久久久九九精品影院| 欧美一级毛片孕妇| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼 | 国产在线精品亚洲第一网站| 精品福利观看| 天天影视国产精品| 久久中文字幕人妻熟女| 免费在线观看亚洲国产| 欧美中文日本在线观看视频| 黄色毛片三级朝国网站| 亚洲精品成人av观看孕妇| 国产不卡一卡二| 午夜亚洲福利在线播放| 桃色一区二区三区在线观看| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 亚洲一区二区三区欧美精品| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 自线自在国产av| 19禁男女啪啪无遮挡网站| 一区二区三区精品91| 多毛熟女@视频| 美女国产高潮福利片在线看| 波多野结衣av一区二区av| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| 久久久国产成人免费| 狂野欧美激情性xxxx| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 国产精品一区二区三区四区久久 | 香蕉国产在线看| 一级片免费观看大全| 亚洲激情在线av| 一级片免费观看大全| 中文字幕色久视频| 一级毛片精品| 在线观看舔阴道视频| 在线观看66精品国产| 亚洲国产毛片av蜜桃av| 亚洲第一青青草原| 99国产精品一区二区蜜桃av| 国产在线精品亚洲第一网站| av天堂在线播放| 在线观看午夜福利视频| 中文字幕高清在线视频| av欧美777| 一区在线观看完整版| 成人永久免费在线观看视频| 国产91精品成人一区二区三区| 免费在线观看亚洲国产| 亚洲精品成人av观看孕妇| 亚洲人成77777在线视频| 亚洲成a人片在线一区二区| 亚洲一区二区三区不卡视频| 身体一侧抽搐| 日本精品一区二区三区蜜桃| 国产av又大| 午夜免费鲁丝| 丝袜在线中文字幕| 长腿黑丝高跟| 欧美成狂野欧美在线观看| 我的亚洲天堂| 身体一侧抽搐| 啦啦啦 在线观看视频| 99香蕉大伊视频| 国产激情欧美一区二区| 午夜精品国产一区二区电影| 亚洲狠狠婷婷综合久久图片| 国产区一区二久久| 午夜福利影视在线免费观看| 91成人精品电影| 叶爱在线成人免费视频播放| 老司机午夜十八禁免费视频| 午夜91福利影院| 亚洲精品在线观看二区| 亚洲狠狠婷婷综合久久图片| 99久久精品国产亚洲精品| 国产亚洲精品一区二区www| 午夜影院日韩av| 久久人妻熟女aⅴ| 人妻久久中文字幕网| 韩国av一区二区三区四区| 免费看a级黄色片| 黄色视频,在线免费观看| 在线av久久热| 色老头精品视频在线观看| 日韩欧美一区视频在线观看| 高清毛片免费观看视频网站 | 欧美亚洲日本最大视频资源| 国产黄a三级三级三级人| 国产熟女午夜一区二区三区| 一级毛片精品| 亚洲精品在线观看二区| 久久中文字幕一级| 99久久综合精品五月天人人| 国产精品1区2区在线观看.| 欧美午夜高清在线| 久久九九热精品免费| 日日夜夜操网爽| 国产精品影院久久| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 一二三四在线观看免费中文在| 亚洲成人国产一区在线观看| 欧美色视频一区免费| 在线观看免费高清a一片| 精品人妻1区二区| 满18在线观看网站| 伦理电影免费视频| 久久国产精品影院| 国产成年人精品一区二区 | 三上悠亚av全集在线观看| 淫秽高清视频在线观看| av片东京热男人的天堂| 亚洲欧美一区二区三区久久| 国产三级在线视频| 中文字幕人妻丝袜制服| 久久久久国产一级毛片高清牌| 手机成人av网站| 另类亚洲欧美激情| 两性夫妻黄色片| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 亚洲国产精品一区二区三区在线| 法律面前人人平等表现在哪些方面| 一级黄色大片毛片| 长腿黑丝高跟| 免费不卡黄色视频| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 人人妻人人添人人爽欧美一区卜| 大型黄色视频在线免费观看| 嫩草影院精品99| 精品欧美一区二区三区在线| 久久久久国产精品人妻aⅴ院| 国产又爽黄色视频| 午夜精品在线福利| 亚洲av片天天在线观看| 国产av在哪里看| 99国产精品一区二区蜜桃av| 久久影院123| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 亚洲精品成人av观看孕妇| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 亚洲视频免费观看视频| 在线观看日韩欧美| 一本大道久久a久久精品| 午夜福利一区二区在线看| 欧美色视频一区免费| 日韩国内少妇激情av| 另类亚洲欧美激情| 在线观看日韩欧美| 国产精品久久久久成人av| 久久天堂一区二区三区四区| 久99久视频精品免费| 一本大道久久a久久精品| 国产av一区二区精品久久| 国产欧美日韩一区二区精品| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 麻豆国产av国片精品| 在线观看舔阴道视频| 久久亚洲精品不卡| 99香蕉大伊视频| 99国产精品一区二区三区| 国产精品免费一区二区三区在线| 久久这里只有精品19| 亚洲欧洲精品一区二区精品久久久| 热re99久久国产66热| 国产一区二区三区视频了| 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 午夜福利影视在线免费观看| 女人高潮潮喷娇喘18禁视频| 交换朋友夫妻互换小说| 久久青草综合色| 亚洲欧美日韩无卡精品| 国产精华一区二区三区| 亚洲欧美一区二区三区久久| 国产av一区二区精品久久| 久久香蕉激情| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区久久 | 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 亚洲性夜色夜夜综合| 国产高清videossex| 亚洲伊人色综图| www.www免费av| 搡老熟女国产l中国老女人| 少妇被粗大的猛进出69影院| 精品国产一区二区久久| 一级黄色大片毛片| 大陆偷拍与自拍| 欧美大码av| 国产野战对白在线观看| 1024视频免费在线观看| 亚洲av片天天在线观看| 免费av毛片视频| 两人在一起打扑克的视频| 亚洲av五月六月丁香网| 国产精品九九99| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| av超薄肉色丝袜交足视频| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 亚洲狠狠婷婷综合久久图片| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| av电影中文网址| 亚洲久久久国产精品| 欧美成人免费av一区二区三区| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| avwww免费| 精品国产一区二区久久| 亚洲五月色婷婷综合| 免费观看人在逋| 真人做人爱边吃奶动态| 宅男免费午夜| 国产精品亚洲av一区麻豆| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 自线自在国产av| 久久精品成人免费网站| 高清欧美精品videossex| 久久久水蜜桃国产精品网| 国产精品久久电影中文字幕| 99久久人妻综合| 一区二区三区精品91| 久久久久国产精品人妻aⅴ院| 久久久久久久午夜电影 | 国产精品久久久人人做人人爽| 亚洲欧美激情综合另类| 夜夜看夜夜爽夜夜摸 | 免费av中文字幕在线| 99久久人妻综合| 欧美乱妇无乱码| 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 人人妻人人添人人爽欧美一区卜| 久久亚洲精品不卡| 午夜老司机福利片| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 亚洲 欧美一区二区三区| 免费av毛片视频| 老司机福利观看| 亚洲伊人色综图| 国产av又大| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 一级片'在线观看视频| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 97人妻天天添夜夜摸| 中文字幕人妻丝袜制服| 99国产精品99久久久久| 国产成年人精品一区二区 | 国产主播在线观看一区二区| 视频区图区小说| 亚洲 欧美 日韩 在线 免费| av网站免费在线观看视频| 亚洲专区字幕在线| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| 少妇被粗大的猛进出69影院| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 国产精品美女特级片免费视频播放器 | 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 丰满的人妻完整版| 精品久久蜜臀av无| 亚洲伊人色综图| 99在线视频只有这里精品首页| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| 亚洲全国av大片| 后天国语完整版免费观看| 国产视频一区二区在线看| 欧美在线一区亚洲| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 一级毛片女人18水好多| 亚洲成人国产一区在线观看| www.精华液| 精品国产一区二区三区四区第35| 性少妇av在线| 乱人伦中国视频| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| av超薄肉色丝袜交足视频| 色婷婷久久久亚洲欧美| 91av网站免费观看| 香蕉久久夜色| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 日韩欧美三级三区| svipshipincom国产片| 美女午夜性视频免费| 狂野欧美激情性xxxx| 最好的美女福利视频网| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 午夜激情av网站| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| 高清av免费在线| 亚洲国产精品sss在线观看 | 欧美人与性动交α欧美软件| 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 99精品在免费线老司机午夜| 天堂动漫精品| 夜夜躁狠狠躁天天躁| 亚洲成av片中文字幕在线观看| 久久午夜综合久久蜜桃| 男女下面进入的视频免费午夜 | 新久久久久国产一级毛片| x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 欧美日韩黄片免| 制服诱惑二区| 免费在线观看影片大全网站| 国产熟女午夜一区二区三区| 悠悠久久av| 欧美日韩一级在线毛片| 纯流量卡能插随身wifi吗| 国产精品美女特级片免费视频播放器 | e午夜精品久久久久久久| 涩涩av久久男人的天堂| 成人国语在线视频| 丁香欧美五月| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 在线播放国产精品三级| 亚洲激情在线av| 久久久久久久久免费视频了| 国产精品二区激情视频| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 丝袜美足系列| 久久中文字幕一级| 久久精品亚洲熟妇少妇任你| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利一区二区在线看| 男女高潮啪啪啪动态图| 男女做爰动态图高潮gif福利片 | 免费在线观看黄色视频的| 亚洲全国av大片| 午夜老司机福利片| 涩涩av久久男人的天堂| 亚洲成国产人片在线观看| 丁香欧美五月| 国产激情久久老熟女| 婷婷六月久久综合丁香| www.熟女人妻精品国产| 亚洲成人国产一区在线观看| 精品一区二区三区av网在线观看| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 视频在线观看一区二区三区| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| 国产成人一区二区三区免费视频网站| 乱人伦中国视频| 性欧美人与动物交配| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| 亚洲,欧美精品.| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 老司机深夜福利视频在线观看| 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸 | 欧美日韩国产mv在线观看视频| 91av网站免费观看| 色老头精品视频在线观看| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 91成人精品电影| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 免费在线观看日本一区| 国产一区二区三区在线臀色熟女 | 日日干狠狠操夜夜爽| 一本大道久久a久久精品| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| av福利片在线| 国产野战对白在线观看| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 亚洲精品av麻豆狂野| 黄色视频,在线免费观看| 国产精品国产高清国产av| 高清毛片免费观看视频网站 | 国内毛片毛片毛片毛片毛片| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 欧美亚洲日本最大视频资源| 国产精品秋霞免费鲁丝片| 亚洲国产精品sss在线观看 | 精品国产超薄肉色丝袜足j| 18禁黄网站禁片午夜丰满| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 深夜精品福利| 国产精品野战在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 一边摸一边抽搐一进一小说| 亚洲国产欧美日韩在线播放| 亚洲欧美激情综合另类| 一a级毛片在线观看| 国产在线精品亚洲第一网站| 女性生殖器流出的白浆| 99国产精品一区二区三区| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 性少妇av在线| 久久精品国产亚洲av香蕉五月| 国产精品 欧美亚洲| 人人妻人人爽人人添夜夜欢视频| 亚洲av片天天在线观看| 香蕉丝袜av| 黑人巨大精品欧美一区二区mp4| 波多野结衣一区麻豆| 成人国产一区最新在线观看| 两人在一起打扑克的视频| 日韩欧美一区视频在线观看| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 9热在线视频观看99|