• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An efficient unstructured WENO method for supersonic reactive flows

    2018-09-05 07:28:36WenGengZhaoHongWeiZhengFengJunLiuXiaoTianShiJunGaoNingHuMengLvSiCongChenHongDaZhao
    Acta Mechanica Sinica 2018年4期

    Wen-Geng Zhao·Hong-Wei Zheng·Feng-Jun Liu·Xiao-Tian Shi·Jun Gao·Ning Hu·Meng Lv·Si-Cong Chen·Hong-Da Zhao

    Abstract An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.

    Keywords Supersonic reactive flows·Adaptive splitting scheme·Unstructured grids·WENO reconstruction

    1 Introduction

    During the last several decades,numerical simulation has been applied to supersonic reactive flows[1–14]and plays an increasingly important role.However,there are still some challenges in the simulation of supersonic reactive flow[15].A well-known difficulty[16–21]is unphysical wave speeds,which are caused by the stiffness of the source term.This numerical phenomenon was first observed by Colella et al.[22].Later,LeVeque and Yee[23]found that the propagation error is due to the numerical viscosity in the solution of the convective terms,which smears the discontinuity front.Various strategies have been proposed to overcome this difficulty[24–32],for example,the random projection method[11–13],modified fractional step method[14],M in-Max method[15],arbitrary high order derivatives(ADER)method[16],sub-cell resolution method[17],and equilibrium state method[18].Even though these methods can prevent the incorrect propagation speed of discontinuities efficiently,most of these simulations are restrained within the structured grids and cannot be extended to the unstructured grid straightforward[33–37].In Ref.[38],Togashi applied the monotonic upwind scheme for conservation laws(MUSCL)to unstructured grids and found that the simulations using unstructured grids require many more cells than structured grids to obtain the same result. To get a more accurate result in unstructured grids,we can employ a high-order accurate numerical method instead of the traditional secondorder numerical method.In fact,there are many high-order numerical methods[39,40]developed in the past decades:the essentially non-oscillatory method(ENO)[41],the weighted ENO(WENO)method[42–48],the discontinuous Galerkin method[39,49,50],and the spectral volume method[51].However,the unstructured high-order accurate methods for supersonic reactive flow[52–67]are still rarely conducted because of the complicated topology of unstructured grid,stiffness of governing equation and complexity of the reaction model.

    The purpose of this article is to propose an efficient,unstructured high-order accurate method for supersonic reac-tive flows.In the proposed method,we use an operator splitting scheme to solve the convection term and reaction source term separately.In the reaction step,an adaptive time step method is developed,which can improve the efficiency greatly compared to the traditional splitting method.In the convection step,an unstructured third-order accurate WENO finite volume method(FVM)is adopted to obtain high order special discretization.

    The outline of this paper is described as follows.The governing equations for supersonic reactive flows and chemical models are given in Sect.2.The adaptive time-step method in reaction step and unstructured WENO reconstruction for convection step is introduced in Sect.3.Numerical experiments are presented in Sect.4.And Sect.5 is devoted to the conclusion.

    2 Governing equation and chemical models

    The hyperbolic conservation laws with source term are used to model the supersonic reaction flow.Neglecting the viscosity and heat transfer,the governing equation can be written as

    where u,F,G and S are the state vector of conservative variables,the flux vector in x-direction,the flux vector in y-direction and the source term.The expression of the source term will vary with the chemical reaction models.Two common chemical reaction modes in numerical simulation have been included in this work:the one-step reaction model[11–18]and detailed reaction model[24–32].

    2.1 One-step reaction model

    The one-step reaction model is the simplest reaction model,in which there are only two states for mixture:burnt gas and un-burnt gas.In the one-step reaction model,the conserved variables u, flux vector F,G and source term S in Eq.(1)can be expressed as follows

    where ρ is the mixture density,u and v are the velocities in x-and y-direction,E is the mixture total energy,and z is the mass fraction.K(T)is the chemical reaction rate,which can be expressed in the Arrhenius form or Heaviside form.The pressure p is given by

    where q0is the chemical heat released in the reaction.For the calorically perfect gas,the temperature T is defined as

    2.2 Detailed reaction model

    The detailed reaction model takes the process of chemical reaction kinetics into consideration and usually can be represented in the general form as follows.

    where ns is the number of species and nr is the number of reactions.In the detailed reaction model,the conserved variables u, flux vector F,G and source term S in Eq.(1)can be expressed as follows.

    where ωiis the production rate for the ith species.For the calorically perfect gas,specific heat is constant and the temperature can be obtained according to Eq.(4).For the thermally perfect gas,specific heats are usually given by fitting polynomial[42]and New ton iteration is applied to compute the temperature from the conserved variables.

    3 Numerical method

    In this section,an adaptive time step method in the reaction step and the unstructured WENO reconstruction in the convection step are stated in detail.We solve these governing equations using the Strang splitting scheme

    where C and R represent the convection operator and the reaction operator,respectively.In the reaction step,the third order total variation diminishing(TVD)Runge–Kutta time discretization with adaptive time step is employed.In the convection step,the unstructured WENO reconstruction is used.

    3.1 Adaptive time step method in reaction step

    An essential characteristic for supersonic reactive flow is radical chemical reactions whose relaxation times are orders of magnitude smaller than the typical time scale of transport phenomena,which is usually called stiffness[2,14].In the supersonic reactive flows,the stiff source term leads to severe time-step limitations for a numerical scheme,which is far beyond the Courant–Friedrichs–Lewy(CFL)stability restriction to solve.Even though the implicit scheme can reduce the stiffness effectively,the inverse of Jacobian matrix for the source term is needed,which takes great computational time in the detailed reaction model.In addition,the accuracy of an implicit scheme is low,which may spoil the high-order accuracy to some extent.Another method to discretize the stiff source term is to divide the time step in convection step into a series of smaller time steps.

    To obtain high order accuracy time, we employ the explicit 3rd TVD Runge–Kutta scheme to discretize the stiff source term.However,great computational cost will generate if we use the same time steps in the whole computational domain in the reaction step.It is known that the stiffness only exists in the region near the detonation front and the severe time-step limitation disappears in the region far from the detonation.This reminds us that different time steps can be used in different areas to improve the efficiency.

    In the splitting scheme,the reaction step can be expressed as

    where i represent the ith species.In Eq.(8),the magnitude of production rate ωican be used to indicate the stiffness of source term.The bigger ωiis,the stiffer the Eq.(8)is and the smaller time-step should be used to maintain the stability of numerical methods.Here,we introduce an adaptive factor,which can be used to control the time-step for reaction adaptively.The adaptive time step for reaction has the following expression

    Fig.1 Relationship between adaptive factor and production rate

    whered tcandα represents the convection time step and adaptive factor,respectively.The adaptive factor can be obtained in the following way

    In the Eq.(10),Nris the number of iterations in the traditional splitting scheme.A is a user-defined parameter,and we choose A=100 in our computation.Our numerical tests will show that computation results are not sensitive to values of A.The relationship between α and ωiis shown in Fig.1.When the magnitude of ωiis small,the source term is not stiff and the reaction time step is equal to the convection time step.When the magnitude ofωiincreases,the number of iterations become larger correspondingly,which maintains the stability of the numerical method.

    3.2 Spatial discretization

    To achieve high-order accuracy in smooth regions and nonoscillation transition for solution with discontinuities,an improved unstructured 3rd WENO method, which was developed for the multi- fluid flows in our previous work[41],is adopted to discretize the convection term.

    Fig.2 Stencil for weighted essentially non-oscillatory reconstruction

    Stencil for WENO reconstruction is shown in Fig.2.The linear polynomial is reconstructed firstly on the sub-stencils.After that,a quadratic polynomial is reconstructed from the combination of the linear polynomials.If discontinuities emerge, nonlinear weights are used to prevent numerical oscillation near discontinuities.

    4 Numerical tests

    In order to verify the proposed method for supersonic reactive flows on unstructured grids,four different numerical cases are tested.

    4.1 1D C-J detonation wave with one-step chemical reaction model

    In the first example,the simplified C-J detonation wave[14,15]with one-step chemical reaction is tested.Initially,the computation domain is filled with burnt gas on the left-hand side and un-burnt gas on the right-hand side.The density,velocity,and pressure are given by

    The property of material and coefficients for chemical reaction are given as follows

    States for the burnt gas can be obtained by the C-J relationship and the initial state for the un-burnt gas

    Fig.3 Computational domain and grids for C-J detonation in one dimension(h=0.1)

    Fig.4 Computed results for Example 4.1 at t=1.0.a Density.b Pressure

    where Scjis the speed of the C-J detonation wave.In this example,Scj=7.1247.

    In this example,the computational domain is[0,30]×[0,3],as shown in Fig.3.The size of the computational cell is h=0.1.Initially,the discontinuity is located at x=10.At the final time t=1.0,the density and pressure profile along the center line of y=1.5 using the present method and standard method is shown in Fig.4.The reference solution is computed by the standard WENO scheme of fifth order with15,000grids in the x-direction.From the computational results,we can find that the detonation wave computed by the standard method has moved to x=21.5,which is obviously larger than the reference solution x=17.12.However,the results using the present method agree well with the reference solution.

    4.2 2D detonation waves with one-step chemical reaction model

    Fig.5 Computational domain and initial condition in 2D detonation wave

    Consider a 2D channel,the upper and lower boundaries are solid walls.The computational domain is[0,0.015]×[0,0.005],as shown in Fig.5.The domain is discretized by unstructured grids with h=2.5×10?5.The initial conditions are

    where

    In this example [17,18], a moving detonation wave travelsfrom left to right in the channel. One important feature of this problem is the appearance of triple points,which has been discussed in detail in Ref.[43].The parameters for burnt gas can be obtained by Eq.(13)in Sect.4.1.The chemical reaction is modeled by the Heaviside form with the following coefficients

    Figure6show temperature contours computed by the present method at different times from t=0 to t=6×10?8.The evolution process of detonation wave with triple points can be observed clearly.In this example,the reference solution is from Ref.[18],which is calculated by the MUSCL scheme using structured grids.At the final time t=6× 10?8,we compared solutions using the present method and the solution using standard method in one-dimensional cross section at y=0.0025.As shown in Fig.7,this method is able to capture the correct propagation speed of the detonation wave exactly even in coarse grids,while the standard method produces spurious numerical results,in which detonation wave travels faster than the reference solution.

    Fig.6 Temperature contours at different times for 2D detonation wave using the third order accurate WENO scheme.From top to bottom:a t=2×10?8.b t=3×10?8.c t=5×10?8.d t=6×10?8

    Fig.7 Comparison of different schemes along the cross section of y=0.0025

    4.3 Interaction of detonation wave and shock wave

    Fig.8 Computational domain and initial condition for detonation and shock interaction

    This example is taken from Refs.[18,30].In this numerical test,a detonation and shock wave sweep a contact surface of un-burnt gas.The computation domain can be divided into three parts,as shown in Fig.8.The size for unstructured grids is h=0.02.Initial conditions for each part are as follows

    A reacting model,which consists of five species and two reactions is adopted.The species of N2is added to the mixture as dilution gas.Chemical reaction equations can be written in the following expression

    The chemical reaction is modeled by the Heaviside form and the chemical parameters used in the computation are given by

    Figure 9 shows the temperature contours computed using the present method at different times from t=0 to t=3.0.We can find that the detonation wave travels faster than the shock wave.The profiles along y=1 at t=3.0 are also plotted in Fig.10.From the profile for pressure,temperature and mass fraction,we can see that the present results agree well with the reference ones.

    4.4 1D detonation wave with detailed chemical reaction for thermally perfect gas

    In the last example,the mixture belongs to thermally perfect gas and similar examples can be found in Refs.[27,44–48].

    Fig.9 Temperature contours for detonation and shock interaction at different times:t=0.075,0.15,0.225,0.3

    Fig.10 Solution using the present method along the cross section of y=1.a Pressure.b Temperature.c Mass fraction of OH.d Mass fraction of H2O

    Fig.11 Computational domain and boundary condition for multispecies detonation problem with detailed chemical reaction

    Fig.12 Pressure contours along the cross section of y=0.02.a Second order scheme.b Third order WENO scheme

    The mole concentration ratio of the H2/O2/Ar gas mixture was 2:1:7,with initial pressure 6670 Pa and temperature 298 K.In this example,an 8-species and 19-step reaction mechanism for hydrogen-oxygen combustion[49]is used.Reacting species are H,O,H2,OH,H2O,O2,HO2,and H2O2.The specific heat capacities and enthalpies for each species can be found in the JANAF tables[50].The computational domain is shown in Fig.11,whose boundary conditions for the left side,upper and lower sides are solid walls.The size of unstructured grids is h=5× 10?4m.Detonation wave is generated by igniting the mixture gasin the left(width of 0.1 m)with a high initial pressure and temperature as 18 P0and 18T0.

    Table1 CPU time using different methods

    The pressure contours at different times along the cross section of y=0.02 are shown in Fig.12.In this example,the theoretical speed of detonation wave is 1722 m/s.The speed of detonation using the second order finite element method is 1770 m/s with relative error of 2.7%.However,in our numerical simulation,the speed of detonation using the present method is 1690 m/s with relative error of?1.9%.From the pressure profile in Fig.12,it is easy to see that the third-order WENO scheme can obtain sharper results than the second order scheme.

    We also compared the CPU time using different methods,as shown in Table 1.It is easy to find that the CPU time is not sensitive to the magnitude of A and all the cases that use adaptive method cost about a half time than the traditional one,which means that the proposed method can reduce the computational cost effectively.

    5 Conclusions

    An effective unstructured 3rd order FVM for supersonic reactive flows is proposed in this article. In our proposed method,the convection step and reaction step are solved separately.In the reaction step,an adaptive time-step method is presented.In the convection step,a third-order accurate unstructured WENO reconstruction is adopted.Numerical results show that present method can capture the correct propagation speed of the detonation wave exactly and obtain better detonation profile than the second order method.In addition,the proposed method can greatly reduce the computational cost compared with the traditional splitting method.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 51476152,11302213,and 11572336).The authors wish to thank Jun Meng,Li Liu,Jun Peng,Shengping Liu and Guangli Li for helpful discussions.Special thank goes to Prof.Yiqing Shen and Prof.Xinliang Li of the Institute of Mechanics CAS for their suggestions and help.

    国产黄频视频在线观看| 日韩,欧美,国产一区二区三区| 日韩电影二区| 少妇被粗大的猛进出69影院| av视频免费观看在线观看| 国产成人精品福利久久| 精品国产乱码久久久久久男人| 高清黄色对白视频在线免费看| 国产精品国产三级专区第一集| 亚洲精品日韩在线中文字幕| 边亲边吃奶的免费视频| 最黄视频免费看| 欧美少妇被猛烈插入视频| 亚洲综合精品二区| 女的被弄到高潮叫床怎么办| 久久国内精品自在自线图片| 在线观看www视频免费| 亚洲综合精品二区| 天堂俺去俺来也www色官网| 三上悠亚av全集在线观看| 国产亚洲精品第一综合不卡| 日韩在线高清观看一区二区三区| 波野结衣二区三区在线| 少妇被粗大的猛进出69影院| 久久久精品免费免费高清| 美女中出高潮动态图| 激情视频va一区二区三区| 日本91视频免费播放| 精品视频人人做人人爽| 亚洲精品久久成人aⅴ小说| 精品国产超薄肉色丝袜足j| 蜜桃国产av成人99| 青春草国产在线视频| 欧美日韩精品网址| 美女视频免费永久观看网站| 天堂俺去俺来也www色官网| 青青草视频在线视频观看| 天美传媒精品一区二区| 黄频高清免费视频| 国产精品.久久久| 国产成人精品在线电影| 久久狼人影院| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 高清黄色对白视频在线免费看| 一级,二级,三级黄色视频| 国产精品成人在线| 26uuu在线亚洲综合色| 免费高清在线观看视频在线观看| 亚洲国产av影院在线观看| 大片电影免费在线观看免费| 日本爱情动作片www.在线观看| 老司机亚洲免费影院| 国产成人a∨麻豆精品| 人妻少妇偷人精品九色| 女的被弄到高潮叫床怎么办| 免费看不卡的av| 最近中文字幕2019免费版| 午夜日本视频在线| 日韩制服骚丝袜av| 黑人猛操日本美女一级片| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 水蜜桃什么品种好| 久久久久久久国产电影| 赤兔流量卡办理| 免费女性裸体啪啪无遮挡网站| 亚洲熟女精品中文字幕| av网站在线播放免费| 中文字幕最新亚洲高清| 久久精品久久精品一区二区三区| 精品国产国语对白av| 9191精品国产免费久久| 99热全是精品| 久久久国产欧美日韩av| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久男人| 免费观看a级毛片全部| 大片电影免费在线观看免费| 99久久综合免费| 日韩中文字幕欧美一区二区 | 亚洲精品国产一区二区精华液| 男人操女人黄网站| 国产一区二区在线观看av| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 国产精品久久久久久av不卡| 在线观看国产h片| 黄色怎么调成土黄色| 国产免费一区二区三区四区乱码| 一级毛片我不卡| 亚洲四区av| 久久久久久免费高清国产稀缺| 国产日韩欧美视频二区| 97在线人人人人妻| 精品亚洲成国产av| 午夜免费男女啪啪视频观看| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 成人亚洲精品一区在线观看| 男人添女人高潮全过程视频| www.自偷自拍.com| 一区二区三区激情视频| 精品少妇一区二区三区视频日本电影 | 欧美人与性动交α欧美软件| 不卡av一区二区三区| 亚洲av在线观看美女高潮| 午夜福利视频在线观看免费| 久久人人97超碰香蕉20202| av在线老鸭窝| 日韩,欧美,国产一区二区三区| a级毛片黄视频| 亚洲av福利一区| 七月丁香在线播放| av网站在线播放免费| 国产97色在线日韩免费| 国产精品一区二区在线不卡| 欧美精品国产亚洲| av线在线观看网站| 一边摸一边做爽爽视频免费| 婷婷色综合www| 中国国产av一级| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久精品古装| 欧美日韩精品网址| 夜夜骑夜夜射夜夜干| 一二三四中文在线观看免费高清| 亚洲精品国产色婷婷电影| 日韩av免费高清视频| 色吧在线观看| 久久99热这里只频精品6学生| 中国国产av一级| 99热网站在线观看| 亚洲av电影在线观看一区二区三区| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 制服诱惑二区| 2021少妇久久久久久久久久久| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 国产精品嫩草影院av在线观看| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 国产一区二区在线观看av| 最近中文字幕高清免费大全6| 99九九在线精品视频| 99久久综合免费| 老司机影院成人| 香蕉精品网在线| 高清视频免费观看一区二区| 视频在线观看一区二区三区| 国产亚洲欧美精品永久| 91精品国产国语对白视频| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区| 久久久久精品性色| 蜜桃国产av成人99| 青春草视频在线免费观看| 久久中文看片网| 人成视频在线观看免费观看| 亚洲成a人片在线一区二区| 国产成人欧美在线观看| 精品电影一区二区在线| 色婷婷av一区二区三区视频| 亚洲九九香蕉| 精品熟女少妇八av免费久了| 精品无人区乱码1区二区| 1024视频免费在线观看| 国产精品美女特级片免费视频播放器 | 女性生殖器流出的白浆| www.精华液| 国产成人欧美| 交换朋友夫妻互换小说| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片 | 亚洲精品国产色婷婷电影| 亚洲全国av大片| 天堂中文最新版在线下载| 夫妻午夜视频| 99国产极品粉嫩在线观看| 亚洲五月天丁香| 脱女人内裤的视频| 在线视频色国产色| 18禁黄网站禁片午夜丰满| 激情在线观看视频在线高清| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 天堂影院成人在线观看| 无遮挡黄片免费观看| 在线观看午夜福利视频| 精品卡一卡二卡四卡免费| 男女下面进入的视频免费午夜 | 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 一进一出抽搐gif免费好疼 | 亚洲专区中文字幕在线| 一区二区三区精品91| 9191精品国产免费久久| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 久热这里只有精品99| 精品熟女少妇八av免费久了| 午夜两性在线视频| 亚洲av熟女| 午夜免费鲁丝| av视频免费观看在线观看| 视频区图区小说| 欧美日韩av久久| 亚洲精品粉嫩美女一区| 老司机福利观看| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 国产不卡一卡二| 国产极品粉嫩免费观看在线| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 久久热在线av| 午夜视频精品福利| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 啦啦啦免费观看视频1| 波多野结衣一区麻豆| a级毛片黄视频| 久久久久久久午夜电影 | 亚洲国产看品久久| 极品人妻少妇av视频| 亚洲人成网站在线播放欧美日韩| 精品福利永久在线观看| 国产精品久久久久成人av| 日本黄色日本黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 国产高清国产精品国产三级| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 国产精品1区2区在线观看.| 黑丝袜美女国产一区| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 精品熟女少妇八av免费久了| 超碰97精品在线观看| 人成视频在线观看免费观看| 99国产精品一区二区三区| 国产精品九九99| 高清在线国产一区| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 免费看a级黄色片| 青草久久国产| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久5区| 免费观看精品视频网站| 人人妻人人爽人人添夜夜欢视频| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三卡| aaaaa片日本免费| 精品一区二区三区视频在线观看免费 | 性少妇av在线| 日韩免费av在线播放| 久久久久九九精品影院| 777久久人妻少妇嫩草av网站| 露出奶头的视频| 人人澡人人妻人| 一区福利在线观看| 久久草成人影院| 自线自在国产av| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 交换朋友夫妻互换小说| 亚洲一区中文字幕在线| 免费观看人在逋| 国产精品野战在线观看 | 一级毛片高清免费大全| 免费在线观看完整版高清| 性欧美人与动物交配| 成人国产一区最新在线观看| 久9热在线精品视频| 久热爱精品视频在线9| 中文字幕另类日韩欧美亚洲嫩草| 国产激情欧美一区二区| 在线天堂中文资源库| 久久影院123| 色哟哟哟哟哟哟| 亚洲成人免费av在线播放| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 在线观看免费高清a一片| 天天躁夜夜躁狠狠躁躁| videosex国产| 性欧美人与动物交配| 亚洲av五月六月丁香网| 日韩欧美三级三区| 国产激情久久老熟女| 最好的美女福利视频网| 国产极品粉嫩免费观看在线| 精品电影一区二区在线| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 亚洲五月婷婷丁香| 亚洲人成网站在线播放欧美日韩| 又大又爽又粗| 亚洲熟女毛片儿| 亚洲精华国产精华精| www日本在线高清视频| 国产一区二区三区在线臀色熟女 | 亚洲九九香蕉| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| 丁香六月欧美| 国产精品九九99| 怎么达到女性高潮| 88av欧美| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 国产aⅴ精品一区二区三区波| 一级毛片高清免费大全| 人人妻,人人澡人人爽秒播| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 国产亚洲av高清不卡| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 免费日韩欧美在线观看| av欧美777| 99在线视频只有这里精品首页| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费 | xxx96com| 国产99白浆流出| 久久久久久大精品| 老司机福利观看| 老司机靠b影院| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 丁香欧美五月| 高清av免费在线| 黄片播放在线免费| 黑丝袜美女国产一区| 国产av又大| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 日韩有码中文字幕| 又黄又粗又硬又大视频| 国产精品国产av在线观看| 久久精品成人免费网站| 免费观看精品视频网站| 亚洲成av片中文字幕在线观看| 久久影院123| 宅男免费午夜| 人人妻人人添人人爽欧美一区卜| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美| 99热只有精品国产| av国产精品久久久久影院| 国产一区二区三区综合在线观看| 99国产精品99久久久久| 极品教师在线免费播放| 欧美国产精品va在线观看不卡| 亚洲av第一区精品v没综合| 无遮挡黄片免费观看| 久久这里只有精品19| 精品电影一区二区在线| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 女人精品久久久久毛片| 精品一区二区三卡| 久久久久精品国产欧美久久久| 欧美在线黄色| 成熟少妇高潮喷水视频| 欧美黑人精品巨大| 国产人伦9x9x在线观看| 亚洲熟妇中文字幕五十中出 | 两个人免费观看高清视频| 成人18禁在线播放| 深夜精品福利| 久久青草综合色| 亚洲中文av在线| 国产1区2区3区精品| 久久久国产精品麻豆| 一区二区三区国产精品乱码| 99精国产麻豆久久婷婷| 一本综合久久免费| 精品福利永久在线观看| 亚洲成人免费电影在线观看| 成人手机av| 999精品在线视频| 国产av又大| 欧美一区二区精品小视频在线| 久久香蕉激情| 黑人巨大精品欧美一区二区蜜桃| 性欧美人与动物交配| 欧美在线黄色| 成人影院久久| 久久久水蜜桃国产精品网| 亚洲色图综合在线观看| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一码二码三码区别大吗| 亚洲精品成人av观看孕妇| 成人手机av| 久久久久久人人人人人| 女人精品久久久久毛片| 精品一品国产午夜福利视频| 国产人伦9x9x在线观看| 啦啦啦 在线观看视频| 久久 成人 亚洲| 久久久久久久午夜电影 | 在线观看午夜福利视频| 老司机靠b影院| 日本一区二区免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 一级黄色大片毛片| 国产精品二区激情视频| 国产精品国产av在线观看| x7x7x7水蜜桃| 精品国产亚洲在线| 18禁美女被吸乳视频| 中文字幕av电影在线播放| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| av电影中文网址| 精品人妻在线不人妻| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 中文欧美无线码| 亚洲欧美一区二区三区久久| 亚洲avbb在线观看| 日韩精品中文字幕看吧| 国产成人精品在线电影| 久久热在线av| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 老司机靠b影院| 国产精品成人在线| 老司机在亚洲福利影院| 大型av网站在线播放| 热re99久久国产66热| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 久久影院123| 亚洲视频免费观看视频| 亚洲精品国产一区二区精华液| www.精华液| 又黄又爽又免费观看的视频| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲伊人色综图| 亚洲一卡2卡3卡4卡5卡精品中文| 一本大道久久a久久精品| 女生性感内裤真人,穿戴方法视频| xxx96com| 美女午夜性视频免费| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 最近最新中文字幕大全免费视频| 国产成人免费无遮挡视频| 国产精品久久久人人做人人爽| 桃色一区二区三区在线观看| 亚洲成人免费av在线播放| 99久久国产精品久久久| 在线观看www视频免费| 夜夜爽天天搞| 亚洲国产精品合色在线| 99精国产麻豆久久婷婷| 国产99久久九九免费精品| 欧美午夜高清在线| 久久久国产一区二区| 无遮挡黄片免费观看| 色婷婷av一区二区三区视频| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 999久久久精品免费观看国产| 免费搜索国产男女视频| 热99国产精品久久久久久7| 日日干狠狠操夜夜爽| 国产亚洲精品综合一区在线观看 | 亚洲男人天堂网一区| 婷婷丁香在线五月| 亚洲自拍偷在线| 桃色一区二区三区在线观看| 日韩免费av在线播放| 欧美日韩视频精品一区| 亚洲成人免费电影在线观看| 中国美女看黄片| 亚洲一区中文字幕在线| 久久99一区二区三区| www日本在线高清视频| 久久中文字幕一级| 精品久久久精品久久久| 黑丝袜美女国产一区| 中文字幕高清在线视频| 国产一区二区激情短视频| 久久中文看片网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情综合另类| 男人舔女人的私密视频| 久久精品91无色码中文字幕| 国产精品99久久99久久久不卡| 久久中文字幕一级| 一本大道久久a久久精品| 欧美激情高清一区二区三区| 亚洲午夜理论影院| 丝袜美腿诱惑在线| 国产亚洲精品一区二区www| 午夜福利在线免费观看网站| 看黄色毛片网站| 国产精品av久久久久免费| 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 9191精品国产免费久久| 天天添夜夜摸| 欧美乱码精品一区二区三区| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 亚洲久久久国产精品| 国产成人啪精品午夜网站| 一级a爱片免费观看的视频| 99久久国产精品久久久| 一区二区三区激情视频| 精品免费久久久久久久清纯| 在线国产一区二区在线| 亚洲av成人av| 精品国产乱子伦一区二区三区| 久久精品影院6| 50天的宝宝边吃奶边哭怎么回事| 亚洲激情在线av| 国产av一区在线观看免费| 精品一区二区三卡| 中出人妻视频一区二区| 在线视频色国产色| 性欧美人与动物交配| av天堂在线播放| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 18美女黄网站色大片免费观看| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区91| 高潮久久久久久久久久久不卡| 精品一品国产午夜福利视频| 国内久久婷婷六月综合欲色啪| 他把我摸到了高潮在线观看| 亚洲精品国产色婷婷电影| 1024香蕉在线观看| 两个人看的免费小视频| 深夜精品福利| 久久青草综合色| 欧美激情极品国产一区二区三区| 可以在线观看毛片的网站| 五月开心婷婷网| 一级毛片高清免费大全| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| cao死你这个sao货| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 神马国产精品三级电影在线观看 | 美女 人体艺术 gogo| 亚洲精品一区av在线观看| 99久久综合精品五月天人人| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 天天躁夜夜躁狠狠躁躁| 欧美黑人欧美精品刺激| 丰满迷人的少妇在线观看| 99热只有精品国产| 国产激情欧美一区二区| 一个人免费在线观看的高清视频| 日韩精品中文字幕看吧| 国产精品成人在线| 热re99久久精品国产66热6| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 亚洲avbb在线观看| 天堂√8在线中文| av电影中文网址| 老鸭窝网址在线观看| 99久久久亚洲精品蜜臀av| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 精品国产乱子伦一区二区三区| 国产av精品麻豆| 手机成人av网站| 成人黄色视频免费在线看| 波多野结衣高清无吗| 精品久久久久久成人av| 国产一区二区在线av高清观看| 久久精品亚洲熟妇少妇任你| 超色免费av| 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| 天堂动漫精品| 免费在线观看视频国产中文字幕亚洲| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕色久视频| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频|