• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    2014-03-01 10:19:38JuanPabloSotoQuirosandDomingoRodriguez

    Juan Pablo Soto Quiros and Domingo Rodriguez

    A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    Juan Pablo Soto Quiros and Domingo Rodriguez

    —This work presents a computational matrix framework in terms of tensor signal algebra for the formulation of discrete chirp Fourier transform algorithms. These algorithms are used in this work to estimate the point target functions (impulse response functions) of multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) systems. This estimation technique is being studied as an alternative to the estimation of point target functions using the discrete cross-ambiguityfunctionforcertaintypesof environmental surveillance applications. The tensor signal algebra is presented as a mathematics environment composed of signal spaces, finite dimensional linear operators, and special matrices where algebraic methods are used to generate these signal transforms as computational estimators. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms. An instantiation of the framework was performed by using the MATLAB Parallel Computing Toolbox, where all the algorithms presented in this paper were implemented.

    Index Terms—Discrete chirp Fourier transform, MATLAB, parallel computing, tensor signal algebra.

    1. Introduction

    This work deals with the fundamental issue of fast and efficient treatment of microwave remote sensed data of objects modeled as point targets in order to extract information important to a surveillance user. Great advances in active sensor technology, communications, and signal processing technology are demanding new computational theories and methods to improve our rapid awareness of our physical sensory reality. For the particular case of synthetic aperture radar (SAR) systems[1], this implies the need for faster and efficient means for signal intelligence.

    The work presents here concentrates on the formulation of a computational matrix framework in terms of tensor signal algebra, which is as a set consisting of signal spaces, operators, and special matrices for algebraic modeling of point target response functions using point estimates of discrete chirp Fourier transforms (DCFTs) of echo returns modeled as multi-component polynomial phase signals. The tensor signal algebra has been demonstrated to be instrumental in the analysis, design, and implementation of different classes of algorithms for SAR computational signal processing applications[2]-[4].

    We concentrate our effort on the matrix formulation of algorithms for the computation of discrete chirp Fourier transforms. This computational matrix framework allows the systematic study of variants of discrete chirp Fourier transforms formulations under a unified setting, which is considered as one of the major contributions of this work. Also, an instantiation of this computational matrix framework was implemented by using the MATLAB Parallel Computing Toolbox.

    The paper is organized as follows. In Section 2, we explain preliminaries concepts: matrix notations, tensor signal algebra definitions, and the definition for the discrete Fourier transform operator. In Section 3, we describe the different DCFTs definitions. In Section 4, we develop a matrix formulation for DCFTs algorithms using tensor signal algebra. Also, a proof of DCFTs matrix inverses is developed. In Section 5, we provide an implementation of DCFT algorithms using the MATLAB Parallel Computing Toolbox. Finally, we present our conclusions in Section 6.

    2. Preliminaries

    2.1 Matrix Notation

    2.2 Tensor Signal Algebra

    In this paper, we define tensor signal algebra as a mathematics environment composed of signal spaces, operators, and special matrices where algebraic methods are used to develop algorithms to perform signal processing operations. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms for signal processing applications. Now, we proceed to define some operators and matrices associated with tensor signal algebra.

    Let N RS= , the stride permutation matrix,permutes the elements of the input vectorasThe vector operator,transforms a matrix of dimension M N× into a vector of dimensionMN, by stacking, in order, all the columns of this matrix one underneath the other. The vector inverse operator,, transforms a vector of dimension MNinto a matrix of sizethenis the matrix indefined by

    The operators and matrices mentioned above have been used in several research associated with signal processing in [2], [3], and [5]-[10].

    2.3 Discrete Fourier Transform

    3. Discrete Chirp Fourier Transform

    DCFT defined by Xia in [11] matches the multiple chirp rates in a chirp-type signal with multiple chirp components. Also, the DCFT can be used to transform signals that are not sparse in either time or frequency, such as linear chirps, into sparse signals[12].. The DCFT ofxis defined as the map with domainand co-domain ?. Here, we formulate three types of DCFTs definitions:

    When the signal length is prime, the magnitudes of all the sidelobes of the DCFT-1 of a quadratic chirp signal are 1, whereas the magnitude of the mainlobe of the DCFT-1 isWhen the signal length is12N N= ,1N prime, the magnitudes of all the sidelobes of the DCFT-2 of a quadratic chirp signal arewhereas the magnitude of the mainlobe of the DCFT-2 isWhen the signal length isprimes, the magnitudes of all the sidelobes of the DCFT-3 of a single chirp signal are N1,N2or 1, whereas the magnitude of the mainlobeof the DCFT-3 isthen the DCFT-1, DCFT-2, and DCFT-3 can be represented as:

    4. Matrix Formulation of DCFTs

    The DCFTs are bi-dimensional functions and we can express each of them as a matrix. Forthe DCFT-nis defined asThe following theorem formulates the DCFTs matrices using tensor signal algebra.

    Proof: We provide a proof ofThe proofs ofare similar.

    Multiplying the parentheses, we obtain

    such that

    A study of the inverse of DCFT-1 was developed in [11] and [15]. Now, we present an alternative proof for the DCFT-1 inverse and the DCFT-3 through matrix representations.

    Then,

    Proof. We provide a proof forThe proof foris similar. For fixedand from (3), we obtain a system of linear equations of order N. The matrix representation of this system is shown in (8) and (9). From the coefficient matrixM, we obtainandare invertible, we then have

    The DCFT-2 is not invertible, because it is not injective (see Appendix B). However, Theorem 3 will obtain the best signal approximation for the original signal, such that the norm-2 of the signal approximation is less than norm-2 of the original signal.

    Proof. Similarly to the proof of Theorem 2, we obtain

    5. Implementation of DCFT Algorithms with Parallel Computing Toolbox?

    Owing to the close relation between DFT and DCFTs, Theorem 1 presents the matrix representation of DCFTs. Also, asis called parallel operation[2], the implementation of DCFTs can be performed by using parallel computing. From Theorem 1, the DCFT-1 matrix can be computed in parallel, since each (:,)mAof (7) can be computed independently and in parallel.

    In this paper, we perform an implementation of DCFTs using the MATLAB Parallel Computing Toolbox, through the basic command parfor, as shown in below. The parfor divides the loop iterations into groups so that each lab executes in parallel some portion of the total number of iterations. Here, a lab is an independent instance of MATLAB that runs separately.

    % DCFT-1: An implementation in parallel MATLAB

    N=67; w=exp(2*pi*1i/N); t=0:N-1; C=zeros(N);

    m0=25; k0=30; m1=5; k1=63;

    x=w.?(m0*t.?2+k0*t) + w.?(m1*t.?2+k1*t);

    matlabpool open 2

    parfor m=0:N-1

    f=w.?(-m*t.?2); v=x.*f;

    C(:,m+1)=fft(v);

    end

    C=C.’;

    matlabpool close

    surface(t, t, abs(C)).

    6. Conclusions

    This work presented a computational matrix framework for the formulation of DCFTs algorithms by using the tensor signal algebra. An instantiation of the framework was performed by using the Parallel Computing Toolbox?of Matlab?, where all the algorithms presented in this work were implemented.

    Appendix A: Pseudocodes of DCFTs Algorithms

    Algorithm 1: DCFT-1 Algorithm

    2. (,:)m←vF(see (3) for(,:)mFvalues)

    3: ←fxv⊙

    5: end for

    Algorithm 2: DCFT-2 Algorithm

    2. (,:)m←vG(see (4) for (,:)mGvalues)

    3: ←gxv⊙

    5: end for

    Algorithm 3: DCFT-3 Algorithm

    2. (,:)m←vH(see (5) for (,:)mΗvalues)

    3: ←hxv⊙

    5: end for

    6: ←Ddiagonal matrix such that (,) (1)nD n n=-

    Appendix B: Auxiliary Result

    [1] G. Krieger, N. Gebert, and A. Moreira, “Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing,” IEEE Trans. on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 31-46, 2008.

    [2] D. Rodriguez, “A computational kronecker-core array algebra SAR raw data generation modeling system,” in Proc. of the Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, 2001, pp. 116-120.

    [3] J. Johnson, R. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology for designing, modifying, and implementing Fourier transform algorithms on various architectures,” Proc. of Circuits, Systems, and Signal Processing, vol. 9, no. 4, 1990, pp. 449-500.

    [4] P. M. Woodward, Probability and Information Theory, With Applications to Radar, New York: McGraw-Hill, 1953.

    [5] C. V. Loan, Computational Framework for the Fast Fourier Transform, Philadelphia: SIAM, 1992.

    [6] B. Yang, “A study of inverse short-time Fourier transform,”in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Las Vegas, 2008, pp. 3541-3544.

    [7] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura, “Discrete Fourier transform on multicore,”IEEE Signal Processing Magazine, vol. 26, no. 6, 2009, pp. 90-102.

    [8] M. An, A. K. Brodzik, and R. Tolimieri, Ideal Sequence Design in Time-Frequency Space, Berlin: Birkh?user Basel, 2009.

    [9] D. Marquez, J. Valera, A. Camelo, C. Aceros, M. Jimenez, and D. Rodriguez, “Implementations of cyclic crossambiguity functions in FPGAs for large scale signals,” in Proc. of IEEE Second Latin American Symposium on Circuits and Systems, Bogotá, 2011, pp. 1-4.

    [10] J. P. S. Quiros and D. Rodriguez, “Representación matricial de algoritmos en paralelo de la transformada discreta de fourier, la función discreta de ambigüedad y la distribución discreta de Cohen,” La Gaceta, vol. 16, no. 3, pp. 479-500, 2013.

    [11] X.-G. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. on Signal Processing, vol. 48, no. 11, pp. 3122-3133, 2000.

    [12] P. Fan and C. Feng, “A new discrete chirp Fourier transform,” in Proc. of the 6th Int. Conf. on Signal Processing, Beijing, 2002, pp. 49-53.

    [13] P. Fan and X.-G. Xia, “A modified discrete chirp-Fourier transform scheme,” in Proc. of the 5th Int. Conf. on Signal Processing, Beijing, 2000, pp. 57-60.

    [14] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications, Berlin: Springer, 2003.

    [15] O. Alkishriwo and L. Chaparro, “A discrete linear chirp transform (DLCT) for data compression,” in Proc. of the 11th Int. Conf. on Information Science, Signal Processing and Their Applications, Montreal, 2012, pp. 1283-1288.

    The authors’ photographs and biographies are not available at the time of publication.

    Manuscript received April 19, 2013; revised June 31, 2013.

    J. P. S. Quiros is with the Department of Mathematics, Costa Rica Institute Technology, 159-7050 Cartago, Costa Rica (Corresponding author e-mail: jusoto@itcr.ac.cr).

    D. Rodríguez is with the Department of Electrical and Computer Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA (e-mail: domingo@ece.uprm.edu).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.02.013

    日日爽夜夜爽网站| 成人毛片60女人毛片免费| 国产日韩欧美视频二区| 激情五月婷婷亚洲| 成人国语在线视频| 欧美日韩视频精品一区| 色网站视频免费| 男人添女人高潮全过程视频| 精品卡一卡二卡四卡免费| 午夜久久久在线观看| 日本vs欧美在线观看视频| 久久精品久久久久久噜噜老黄| 国产精品 国内视频| 国产高清不卡午夜福利| 另类亚洲欧美激情| 亚洲国产精品国产精品| 天堂俺去俺来也www色官网| 热99国产精品久久久久久7| 看免费av毛片| 亚洲国产av影院在线观看| 香蕉丝袜av| 亚洲久久久国产精品| 成年女人在线观看亚洲视频| 国产在线一区二区三区精| 国产无遮挡羞羞视频在线观看| 99久久综合免费| 色视频在线一区二区三区| 国产精品三级大全| 亚洲精品日韩在线中文字幕| 最近中文字幕2019免费版| 国产在线免费精品| 免费看光身美女| 秋霞伦理黄片| 丝瓜视频免费看黄片| 日本欧美国产在线视频| 91精品伊人久久大香线蕉| 精品久久蜜臀av无| 成人国产av品久久久| av有码第一页| 欧美变态另类bdsm刘玥| 美女中出高潮动态图| 亚洲av综合色区一区| 欧美成人午夜精品| 精品国产国语对白av| 亚洲av电影在线观看一区二区三区| 欧美日韩精品成人综合77777| 久久久久久久久久久久大奶| 天天操日日干夜夜撸| 国产毛片在线视频| 久久久久国产精品人妻一区二区| 一本久久精品| 亚洲 欧美一区二区三区| 久久久久视频综合| 亚洲国产av新网站| 亚洲欧洲国产日韩| 视频区图区小说| 久久这里只有精品19| 亚洲av男天堂| 欧美日韩精品成人综合77777| 欧美日韩精品成人综合77777| 精品国产乱码久久久久久小说| 国产黄频视频在线观看| a级毛片在线看网站| 纵有疾风起免费观看全集完整版| 成人午夜精彩视频在线观看| 美女视频免费永久观看网站| 熟女人妻精品中文字幕| 女性被躁到高潮视频| 五月天丁香电影| √禁漫天堂资源中文www| 99久久中文字幕三级久久日本| 看非洲黑人一级黄片| 汤姆久久久久久久影院中文字幕| 丝袜人妻中文字幕| 22中文网久久字幕| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区二区三区在线| 人体艺术视频欧美日本| 日产精品乱码卡一卡2卡三| 久久鲁丝午夜福利片| 国产精品人妻久久久久久| 亚洲精品国产av蜜桃| 欧美 日韩 精品 国产| 成人二区视频| 另类精品久久| 欧美亚洲日本最大视频资源| 中文字幕制服av| 九九爱精品视频在线观看| 日韩一区二区三区影片| 国产成人aa在线观看| 最近2019中文字幕mv第一页| 免费久久久久久久精品成人欧美视频 | 自线自在国产av| 99久久人妻综合| 香蕉精品网在线| 人妻系列 视频| 三级国产精品片| 99热全是精品| 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕在线视频| 一边摸一边做爽爽视频免费| 一边摸一边做爽爽视频免费| 51国产日韩欧美| 国产乱来视频区| 另类精品久久| 成人二区视频| 免费看av在线观看网站| 亚洲成人一二三区av| 秋霞在线观看毛片| 青春草国产在线视频| 黄网站色视频无遮挡免费观看| 少妇猛男粗大的猛烈进出视频| 欧美少妇被猛烈插入视频| 亚洲精品国产色婷婷电影| 日本wwww免费看| 国产国语露脸激情在线看| 亚洲国产av影院在线观看| 成人国语在线视频| 午夜久久久在线观看| 久久99热这里只频精品6学生| 精品久久久精品久久久| 亚洲av免费高清在线观看| 久久久久网色| 亚洲人与动物交配视频| 欧美xxxx性猛交bbbb| 另类精品久久| 天天影视国产精品| 免费少妇av软件| av在线app专区| 一区二区日韩欧美中文字幕 | 免费av不卡在线播放| 波野结衣二区三区在线| 国产av码专区亚洲av| 最近中文字幕2019免费版| 熟女电影av网| 交换朋友夫妻互换小说| 亚洲人成77777在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲av综合色区一区| 在线观看免费高清a一片| 日韩中文字幕视频在线看片| 一级片免费观看大全| 中国美白少妇内射xxxbb| 九九爱精品视频在线观看| 成人无遮挡网站| 日本猛色少妇xxxxx猛交久久| 久久99精品国语久久久| 成人免费观看视频高清| 午夜免费观看性视频| 飞空精品影院首页| 国语对白做爰xxxⅹ性视频网站| 十分钟在线观看高清视频www| 亚洲一码二码三码区别大吗| 一区二区日韩欧美中文字幕 | 丝袜脚勾引网站| 国产av国产精品国产| 午夜福利视频精品| 婷婷色综合www| 国产精品熟女久久久久浪| 美女国产高潮福利片在线看| 在线免费观看不下载黄p国产| av免费观看日本| 国产成人精品一,二区| 免费人成在线观看视频色| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| av国产久精品久网站免费入址| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一二三区| 中国国产av一级| 汤姆久久久久久久影院中文字幕| 亚洲,欧美精品.| 久久精品久久久久久久性| 久久97久久精品| 色婷婷av一区二区三区视频| 永久网站在线| 久久久欧美国产精品| 秋霞在线观看毛片| 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| 免费黄色在线免费观看| a级毛色黄片| 在线亚洲精品国产二区图片欧美| av在线app专区| 久久国产精品男人的天堂亚洲 | 成人黄色视频免费在线看| 欧美人与性动交α欧美精品济南到 | 亚洲精品av麻豆狂野| 在线观看美女被高潮喷水网站| 国产成人免费无遮挡视频| 精品卡一卡二卡四卡免费| 2021少妇久久久久久久久久久| 亚洲四区av| 人妻少妇偷人精品九色| 免费黄色在线免费观看| 如何舔出高潮| 丁香六月天网| 久久久精品免费免费高清| 国产成人一区二区在线| 久久精品国产亚洲av涩爱| 伦理电影大哥的女人| 欧美xxⅹ黑人| 欧美日韩成人在线一区二区| 婷婷色综合大香蕉| 亚洲av男天堂| 校园人妻丝袜中文字幕| a级毛色黄片| 国产xxxxx性猛交| 亚洲成人av在线免费| av网站免费在线观看视频| 亚洲精品,欧美精品| 欧美人与性动交α欧美精品济南到 | 中文乱码字字幕精品一区二区三区| 一级黄片播放器| 久热久热在线精品观看| av播播在线观看一区| 亚洲美女黄色视频免费看| 国产麻豆69| 大码成人一级视频| 国产精品一区二区在线不卡| 国产av国产精品国产| 2021少妇久久久久久久久久久| 大片电影免费在线观看免费| 色视频在线一区二区三区| 制服人妻中文乱码| 日本av手机在线免费观看| 亚洲高清免费不卡视频| 亚洲精品日本国产第一区| 秋霞在线观看毛片| 狠狠精品人妻久久久久久综合| 十八禁高潮呻吟视频| 赤兔流量卡办理| 十八禁网站网址无遮挡| 人体艺术视频欧美日本| 亚洲精品乱码久久久久久按摩| av福利片在线| 大码成人一级视频| 免费大片18禁| 婷婷色综合www| 性色av一级| 天天影视国产精品| 国产成人一区二区在线| 九九在线视频观看精品| 这个男人来自地球电影免费观看 | 在线观看免费高清a一片| 老司机亚洲免费影院| 妹子高潮喷水视频| av在线app专区| 国产成人午夜福利电影在线观看| 亚洲中文av在线| 亚洲av欧美aⅴ国产| 美女主播在线视频| 五月玫瑰六月丁香| 人人澡人人妻人| 热re99久久国产66热| 最近的中文字幕免费完整| 国产日韩欧美视频二区| 少妇 在线观看| 久久精品国产亚洲av天美| 午夜福利乱码中文字幕| 欧美激情国产日韩精品一区| 久久女婷五月综合色啪小说| a级毛片在线看网站| 日本wwww免费看| 精品久久国产蜜桃| 午夜福利视频精品| 欧美 亚洲 国产 日韩一| 国产无遮挡羞羞视频在线观看| 精品亚洲成a人片在线观看| 国产成人一区二区在线| 高清黄色对白视频在线免费看| 69精品国产乱码久久久| 爱豆传媒免费全集在线观看| 久久综合国产亚洲精品| 美国免费a级毛片| 青春草国产在线视频| 国产精品久久久av美女十八| 亚洲国产日韩一区二区| 亚洲精品aⅴ在线观看| 日韩不卡一区二区三区视频在线| 国产亚洲午夜精品一区二区久久| 亚洲,一卡二卡三卡| 亚洲人与动物交配视频| 乱人伦中国视频| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 最新中文字幕久久久久| 精品久久国产蜜桃| 精品国产国语对白av| 99热全是精品| 天天影视国产精品| 亚洲性久久影院| 九九在线视频观看精品| 99香蕉大伊视频| 欧美少妇被猛烈插入视频| 亚洲综合精品二区| 黄色 视频免费看| 久久精品aⅴ一区二区三区四区 | 狠狠精品人妻久久久久久综合| 亚洲欧美成人精品一区二区| 国产精品国产三级专区第一集| av一本久久久久| 国产亚洲一区二区精品| 九九爱精品视频在线观看| 免费在线观看完整版高清| 天天操日日干夜夜撸| 菩萨蛮人人尽说江南好唐韦庄| av天堂久久9| 97人妻天天添夜夜摸| 免费人成在线观看视频色| 久久久久久久久久久久大奶| 亚洲精品色激情综合| 亚洲国产最新在线播放| 精品亚洲成a人片在线观看| 一区二区日韩欧美中文字幕 | 中文字幕人妻丝袜制服| 男女啪啪激烈高潮av片| 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 亚洲欧美色中文字幕在线| 性高湖久久久久久久久免费观看| 男女边摸边吃奶| 成人国语在线视频| 一区二区三区四区激情视频| 人妻少妇偷人精品九色| 十八禁高潮呻吟视频| 不卡视频在线观看欧美| 国产黄色免费在线视频| 欧美国产精品一级二级三级| 高清欧美精品videossex| 18禁观看日本| 久久av网站| 国产黄色免费在线视频| 国产精品免费大片| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 亚洲中文av在线| 美女国产视频在线观看| 嫩草影院入口| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 热re99久久国产66热| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 国产精品无大码| 久久久久人妻精品一区果冻| 另类精品久久| 午夜免费男女啪啪视频观看| 交换朋友夫妻互换小说| 99久久中文字幕三级久久日本| 大片免费播放器 马上看| 18禁动态无遮挡网站| 不卡视频在线观看欧美| 免费高清在线观看视频在线观看| 国国产精品蜜臀av免费| 51国产日韩欧美| 日韩欧美一区视频在线观看| 亚洲av日韩在线播放| xxx大片免费视频| 人妻少妇偷人精品九色| 国产日韩欧美在线精品| 香蕉丝袜av| 国产黄色免费在线视频| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 久久久久久久亚洲中文字幕| 久久久久精品人妻al黑| 熟女电影av网| 久久久久久伊人网av| 一级a做视频免费观看| 女性被躁到高潮视频| 秋霞伦理黄片| 视频在线观看一区二区三区| 国产视频首页在线观看| 免费黄色在线免费观看| 宅男免费午夜| 国产一区二区在线观看日韩| videossex国产| 日本91视频免费播放| 交换朋友夫妻互换小说| 高清av免费在线| 国产精品久久久久成人av| 日本欧美视频一区| 寂寞人妻少妇视频99o| 97在线视频观看| 国产日韩欧美视频二区| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 国产欧美亚洲国产| 免费播放大片免费观看视频在线观看| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 国产精品女同一区二区软件| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 成人国产av品久久久| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 午夜福利,免费看| 69精品国产乱码久久久| 性色avwww在线观看| 亚洲国产看品久久| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 麻豆乱淫一区二区| 欧美人与善性xxx| 免费在线观看黄色视频的| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| 男女国产视频网站| 亚洲国产欧美日韩在线播放| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品av麻豆狂野| 青春草国产在线视频| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 国产在线视频一区二区| 日本vs欧美在线观看视频| 在现免费观看毛片| 亚洲精品久久成人aⅴ小说| 91午夜精品亚洲一区二区三区| 免费少妇av软件| 黑丝袜美女国产一区| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 狂野欧美激情性bbbbbb| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 久久久久精品性色| 高清视频免费观看一区二区| 一区二区av电影网| 老司机影院成人| 免费在线观看完整版高清| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 亚洲精品一二三| 香蕉国产在线看| 性色avwww在线观看| 人妻 亚洲 视频| 美女主播在线视频| 午夜福利影视在线免费观看| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 又黄又粗又硬又大视频| 尾随美女入室| 99热网站在线观看| 99热全是精品| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 亚洲av在线观看美女高潮| 夜夜骑夜夜射夜夜干| 一级爰片在线观看| 1024视频免费在线观看| av国产精品久久久久影院| videos熟女内射| 汤姆久久久久久久影院中文字幕| 久久午夜福利片| 国产av一区二区精品久久| 少妇被粗大猛烈的视频| 又黄又粗又硬又大视频| 尾随美女入室| 一本—道久久a久久精品蜜桃钙片| 国产黄色视频一区二区在线观看| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 色哟哟·www| 国产欧美日韩一区二区三区在线| 国产成人精品久久久久久| 国产精品女同一区二区软件| videos熟女内射| 超色免费av| 丰满少妇做爰视频| 97超碰精品成人国产| 美女国产视频在线观看| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| 欧美日韩视频高清一区二区三区二| tube8黄色片| 街头女战士在线观看网站| 春色校园在线视频观看| 欧美xxⅹ黑人| 老司机亚洲免费影院| 久久免费观看电影| 麻豆精品久久久久久蜜桃| 国产精品成人在线| 国产精品一二三区在线看| 在线看a的网站| 91在线精品国自产拍蜜月| 亚洲精品美女久久av网站| 中国国产av一级| 国产午夜精品一二区理论片| 国产精品三级大全| 亚洲三级黄色毛片| 一级片'在线观看视频| 男人舔女人的私密视频| 日本色播在线视频| 国产成人欧美| 汤姆久久久久久久影院中文字幕| 最近手机中文字幕大全| 国产在线免费精品| av卡一久久| 欧美激情极品国产一区二区三区 | av在线老鸭窝| 国产成人91sexporn| 晚上一个人看的免费电影| 国产精品无大码| 国产黄色视频一区二区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久 | 有码 亚洲区| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到 | 满18在线观看网站| 咕卡用的链子| 亚洲av电影在线进入| 91精品伊人久久大香线蕉| 深夜精品福利| 国产亚洲最大av| 男人添女人高潮全过程视频| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人看| 亚洲精品456在线播放app| 久久99蜜桃精品久久| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美| 精品国产露脸久久av麻豆| 美女福利国产在线| 成年女人在线观看亚洲视频| 国产男女内射视频| 成年动漫av网址| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 亚洲国产精品专区欧美| 99热这里只有是精品在线观看| 亚洲av国产av综合av卡| a 毛片基地| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 九九在线视频观看精品| 99九九在线精品视频| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 久热这里只有精品99| 午夜激情久久久久久久| 日韩欧美一区视频在线观看| 777米奇影视久久| 免费少妇av软件| 亚洲国产欧美在线一区| 男女午夜视频在线观看 | 韩国高清视频一区二区三区| 老女人水多毛片| 街头女战士在线观看网站| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 国产精品国产三级专区第一集| 一边摸一边做爽爽视频免费| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 免费av不卡在线播放| 国产成人a∨麻豆精品| 日韩熟女老妇一区二区性免费视频| 国产综合精华液| 午夜福利,免费看| 欧美性感艳星| 欧美日本中文国产一区发布| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 热re99久久国产66热| 九九在线视频观看精品| av不卡在线播放| 日本-黄色视频高清免费观看| 欧美 亚洲 国产 日韩一| 男女免费视频国产| 欧美成人午夜精品| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 2022亚洲国产成人精品| 韩国av在线不卡| 亚洲精品,欧美精品| 国产精品蜜桃在线观看| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看| 久久久久精品久久久久真实原创| 中文字幕制服av| 两性夫妻黄色片 | 午夜影院在线不卡| av又黄又爽大尺度在线免费看| 久久精品国产鲁丝片午夜精品| 一区二区av电影网| 日本欧美视频一区| 欧美少妇被猛烈插入视频| kizo精华| 成人漫画全彩无遮挡| 亚洲国产精品999| 欧美日韩视频高清一区二区三区二|